1
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
2
|
Rajkumar RP. Potassium channels in animal models of post-traumatic stress disorder: mechanistic and therapeutic implications. Front Cell Neurosci 2024; 18:1441514. [PMID: 39139400 PMCID: PMC11319181 DOI: 10.3389/fncel.2024.1441514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
3
|
Lv T, Wang M, Zheng HS, Mao JD, Yang F, Yang L, Zhao MG, Liu SB, Zhang K, Liu R, Wu YM. Electroacupuncture alleviates PTSD-like behaviors by modulating hippocampal synaptic plasticity via Wnt/β-catenin signaling pathway. Brain Res Bull 2023; 202:110734. [PMID: 37586426 DOI: 10.1016/j.brainresbull.2023.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/β-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/β-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and β-catenin, and increased GSK-3β. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and β-catenin, and decreasing that of GSK-3β. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/β-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.
Collapse
Affiliation(s)
- Tao Lv
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - He-Sheng Zheng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Jin-Dong Mao
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Liu
- Department of Rehabilitation Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China.
| |
Collapse
|
4
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
5
|
Dorofeikova M, Borkar CD, Weissmuller K, Smith-Osborne L, Basavanhalli S, Bean E, Smith A, Duong A, Resendez A, Fadok JP. Effects of footshock stress on social behavior and neuronal activation in the medial prefrontal cortex and amygdala of male and female mice. PLoS One 2023; 18:e0281388. [PMID: 36757923 PMCID: PMC9910713 DOI: 10.1371/journal.pone.0281388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023] Open
Abstract
Social behavior is complex and fundamental, and its deficits are common pathological features for several psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Acute stress may have a negative impact on social behavior, and these effects can vary based on sex. The aim of this study was to explore the effect of acute footshock stress, using analogous parameters to those commonly used in fear conditioning assays, on the sociability of male and female C57BL/6J mice in a standard social approach test. Animals were divided into two main groups of footshock stress (22 male, 24 female) and context exposed control (23 male and 22 female). Each group had mice that were treated intraperitoneally with either the benzodiazepine-alprazolam (control: 10 male, 10 female; stress: 11 male, 11 female), or vehicle (control: 13 male, 12 female; stress: 11 male, 13 female). In all groups, neuronal activation during social approach was assessed using immunohistochemistry against the immediate early gene product cFos. Although footshock stress did not significantly alter sociability or latency to approach a social stimulus, it did increase defensive tail-rattling behavior specifically in males (p = 0.0022). This stress-induced increase in tail-rattling was alleviated by alprazolam (p = 0.03), yet alprazolam had no effect on female tail-rattling behavior in the stress group. Alprazolam lowered cFos expression in the medial prefrontal cortex (p = 0.001 infralimbic area, p = 0.02 prelimbic area), and social approach induced sex-dependent differences in cFos activation in the ventromedial intercalated cell clusters (p = 0.04). Social approach following stress-induced cFos expression was positively correlated with latency to approach and negatively correlated with sociability in the prelimbic area and multiple amygdala subregions (all p < 0.05). Collectively, our results suggest that acute footshock stress induces sex-dependent alterations in defensiveness and differential patterns of cFos activation during social approach.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Chandrashekhar D. Borkar
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | | | - Lydia Smith-Osborne
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane National Primate Research Center, Covington, LA, United States of America
| | - Samhita Basavanhalli
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Erin Bean
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Avery Smith
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Anh Duong
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Neuroscience Program, Tulane University, New Orleans, LA, United States of America
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Guan P, Huang C, Lan Q, Huang S, Zhou P, Zhang C. Activation of ventral tegmental area dopaminergic neurons ameliorates anxiety-like behaviors in single prolonged stress-induced PTSD model rats. Neurochem Int 2022; 161:105424. [PMID: 36228742 DOI: 10.1016/j.neuint.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that arises after extremely traumatic events, with clinically significant and lasting impacts on both physical and psychological health. The present study examined the role of ventral tegmental area (VTA) dopaminergic signaling in anxiety-like behaviors and the underlying mechanisms in PTSD model rats. Chemogenetic technology was employed to specifically activate VTA dopamine (DA) neurons in rats subjected to single prolonged stress (SPS), and open field and elevated plus maze tests were applied to evaluate the anxiety-like manifestations. Subsequently, in vivo extracellular electrophysiological analyses were used to examine alterations in the firing characteristics of VTA DA neurons. Chemogenetic activation enhanced the firing and burst rates of VTA DA neurons in SPS-induced PTSD model rats and concomitantly mitigated the anxiety-like behavioral phenotypes. Collectively, these findings reveal a direct association between PTSD-relevant anxiety behaviors and VTA dopaminergic activity, and further suggest that interventions designed to enhance VTA dopaminergic activity may be a potential strategy for PTSD treatment.
Collapse
Affiliation(s)
- Peiqing Guan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Chunzheng Huang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qinghui Lan
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China
| | - Shile Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Peiling Zhou
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China.
| | - Changzheng Zhang
- School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
7
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Du J, Diao H, Zhou X, Zhang C, Chen Y, Gao Y, Wang Y. Post-traumatic stress disorder: a psychiatric disorder requiring urgent attention. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:219-243. [PMID: 37724188 PMCID: PMC10388753 DOI: 10.1515/mr-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 09/20/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a severe and heterogenous psychiatric disorder that was first defined as a mental disorder in 1980. Currently, the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) and the International Classification of Diseases 11th Edition (ICD-11) offer the most widely accepted diagnostic guidelines for PTSD. In both diagnostic categories, experiencing a traumatic event (TE) is the necessary criterion for diagnosing PTSD. The TEs described in the DSM-5 include actual or threatened death, serious injury, sexual violence, and other extreme stressors, either directly or indirectly. More than 70% of adults worldwide are exposed to a TE at least once in their lifetime, and approximately 10% of individuals develop PTSD after experiencing a TE. The important features of PTSD are intrusion or re-experiencing fear memories, pervasive sense of threat, active avoidance, hyperarousal symptoms, and negative alterations of cognition and mood. Individuals with PTSD have high comorbidities with other psychiatric diseases, including major depressive disorder, generalized anxiety disorder, and substance use disorder. Multiple lines of evidence suggest that the pathophysiology of PTSD is complex, involving abnormal neural circuits, molecular mechanisms, and genetic mechanisms. A combination of both psychotherapy and pharmacotherapy is used to treat PTSD, but has limited efficacy in patients with refractory PTSD. Because of the high prevalence, heavy burden, and limited treatments, PTSD is a psychiatric disorder that requires urgent attention. In this review, we summarize and discuss the diagnosis, prevalence, TEs, pathophysiology, and treatments of PTSD and draw attention to its prevention.
Collapse
Affiliation(s)
- Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Huapeng Diao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaojuan Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunkui Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Gasparyan A, Navarrete F, Manzanares J. Cannabidiol and Sertraline Regulate Behavioral and Brain Gene Expression Alterations in an Animal Model of PTSD. Front Pharmacol 2021; 12:694510. [PMID: 34262461 PMCID: PMC8273267 DOI: 10.3389/fphar.2021.694510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effects of cannabidiol (CBD) and/or sertraline (STR) on behavioral and gene expression alterations induced by a new chronic animal model of post-traumatic stress disorder (PTSD). C57BL/6J male mice were repeatedly exposed to physical and psychogenic alternate stressful stimuli. Fear-related memory and anxiety-like behaviors were evaluated. The effects of the administration of CBD (20 mg/kg, i.p.) and/or STR (10 mg/kg, p.o.) were analyzed on behavioral and gene expression changes induced by the model of PTSD. Gene expression alterations of targets related with stress regulation, endocannabinoid and serotonergic systems were analyzed by real-time PCR. The results revealed an increased and long-lasting fear-related memory and anxiety-like behaviors in mice exposed to the animal model of PTSD. Treatment with CBD improved these behaviors in PTSD animals, effects that were significantly potentiated when combined with STR. Gene expression analyses revealed a long-term increase of corticotropin releasing factor (Crf) that was significantly normalized with the combination CBD plus STR. Cannabinoid receptors (Cnr1 and Cnr2) were up regulated in PTSD mice whereas the serotonin transporter (Slc6a4) was reduced. Interestingly, CBD and STR alone or combined induced a significant and marked increase of Slc6a4 gene expression. These results point out the cooperative action of the combination CBD plus STR to enhance fear extinction and reduce anxiety-like behaviors, normalizing gene expression alterations in this animal model of PTSD and suggesting that the combination of CBD with STR deserves to be further explored for the treatment of patients with PTSD.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
10
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
11
|
Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 2021; 18:7. [PMID: 33402212 PMCID: PMC7786489 DOI: 10.1186/s12974-020-02069-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alteration of immune status in the central nervous system (CNS) has been implicated in the development of post-traumatic stress disorder (PTSD). However, the nature of overall changes in brain immunocyte landscape in PTSD condition remains unclear. Methods We constructed a mouse PTSD model by electric foot-shocks followed by contextual reminders and verified the PTSD-related symptoms by behavior test (including contextual freezing test, open-field test, and elevated plus maze test). We examined the immunocyte panorama in the brains of the naïve or PTSD mice by using single-cell mass cytometry. Microglia number and morphological changes in the hippocampus, prefrontal cortex, and amygdala were analyzed by histopathological methods. The gene expression changes of those microglia were detected by quantitative real-time PCR. Genetic/pharmacological depletion of microglia or minocycline treatment before foot-shocks exposure was performed to study the role of microglia in PTSD development and progress. Results We found microglia are the major brain immune cells that respond to PTSD. The number of microglia and ratio of microglia to immunocytes was significantly increased on the fifth day of foot-shock exposure. Furthermore, morphological analysis and gene expression profiling revealed temporal patterns of microglial activation in the hippocampus of the PTSD brains. Importantly, we found that genetic/pharmacological depletion of microglia or minocycline treatment before foot-shock exposure alleviated PTSD-associated anxiety and contextual fear. Conclusion Our results demonstrated a critical role for microglial activation in PTSD development and a potential therapeutic strategy for the clinical treatment of PTSD in the form of microglial inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02069-9.
Collapse
Affiliation(s)
- Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Torrisi SA, Lavanco G, Maurel OM, Gulisano W, Laudani S, Geraci F, Grasso M, Barbagallo C, Caraci F, Bucolo C, Ragusa M, Papaleo F, Campolongo P, Puzzo D, Drago F, Salomone S, Leggio GM. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol Stress 2020; 14:100286. [PMID: 33392367 PMCID: PMC7772817 DOI: 10.1016/j.ynstr.2020.100286] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic–pituitary–adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder. The AIS model includes highly requested features necessary to shape a translational PTSD animal model. Susceptible mice identified through the AIS model exhibited persistent PTSD-like phenotypes. Resilient mice identified through the AIS model adopted active coping strategies. The AIS model revealed molecular adaptations underlying trauma susceptibility/resilience. The AIS model meets the criterion of predictive validity by exclusively using susceptible mice.
Collapse
Key Words
- 5-trial SM, 5-trial social memory
- AIS, arousal-based individual screening
- ASR, acoustic startle reactivity
- Amy, amygdala
- Animal model
- BDNF, brain derived neurotropic factor
- BST, basal synaptic transmission
- C, control
- CORT, corticosterone
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders
- EPM, elevated plus maze
- FDA, Food and Drug Administration
- FKBP5, FK506 binding protein 5
- FST, forced swim test
- Fear conditioning
- HIP, hippocampus
- HPA, hypothalamic–pituitary–adrenal
- HT, hypothalamus
- OF, open field
- PTSD, post-traumatic stress disorder
- Resilience
- SGK1, serum/glucocorticoid-regulated kinase 1
- SSRIs, selective serotonin reuptake inhibitors
- Stress
- Susceptibility
- TE, trauma-exposed
- Z-score
- fEPSPs, field excitatory post-synaptic potentials
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,INSERM, U1215 Neurocentre Magendie and University of Bordeaux, Bordeaux, France
| | - Oriana M Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Taylor RM, Jeong IH, May MD, Bergman EM, Capaldi VF, Moore NLT, Matson LM, Lowery-Gionta EG. Fear expression is reduced after acute and repeated nociceptin/orphanin FQ (NOP) receptor antagonism in rats: therapeutic implications for traumatic stress exposure. Psychopharmacology (Berl) 2020; 237:2943-2958. [PMID: 32588078 DOI: 10.1007/s00213-020-05582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Evaluation of pharmacotherapies for acute stress disorder (ASD) or post-traumatic stress disorder (PTSD) is challenging due to robust heterogeneity of trauma histories and limited efficacy of any single candidate to reduce all stress-induced effects. Pursuing novel mechanisms, such as the nociceptin/orphanin FQ (NOP) system, may be a viable path for therapeutic development and of interest as it is involved in regulation of relevant behaviors and recently implicated in PTSD and ASD. OBJECTIVES First, we evaluated NOP receptor antagonism on general behavioral performance and again following a three-species predator exposure model (Experiment 1). Then, we evaluated effects of NOP antagonism on fear memory expression (Experiment 2). METHODS Adult, male rats underwent daily administration of NOP antagonists (J-113397 or SB-612,111; 0-20 mg/kg, i.p.) and testing in acoustic startle, elevated plus maze, tail-flick, and open field tests. Effects of acute NOP antagonism on behavioral performance following predator exposure were then assessed. Separately, rats underwent fear conditioning and were later administered SB-612,111 (0-3 mg/kg, i.p.) prior to fear memory expression tests. RESULTS J-113397 and SB-612,111 did not significantly alter most general behavioral performance measures alone, suggesting minimal off-target behavioral effects of NOP antagonism. J-113397 and SB-612,111 restored performance in measures of exploratory behavior (basic movements on the elevated plus maze and total distance in the open field) following predator exposure. Additionally, SB-612,111 significantly reduced freezing behavior relative to control groups across repeated fear memory expression tests, suggesting NOP antagonism may be useful in dampening fear responses. Other measures of general behavioral performance were not significantly altered following predator exposure. CONCLUSIONS NOP antagonists may be useful as pharmacotherapeutics for dampening fear responses to trauma reminders, and the present results provide supporting evidence for the implication of the NOP system in the neuropathophysiology of dysregulations in fear learning and memory processes observed in trauma- and stress-related disorders.
Collapse
Affiliation(s)
- Rachel M Taylor
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Isaac H Jeong
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Matthew D May
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Elizabeth M Bergman
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Vincent F Capaldi
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Nicole L T Moore
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Liana M Matson
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Emily G Lowery-Gionta
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
14
|
Kim J, Park M, Lee C, Ha JJ, Choi JS, Kim CH, Seok JH. Maladaptive Alterations of Defensive Response Following Developmental Complex Stress in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:412-422. [PMID: 32702220 PMCID: PMC7383007 DOI: 10.9758/cpn.2020.18.3.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
Objective Despite the etiological significance of complex developmental trauma in adult personality disorders and treatment-resistant depression, neurobiological studies have been rare due to the lack of useful animal models. As a first step, we devised an animal model to investigate the effects of multiple trauma-like stress during different developmental periods. Methods Twenty-one male Sprague-Dawley rats were classified into 3 groups based on the stress protocol: fear conditioning control (FCC, n = 6), complex stress (ComS, n = 9), and control (n = 6). While the ComS experienced three types of stress (maternal separation, juvenile isolation, electric foot shock), the FCC only experienced an electric foot shock stress and the control never experienced any. We compared fear responses at postnatal day (PND) 29 and PND 56 through freezing time per episode (FTpE), total freezing time (TFT), total freezing episodes (TFE), and ultrasonic vocalization (USV). Results ComS showed the longest FTpE in the conditioned fear response test. ComS and FCC exhibited the longer TFT and these two groups only displayed USV. ComS show difference TFE between PND 29 and PND 56. Conclusion The results of this investigation show that complex stress may affect not quantity of fear response but characteristics of fear response. Longer FTpE may be associated with tonic immobility which could be considered as a failed self-protective reaction and might be analogous to a sign of inappropriate coping strategy and self-dysregulation in complex trauma patients.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea
| | - Minkyung Park
- Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chiheon Lee
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea
| | - Jung Jin Ha
- Department of Psychology, Yonsei University, Seoul, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Ho Seok
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| |
Collapse
|
15
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Neurobiological Trajectories Involving Social Isolation in PTSD: A Systematic Review. Brain Sci 2020; 10:brainsci10030173. [PMID: 32197333 PMCID: PMC7139956 DOI: 10.3390/brainsci10030173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Social isolation (SI) stress has been recognized as a major risk factor of morbidity in humans and animals, exerting damaging effects at the physical and mental health levels. Posttraumatic stress disorder (PTSD), on the other hand, occurs as a result of experiencing serious, life-threatening, traumatic events and involves involuntary re-experiencing trauma (intrusion), avoidance symptoms, and distortions of cognition and emotional arousal. The literature shows that PTSD is affected by genetic predisposition and triggers a large neurocircuitry involving the amygdala, insula, hippocampus, anterior cingulate- and prefrontal-cortex, and affects the function of the neuroendocrine and immune systems. Social isolation seems to influence the predisposition, onset and outcome of PTSD in humans, whereas it constitutes a valid model of the disorder in animals. According to the PRISMA (preferred reporting items for systematic reviews and meta-analyses) protocol, we systematically reviewed all original studies involving the neurobiological trajectories between SI and PTSD published till July 2019 (database: PubMed/Medline). Out of 274 studies, 10 met the inclusion criteria. We present the results of the retrieved studies in terms of hypothalamic-pituitary-adrenal (HPA)-axis and endocannabinoid system function, immune reactions, neuroplasticity, novel pharmacological targets, and shortening of telomere length, which confirm a synergistic effect on a neurobiological level between the two entities.
Collapse
|