1
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Kloc M, Kubiak JZ. Monocyte and Macrophage Function Diversity. Int J Mol Sci 2022; 23:ijms232012404. [PMID: 36293261 PMCID: PMC9603855 DOI: 10.3390/ijms232012404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, there has been a tremendous revival of interest in monocyte and macrophages [...]
Collapse
Affiliation(s)
- Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35000 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
3
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Vaselaar E, Ageton C, Gaster K, Espaillat LR, Starks D, Dey N. Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers (Basel) 2022; 14:cancers14194577. [PMID: 36230499 PMCID: PMC9558552 DOI: 10.3390/cancers14194577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
The blood of patients with solid tumors contains circulating tumor-associated cells, including epithelial cells originating from the tumor mass, such as circulating tumor cells (CTCs), or phagocytic myeloid cells (differentiated monocytes), such as circulating cancer-associated macrophage-like cells (CAMLs). We report for the first time the identification and in-depth morphologic characterization of CAMLs in patients with endometrial cancers. We isolated CAMLs by size-based filtration on lithographically fabricated membranes followed by immunofluorescence, using a CD45+/CK 8,18,19+/EpCAM+/CD31+/macrophage-like nuclear morphology, from > 70 patients. Irrespective of the histological and pathological parameters, 98% of patients were positive for CAMLs. Two size-based subtypes of CAMLs, <20 µm (tiny) and >20 µm (giant) CAMLs, of distinctive polymorphic morphologies with mononuclear or fused polynuclear structures in several morphological states were observed, including apoptotic CAMLs, CAML−WBC doublets, conjoined CAMLs, CAML−WBC clusters, and CTC−CAML−WBC clusters. In contrast, CAMLs were absent in patients with non-neoplastic/benign tumors, healthy donors, and leucopaks. Enumerating CTCs simultaneously from the same patient, we observed that CTC-positive patients are positive for CAMLs, while 55% out of all CAML-positive patients were found positive for CTCs. Our study demonstrated for the first time the distinctive morphological characteristics of endometrial CAMLs in the context of the presence of CTCs in patients.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
| | - Jennifer C. Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Ethan Vaselaar
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Cheryl Ageton
- Department of Research Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, Sioux Falls, SD 57069, USA
- Correspondence:
| |
Collapse
|
4
|
Yamaguchi Y, Gibson J, Ou K, Lopez LS, Ng RH, Leggett N, Jonsson VD, Zarif JC, Lee PP, Wang X, Martinez C, Dorff TB, Forman SJ, Priceman SJ. PD-L1 blockade restores CAR T cell activity through IFN-γ-regulation of CD163+ M2 macrophages. J Immunother Cancer 2022; 10:e004400. [PMID: 35738799 PMCID: PMC9226933 DOI: 10.1136/jitc-2021-004400] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The immune suppressive tumor microenvironment (TME) that inhibits T cell infiltration, survival, and antitumor activity has posed a major challenge for developing effective immunotherapies for solid tumors. Chimeric antigen receptor (CAR)-engineered T cell therapy has shown unprecedented clinical response in treating patients with hematological malignancies, and intense investigation is underway to achieve similar responses with solid tumors. Immunologically cold tumors, including prostate cancers, are often infiltrated with abundant tumor-associated macrophages (TAMs), and infiltration of CD163+ M2 macrophages correlates with tumor progression and poor responses to immunotherapy. However, the impact of TAMs on CAR T cell activity alone and in combination with TME immunomodulators is unclear. METHODS To model this in vitro, we utilized a novel co-culture system with tumor cells, CAR T cells, and polarized M1 or M2 macrophages from CD14+ peripheral blood mononuclear cells collected from healthy human donors. Tumor cell killing, T cell activation and proliferation, and macrophage phenotypes were evaluated by flow cytometry, cytokine production, RNA sequencing, and functional blockade of signaling pathways using antibodies and small molecule inhibitors. We also evaluated the TME in humanized mice following CAR T cell therapy for validation of our in vitro findings. RESULTS We observed inhibition of CAR T cell activity with the presence of M2 macrophages, but not M1 macrophages, coinciding with a robust induction of programmed death ligand-1 (PD-L1) in M2 macrophages. We observed similar PD-L1 expression in TAMs following CAR T cell therapy in the TME of humanized mice. PD-L1, but not programmed cell death protein-1, blockade in combination with CAR T cell therapy altered phenotypes to more M1-like subsets and led to loss of CD163+ M2 macrophages via interferon-γ signaling, resulting in improved antitumor activity of CAR T cells. CONCLUSION This study reveals an alternative mechanism by which the combination of CAR T cells and immune checkpoint blockade modulates the immune landscape of solid tumors to enhance therapeutic efficacy of CAR T cells.
Collapse
Affiliation(s)
- Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Kevin Ou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lupita S Lopez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Rachel H Ng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Neena Leggett
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Vanessa D Jonsson
- Department of Applied Mathematics, University of California, Santa Cruz, California, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Jelani C Zarif
- Department of Oncology, Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Catalina Martinez
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, USA
| | - Tanya B Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
5
|
Wei J, Wang M, Jing C, Keep RF, Hua Y, Xi G. Multinucleated Giant Cells in Experimental Intracerebral Hemorrhage. Transl Stroke Res 2020; 11:1095-1102. [PMID: 32090277 DOI: 10.1007/s12975-020-00790-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/16/2023]
Abstract
Macrophage phagocytosis plays an important role in hematoma clearance after intracerebral hemorrhage (ICH). This study examined the characteristics of multinucleated giant cells (MGCs), a group of macrophages with multiple nuclei, in a mouse ICH model. Whether MGCs could be increased by treatment with a CD47 blocking antibody and decreased by treatment with clodronate liposomes were also examined. ICH was induced via autologous blood injection. Male adult C57BL/6 mice in different groups had (1) ICH alone; (2) ICH with anti-CD47 blocking antibody or control IgG; and (3) ICH with anti-CD47 antibody combined with clodronate liposomes or control liposomes. The effect of anti-CD47 antibody on MGC formation was also tested in females. Brains were harvested at days 3 or 7 for brain histology. Many MGCs were found at day 3 post-ICH, but were reduced at day 7. MGCs phagocytosed many red blood cells and were heme oxygenase-1, ferritin, YM-1, and iNOS positive. CD47 blocking antibody injection increased MGC numbers in the peri-hematomal zone and in the hematoma in both sexes. Co-injection of clodronate liposomes depleted MGCs in both the hematoma core and the peri-hematomal area. In conclusion, MGCs represent a macrophage/microglia subtype with strong phagocytosis capacity. MGCs exhibited not only an M2 but also an M1 phenotype and appeared involved in hemoglobin degradation. Anti-CD47 antibody boosted the number of MGCs, which may contribute to enhance hematoma clearance. Understanding the exact roles of MGCs in ICH may reveal novel targets for ICH treatment.
Collapse
Affiliation(s)
- Jialiang Wei
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming Wang
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Chaohui Jing
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
6
|
Fei F, Li C, Wang X, Du J, Liu K, Li B, Yao P, Li Y, Zhang S. Syncytin 1, CD9, and CD47 regulating cell fusion to form PGCCs associated with cAMP/PKA and JNK signaling pathway. Cancer Med 2019; 8:3047-3058. [PMID: 31025548 PMCID: PMC6558479 DOI: 10.1002/cam4.2173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/28/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We have previously reported the formation of polyploid giant cancer cells (PGCCs) through endoreduplication or cell fusion after cobalt chloride (CoCl2 ) induction. Cell fusion plays an important role in development and disease. However, the underlying molecular mechanism concerning cell fusion in PGCCs formation and clinicopathological significances remains unclear. METHODS We treat HCT116 and LoVo cell with CoCl2 and observed the cell fusion via fluorescent markers of different colors. Western blot and immunocytochemical staining were used to compare the expression and subcellular location of the fusion-related proteins syncytin 1, CD9, and CD47 along with PKA RIα, JNK1, and c-Jun between PGCCs and control cells from the HCT116 and LoVo cell lines. Moreover, 173 cases of colorectal tumor tissue samples were analyzed, including 47 cases of well-differentiated primary colorectal cancer (group I) and 5 cases of corresponding metastatic tumors (group II), 38 cases of moderately differentiated primary colorectal cancer (group III) and 14 cases of corresponding metastatic tumors (group IV), and 42 cases of poorly differentiated primary colorectal cancer (group V) and 27 cases of corresponding metastatic tumors (group VI). RESULTS The expression of syncytin 1, CD9, and CD47 is higher in PGCCs than in control cells and they are located in the cytoplasm. The expression of PKA RIα and JNK1 decreased, and that of c-Jun increased in PGCCs. The syncytin 1 expression was significantly different between groups I and II (P = 0.000), groups III and IV (P = 0.000), groups V and VI (P = 0.029), groups I and III (P = 0.001), groups III and V (P = 0.000), and groups I, III, and V (P = 0.000). CONCLUSIONS These data indicate that the cell fusion-related proteins syncytin 1, CD9, and CD47 may be involved in PGCC formation, and that cAMP/PKA and JNK signaling is likely to promote PGCC formation via the regulation of cell fusion processes.
Collapse
Affiliation(s)
- Fei Fei
- School of Medicine, Nankai University, Tianjin, P.R. China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Chunyuan Li
- School of Medicine, Nankai University, Tianjin, P.R. China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xinlu Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Liu
- Tianjin Medical University, Tianjin, P.R. China
| | - Bo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Peiyu Yao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Yuwei Li
- Department of colorectal surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Shiwu Zhang
- School of Medicine, Nankai University, Tianjin, P.R. China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| |
Collapse
|
7
|
Amengual-Peñafiel L, Brañes-Aroca M, Marchesani-Carrasco F, Jara-Sepúlveda MC, Parada-Pozas L, Cartes-Velásquez R. Coupling between Osseointegration and Mechanotransduction to Maintain Foreign Body Equilibrium in the Long-Term: A Comprehensive Overview. J Clin Med 2019; 8:E139. [PMID: 30691022 PMCID: PMC6407014 DOI: 10.3390/jcm8020139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
The permanent interaction between bone tissue and the immune system shows us the complex biology of the tissue in which we insert oral implants. At the same time, new knowledge in relation to the interaction of materials and the host, reveals to us the true nature of osseointegration. So, to achieve clinical success or perhaps most importantly, to understand why we sometimes fail, the study of oral implantology should consider the following advice equally important: a correct clinical protocol, the study of the immunomodulatory capacity of the device and the osteoimmunobiology of the host. Although osseointegration may seem adequate from the clinical point of view, a deeper vision shows us that a Foreign Body Equilibrium could be susceptible to environmental conditions. This is why maintaining this cellular balance should become our therapeutic target and, more specifically, the understanding of the main cell involved, the macrophage. The advent of new information, the development of new implant surfaces and the introduction of new therapeutic proposals such as therapeutic mechanotransduction, will allow us to maintain a healthy host-implant relationship long-term.
Collapse
Affiliation(s)
| | | | | | | | - Leopoldo Parada-Pozas
- Regenerative Medicine Center, Hospital Clínico de Viña del Mar, Viña del Mar 2520626, Chile.
| | - Ricardo Cartes-Velásquez
- School of Dentistry, Universidad Andres Bello, Concepción 4300866, Chile.
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
8
|
Champion TC, Partridge LJ, Ong SM, Malleret B, Wong SC, Monk PN. Monocyte Subsets Have Distinct Patterns of Tetraspanin Expression and Different Capacities to Form Multinucleate Giant Cells. Front Immunol 2018; 9:1247. [PMID: 29937768 PMCID: PMC6002745 DOI: 10.3389/fimmu.2018.01247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Monocytes are able to undergo homotypic fusion to produce different types of multinucleated giant cells, such as Langhans giant cells in response to M. tuberculosis infection or foreign body giant cells in response to implanted biomaterials. Monocyte fusion is highly coordinated and complex, with various soluble, intracellular, and cell-surface components mediating different stages of the process. Tetraspanins, such as CD9, CD63, and CD81, are known to be involved in cell:cell fusion and have been suggested to play a role in regulating homotypic monocyte fusion. However, peripheral human monocytes are not homogenous: they exist as a heterogeneous population consisting of three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16+), at steady state. During infection with mycobacteria, the circulating populations of intermediate and non-classical monocytes increase, suggesting they may play a role in the disease outcome. Human monocytes were separated into subsets and then induced to fuse using concanavalin A. The intermediate monocytes were able to fuse faster and form significantly larger giant cells than the other subsets. When antibodies targeting tetraspanins were added, the intermediate monocytes responded to anti-CD63 by forming smaller giant cells, suggesting an involvement of tetraspanins in fusion for at least this subset. However, the expression of fusion-associated tetraspanins on monocyte subsets did not correlate with the extent of fusion or with the inhibition by tetraspanin antibody. We also identified a CD9High and a CD9Low monocyte population within the classical subset. The CD9High classical monocytes expressed higher levels of tetraspanin CD151 compared to CD9Low classical monocytes but the CD9High classical subset did not exhibit greater potential to fuse and the role of these cells in immunity remains unknown. With the exception of dendrocyte-expressed seven transmembrane protein, which was expressed at higher levels on the intermediate monocyte subset, the expression of fusion-related proteins between the subsets did not clearly correlate with their ability to fuse. We also did not observe any clear correlation between giant cell formation and the expression of pro-inflammatory or fusogenic cytokines. Although tetraspanin expression appears to be important for the fusion of intermediate monocytes, the control of multinucleate giant cell formation remains obscure.
Collapse
Affiliation(s)
- Thomas C Champion
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Siew-Min Ong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Verma SK, Leikina E, Melikov K, Gebert C, Kram V, Young MF, Uygur B, Chernomordik LV. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J Biol Chem 2017; 293:254-270. [PMID: 29101233 DOI: 10.1074/jbc.m117.809681] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.
Collapse
Affiliation(s)
- Santosh K Verma
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Evgenia Leikina
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Kamran Melikov
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Claudia Gebert
- Genomic Imprinting, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Vardit Kram
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Berna Uygur
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892
| | - Leonid V Chernomordik
- Sections on Membrane Biology, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
10
|
Abstract
ABSTRACT
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
|
11
|
Salzman V, Porro V, Bollati-Fogolín M, Aguilar PS. Quantitation of yeast cell-cell fusion using multicolor flow cytometry. Cytometry A 2015; 87:843-54. [DOI: 10.1002/cyto.a.22701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Valentina Salzman
- Laboratorio De Biología Celular De Membranas, Institut Pasteur De Montevideo; Montevideo 11400 Uruguay
| | - Valentina Porro
- Cell Biology Unit, Institut Pasteur De Montevideo; Montevideo 11400 Uruguay
| | | | - Pablo S. Aguilar
- Laboratorio De Biología Celular De Membranas, Institut Pasteur De Montevideo; Montevideo 11400 Uruguay
- Laboratorio de Biología Celular de Membranas, Instituto De Investigaciones Biotecnológicas, Universidad Nacional De San Martín, CONICET; San Martín Buenos Aires Argentina
| |
Collapse
|
12
|
Hulme RS, Higginbottom A, Palmer J, Partridge LJ, Monk PN. Distinct regions of the large extracellular domain of tetraspanin CD9 are involved in the control of human multinucleated giant cell formation. PLoS One 2014; 9:e116289. [PMID: 25551757 PMCID: PMC4281222 DOI: 10.1371/journal.pone.0116289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining 'CCG' motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role.
Collapse
Affiliation(s)
- Rachel S. Hulme
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Adrian Higginbottom
- Department of Neuroscience, University of Sheffield Medical School, Sheffield, United Kingdom
| | - John Palmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Peter N. Monk
- Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Verma SK, Leikina E, Melikov K, Chernomordik LV. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem J 2014; 464:293-300. [PMID: 25336256 PMCID: PMC6335963 DOI: 10.1042/bj20141233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophage fusion that leads to osteoclast formation is one of the most important examples of cell-cell fusion in development, tissue homoeostasis and immune response. Protein machinery that fuses macrophages remains to be identified. In the present study, we explored the fusion stage of osteoclast formation for RAW macrophage-like murine cells and for macrophages derived from human monocytes. To uncouple fusion from the preceding differentiation processes, we accumulated fusion-committed cells in the presence of LPC (lysophosphatidylcholine) that reversibly blocks membrane merger. After 16 h, we removed LPC and observed cell fusion events that would normally develop within 16 h develop instead within 30-90 min. Thus, whereas osteoclastogenesis, generally, takes several days, our approach allowed us to focus on an hour in which we observe robust fusion between the cells. Complementing syncytium formation assay with a novel membrane merger assay let us study the synchronized fusion events downstream of a local merger between two plasma membranes, but before expansion of nascent membrane connections and complete unification of the cells. We found that the expansion of membrane connections detected as a growth of multinucleated osteoclasts depends on dynamin activity. In contrast, a merger between the plasma membranes of the two cells was not affected by inhibitors of dynamin GTPase. Thus dynamin that was recently found to control late stages of myoblast fusion also controls late stages of macrophage fusion, revealing an intriguing conserved mechanistic motif shared by diverse cell-cell fusion processes.
Collapse
Affiliation(s)
- Santosh K. Verma
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Kamran Melikov
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| |
Collapse
|
14
|
Kang H, Kerloc'h A, Rotival M, Xu X, Zhang Q, D'Souza Z, Kim M, Scholz JC, Ko JH, Srivastava PK, Genzen JR, Cui W, Aitman TJ, Game L, Melvin JE, Hanidu A, Dimock J, Zheng J, Souza D, Behera AK, Nabozny G, Cook HT, Bassett JHD, Williams GR, Li J, Vignery A, Petretto E, Behmoaras J. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 2014; 8:1210-24. [PMID: 25131209 PMCID: PMC4471813 DOI: 10.1016/j.celrep.2014.07.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/19/2014] [Accepted: 07/20/2014] [Indexed: 12/29/2022] Open
Abstract
Macrophages can fuse to form osteoclasts in bone or multinucleate giant cells (MGCs) as part of the immune response. We use a systems genetics approach in rat macrophages to unravel their genetic determinants of multinucleation and investigate their role in both bone homeostasis and inflammatory disease. We identify a trans-regulated gene network associated with macrophage multinucleation and Kcnn4 as being the most significantly trans-regulated gene in the network and induced at the onset of fusion. Kcnn4 is required for osteoclast and MGC formation in rodents and humans. Genetic deletion of Kcnn4 reduces macrophage multinucleation through modulation of Ca2+ signaling, increases bone mass, and improves clinical outcome in arthritis. Pharmacological blockade of Kcnn4 reduces experimental glomerulonephritis. Our data implicate Kcnn4 in macrophage multinucleation, identifying it as a potential therapeutic target for inhibition of bone resorption and chronic inflammation. We identified a gene network that regulates macrophage multinucleation and includes Kcnn4 Kcnn4 can be targeted in two inflammatory conditions with macrophage multinucleation Kcnn4 regulates bone mass under physiological conditions Kcnn4 is a drug target for which inhibitors reached phase III of clinical trials
Collapse
Affiliation(s)
- Heeseog Kang
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Audrey Kerloc'h
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - Maxime Rotival
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Xiaoqing Xu
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Zhang
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zelpha D'Souza
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Michael Kim
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jodi Carlson Scholz
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - Prashant K Srivastava
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Jonathan R Genzen
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT 84108, USA
| | - Weiguo Cui
- Blood Center of Wisconsin, Milwaukee, WI 53213, USA
| | - Timothy J Aitman
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Laurence Game
- Genomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, London, UK
| | - James E Melvin
- National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MD 20892, USA
| | - Adedayo Hanidu
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Janice Dimock
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Jie Zheng
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Donald Souza
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Aruna K Behera
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Gerald Nabozny
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - H Terence Cook
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jun Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Agnès Vignery
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Enrico Petretto
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK.
| |
Collapse
|
15
|
Dean P, Kenny B. A bacterial encoded protein induces extreme multinucleation and cell-cell internalization in intestinal cells. Tissue Barriers 2014; 1:e22639. [PMID: 24665371 PMCID: PMC3879132 DOI: 10.4161/tisb.22639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/16/2012] [Accepted: 10/22/2012] [Indexed: 12/18/2022] Open
Abstract
Despite extensive study, the molecular mechanisms that lead to multinucleation and cell enlargement (hypertrophy) remain poorly understood. Here, we show that a single bacterial virulence protein, EspF, from the human pathogen enteropathogenic E. coli induces extreme multi-nucleation in small intestinal epithelial cells. Ectopic expression of EspF induced cell-cell internalization events, presumably responsible for the enlarged multinucleated cells. These extreme phenotypes were dependent on a C-terminal polyproline-rich domain in EspF and not linked to the targeting of mitochondria or the nucleolus. The subversive functions of EspF may provide valuable insight into the molecular mechanisms that mediate cell fusion, multinucleation and cell hypertrophy.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School; University of Newcastle; Newcastle Upon Tyne, UK
| | - Brendan Kenny
- Institute of Cell and Molecular Bioscience, Medical School; University of Newcastle; Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
Hornik TC, Neniskyte U, Brown GC. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells. J Neurochem 2013; 128:650-61. [PMID: 24117490 DOI: 10.1111/jnc.12477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 12/15/2022]
Abstract
Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α-synuclein, tumour necrosis factor-α and interferon γ, but not interleukin-4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV-2. Inflammation-induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time-lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2-4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells. Inflammation resulted in the accumulation of multiple nuclei per cell in cultured microglia. This multinucleation was reversible and due to a PKC-dependent block of the last step of cell division. Multinucleate microglia were larger and had a greater capacity to phagocytose other cells, suggesting they might remove neurons in the brain.
Collapse
Affiliation(s)
- Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
17
|
Gentric G, Desdouets C. Polyploidization in liver tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:322-31. [PMID: 24140012 DOI: 10.1016/j.ajpath.2013.06.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function.
Collapse
Affiliation(s)
- Géraldine Gentric
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
18
|
Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:219-38. [PMID: 24050625 DOI: 10.1146/annurev-pathol-012513-104653] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461;
| | | | | |
Collapse
|
19
|
Cusulin C, Monni E, Ahlenius H, Wood J, Brune JC, Lindvall O, Kokaia Z. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells 2013; 30:2657-71. [PMID: 22961761 DOI: 10.1002/stem.1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022]
Abstract
Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, for example, neuronal replacement, neuroprotection, and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here, we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with cocultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.
Collapse
Affiliation(s)
- Carlo Cusulin
- Laboratory of Stem Cells and Restorative Neurology, Department of Laboratory Medicine, University Hospital, SE-22184 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Vérollet C, Gallois A, Dacquin R, Lastrucci C, Pandruvada SNM, Ortega N, Poincloux R, Behar A, Cougoule C, Lowell C, Al Saati T, Jurdic P, Maridonneau-Parini I. Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB J 2013; 27:3608-18. [PMID: 23742809 DOI: 10.1096/fj.13-232736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src(-/-) mice. Since this phenotype was even more severe in src(-/-)hck(-/-) mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck(-/-) mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck(-/-) osteoclast precursors (preosteoclast) but were normal in mature hck(-/-) osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck(-/-) preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck(-/-) mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.
Collapse
Affiliation(s)
- Christel Vérollet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yanai G, Hayashi T, Zhi Q, Yang KC, Shirouzu Y, Shimabukuro T, Hiura A, Inoue K, Sumi S. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model. PLoS One 2013; 8:e64499. [PMID: 23724055 PMCID: PMC3665804 DOI: 10.1371/journal.pone.0064499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/14/2013] [Indexed: 01/22/2023] Open
Abstract
Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs) are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets) that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Goichi Yanai
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Qi Zhi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Kai-Chiang Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Akihito Hiura
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Shoichiro Sumi
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Koulakov AA, Lazebnik Y. The problem of colliding networks and its relation to cell fusion and cancer. Biophys J 2013. [PMID: 23199929 DOI: 10.1016/j.bpj.2012.08.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell fusion, a process that merges two or more cells into one, is required for normal development and has been explored as a tool for stem cell therapy. It has also been proposed that cell fusion causes cancer and contributes to its progression. These functions rely on a poorly understood ability of cell fusion to create new cell types. We suggest that this ability can be understood by considering cells as attractor networks whose basic property is to adopt a set of distinct, stable, self-maintaining states called attractors. According to this view, fusion of two cell types is a collision of two networks that have adopted distinct attractors. To learn how these networks reach a consensus, we model cell fusion computationally. To do so, we simulate patterns of gene activities using a formalism developed to simulate patterns of memory in neural networks. We find that the hybrid networks can assume attractors that are unrelated to parental attractors, implying that cell fusion can create new cell types by nearly instantaneously moving cells between attractors. We also show that hybrid networks are prone to assume spurious attractors, which are emergent and sporadic network states. This finding means that cell fusion can produce abnormal cell types, including cancerous types, by placing cells into normally inaccessible spurious states. Finally, we suggest that the problem of colliding networks has general significance in many processes represented by attractor networks, including biological, social, and political phenomena.
Collapse
|
23
|
Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 2013; 33:2458-69. [PMID: 23589331 DOI: 10.1128/mcb.00197-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.
Collapse
|
24
|
Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop 2012; 3:212-22. [PMID: 23362465 PMCID: PMC3557323 DOI: 10.5312/wjo.v3.i12.212] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts are the bone resorbing cells essential for bone remodeling. Osteoclasts are formed from hematopoietic progenitors in the monocyte/macrophage lineage. Osteoclastogenesis is composed of several steps including progenitor survival, differentiation to mono-nuclear pre-osteoclasts, fusion to multi-nuclear mature osteoclasts, and activation to bone resorbing osteoclasts. The regulation of osteoclastogenesis has been extensively studied, in which the receptor activator of NF-κB ligand (RANKL)-mediated signaling pathway and downstream transcription factors play essential roles. However, less is known about osteoclast fusion, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Several proteins that affect cell fusion have been identified. Among them, dendritic cell-specific transmembrane protein (DC-STAMP) is directly associated to osteoclast fusion in vivo. Cytokines and factors influence osteoclast fusion through regulation of DC-STAMP. Here we review the recently discovered new factors that regulate osteoclast fusion with specific focus on DC-STAMP. A better understanding of the mechanistic basis of osteoclast fusion will lead to the development of a new therapeutic strategy for bone disorders due to elevated osteoclast bone resorption. Cell-cell fusion is essential for a variety of cellular biological processes. In mammals, there is a limited number of cell types that fuse to form multinucleated cells, such as the fusion of myoblasts for the formation of skeletal muscle and the fusion of cells of the monocyte/macrophage lineage for the formation of multinucleated osteoclasts and giant cells. In most cases, cell-cell fusion is beneficial for cells by enhancing function. Myoblast fusion increases myofiber size and diameter and thereby increases contractile strength. Multinucleated osteoclasts have far more bone resorbing activity than their mono-nuclear counterparts. Multinucleated giant cells are much more efficient in the removal of implanted materials and bacteria due to chronic infection than macrophages. Therefore, they are also called foreign-body giant cells. Cell fusion is a complicated process involving cell migration, chemotaxis, cell-cell recognition and attachment, as well as changes into a fusion-competent status. All of these steps are regulated by multiple factors. In this review, we will discuss osteoclast fusion and regulation.
Collapse
|
25
|
Sissons JR, Peschon JJ, Schmitz F, Suen R, Gilchrist M, Aderem A. Cutting edge: microRNA regulation of macrophage fusion into multinucleated giant cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:23-7. [PMID: 22661094 PMCID: PMC3381877 DOI: 10.4049/jimmunol.1102477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cellular fusion of macrophages into multinucleated giant cells is a distinguishing feature of the granulomatous response to inflammation, infection, and foreign bodies (Kawai and Akira. 2011. Immunity 34: 637-650). We observed a marked increase in fusion of macrophages genetically deficient in Dicer, an enzyme required for canonical microRNA (miRNA) biogenesis. Gene expression profiling of miRNA-deficient macrophages revealed an upregulation of the IL-4-responsive fusion protein Tm7sf4, and analyses identified miR-7a-1 as a negative regulator of macrophage fusion, functioning by directly targeting Tm7sf4 mRNA. miR-7a-1 is itself an IL-4-responsive gene in macrophages, suggesting feedback control of cellular fusion. Collectively, these data indicate that miR-7a-1 functions to regulate IL-4-directed multinucleated giant cell formation.
Collapse
|
26
|
Gentric G, Celton-Morizur S, Desdouets C. Polyploidy and liver proliferation. Clin Res Hepatol Gastroenterol 2012; 36:29-34. [PMID: 21778131 DOI: 10.1016/j.clinre.2011.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 02/04/2023]
Abstract
Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago, and it is now recognized that polyploid cells form in many eukaryotes under a wide variety of circumstances. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during post-natal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence and to both lead to a progressive loss of cell pluripotency and to a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth, and detail by which mechanisms hepatocytes become polyploid.
Collapse
Affiliation(s)
- G Gentric
- Inserm, U1016, Institut Cochin, 75014 Paris, France
| | | | | |
Collapse
|
27
|
Avinoam O, Podbilewicz B. Eukaryotic cell-cell fusion families. CURRENT TOPICS IN MEMBRANES 2012; 68:209-34. [PMID: 21771501 DOI: 10.1016/b978-0-12-385891-7.00009-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ori Avinoam
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
28
|
Sakai H, Okafuji I, Nishikomori R, Abe J, Izawa K, Kambe N, Yasumi T, Nakahata T, Heike T. The CD40-CD40L axis and IFN-γ play critical roles in Langhans giant cell formation. Int Immunol 2011; 24:5-15. [PMID: 22058328 DOI: 10.1093/intimm/dxr088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The presence of Langhans giant cells (LGCs) is one of the signatures of systemic granulomatous disorders such as tuberculosis and sarcoidosis. However, the pathophysiological mechanism leading to LGC formation, especially the contribution of the T cells abundantly found in granulomas, has not been fully elucidated. To examine the role of T cells in LGC formation, a new in vitro method for the induction of LGCs was developed by co-culturing human monocytes with autologous T cells in the presence of concanavalin A (ConA). This system required close contact between monocytes and T cells, and CD4+ T cells were more potent than CD8+ T cells in inducing LGC formation. Antibody inhibition revealed that a CD40-CD40 ligand (CD40L) interaction and IFN-γ were essential for LGC formation, and the combination of exogenous soluble CD40L (sCD40L) and IFN-γ efficiently replaced the role of T cells. Dendritic cell-specific transmembrane protein (DC-STAMP), a known fusion-related molecule in monocytes, was up-regulated during LGC formation. Moreover, knock-down of DC-STAMP by siRNA inhibited LGC formation, revealing that DC-STAMP was directly involved in LGC formation. Taken together, these results demonstrate that T cells played a pivotal role in a new in vitro LGC formation system, in which DC-STAMP was involved, and occurred via a molecular mechanism that involved CD40-CD40L interaction and IFN-γ secretion.
Collapse
Affiliation(s)
- Hidemasa Sakai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cell Fusion and Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:161-75. [DOI: 10.1007/978-94-007-0763-4_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Oren-Suissa M, Podbilewicz B. Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dyn 2010; 239:1515-28. [PMID: 20419783 DOI: 10.1002/dvdy.22284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells have evolved diverged mechanisms to merge cells. Here, we discuss three types of cell fusion: (1) Non-self-fusion, cells with different genetic contents fuse to start a new organism and fusion between enveloped viruses and host cells; (2) Self-fusion, genetically identical cells fuse to form a multinucleated cell; and (3) Auto-fusion, a single cell fuses with itself by bringing specialized cell membrane domains into contact and transforming itself into a ring-shaped cell. This is a new type of selfish fusion discovered in C. elegans. We divide cell fusion into three stages: (1) Specification of the cell-fusion fate; (2) Cell attraction, attachment, and recognition; (3) Execution of plasma membrane fusion, cytoplasmic mixing and cytoskeletal rearrangements. We analyze cell fusion in diverse biological systems in development and disease emphasizing the mechanistic contributions of C. elegans to the understanding of programmed cell fusion, a genetically encoded pathway to merge specific cells.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
32
|
Simonin AR, Rasmussen CG, Yang M, Glass NL. Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genet Biol 2010; 47:855-68. [PMID: 20601042 DOI: 10.1016/j.fgb.2010.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Cell-cell fusion during fertilization and between somatic cells is an integral process in eukaryotic development. In Neurospora crassa, the hyphal anastomosis mutant, ham-2, fails to undergo somatic fusion. In both humans and Saccharomyces cerevisiae, homologs of ham-2 are found in protein complexes that include homologs to a striatin-like protein and a forkhead-associated (FHA) protein. We identified a striatin (ham-3) gene and a FHA domain (ham-4) gene in N. crassa; strains containing mutations in ham-3 and ham-4 show severe somatic fusion defects. However, ham-3 and ham-4 mutants undergo mating-cell fusion, indicating functional differences in somatic versus sexual fusion events. The ham-2 and ham-3 mutants are female sterile, while ham-4 mutants are fertile. Homozygous crosses of ham-2, ham-3 and ham-4 mutants show aberrant meiosis and abnormally shaped ascospores. These data indicate that, similar to humans, the HAM proteins may form different signaling complexes that are important during both vegetative and sexual development in N. crassa.
Collapse
Affiliation(s)
- Anna R Simonin
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
| | | | | | | |
Collapse
|
33
|
Vérollet C, Zhang YM, Le Cabec V, Mazzolini J, Charrière G, Labrousse A, Bouchet J, Medina I, Biessen E, Niedergang F, Bénichou S, Maridonneau-Parini I. HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2010; 184:7030-9. [DOI: 10.4049/jimmunol.0903345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Chen S, Jones JA, Xu Y, Low HY, Anderson JM, Leong KW. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 2010; 31:3479-91. [PMID: 20138663 DOI: 10.1016/j.biomaterials.2010.01.074] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022]
Abstract
Current strategies to limit macrophage adhesion, fusion and fibrous capsule formation in the foreign body response have focused on modulating material surface properties. We hypothesize that topography close to biological scale, in the micron and nanometric range, provides a passive approach without bioactive agents to modulate macrophage behavior. In our study, topography-induced changes in macrophage behavior was examined using parallel gratings (250 nm-2 mum line width) imprinted on poly(epsilon-caprolactone) (PCL), poly(lactic acid) (PLA) and poly(dimethyl siloxane) (PDMS). RAW 264.7 cell adhesion and elongation occurred maximally on 500 nm gratings compared to planar controls over 48 h. TNF-alpha and VEGF secretion levels by RAW 264.7 cells showed greatest sensitivity to topographical effects, with reduced levels observed on larger grating sizes at 48 h. In vivo studies at 21 days showed reduced macrophage adhesion density and degree of high cell fusion on 2 mum gratings compared to planar controls. It was concluded that topography affects macrophage behavior in the foreign body response on all polymer surfaces examined. Topography-induced changes, independent of surface chemistry, did not reveal distinctive patterns but do affect cell morphology and cytokine secretion in vitro, and cell adhesion in vivo particularly on larger size topography compared to planar controls.
Collapse
Affiliation(s)
- Sulin Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
35
|
Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc Natl Acad Sci U S A 2009; 106:19387-92. [PMID: 19884508 DOI: 10.1073/pnas.0907039106] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cell communication is essential for coordinating physiological responses in multicellular organisms and is required for various developmental processes, including cell migration, differentiation, and fusion. To facilitate communication, functional differences are usually required between interacting cells, which can be established either genetically or developmentally. However, genetically identical cells in the same developmental state are also capable of communicating, but must avoid self-stimulation. We hypothesized that such cells must alternate their physiological state between signal sending and receiving to allow recognition and behavioral changes. To test this hypothesis, we studied cell communication in the filamentous fungus Neurospora crassa, a simple and experimentally amenable model system. In N. crassa, germinating asexual spores (germlings) of identical genotype chemotropically sense others in close proximity, show attraction-mediated directed growth, and ultimately undergo cell fusion. Here, we report that two proteins required for cell fusion, a MAP kinase (MAK-2) and a protein of unknown molecular function (SO), exhibit rapid oscillatory recruitment to the plasma membranes of interacting germlings undergoing chemotropic interactions via directed growth. Using an inhibitable MAK-2 variant, we show that MAK-2 kinase activity is required both for chemotropic interactions and for oscillation of MAK-2 and SO to opposing cell tips. Thus, N. crassa germlings undergoing chemotropic interactions rapidly alternate between two different physiological states, associated with signal delivery and response. Such spatiotemporal coordination of signaling allows genetically identical and developmentally equivalent cells to avoid self-stimulation and to coordinate their behavior to achieve the beneficial physiological outcome of cell fusion.
Collapse
|
36
|
Self-signalling and self-fusion in filamentous fungi. Curr Opin Microbiol 2009; 12:608-15. [PMID: 19864177 DOI: 10.1016/j.mib.2009.09.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/17/2022]
Abstract
The formation of interconnected hyphal networks is central to the organisation and functioning of the filamentous fungal colony. It is brought about by the fusion of specialised hyphae during colony initiation and mature colony development. These hyphae are normally genetically identical, and hence this process is termed hyphal self-fusion. The conidial anastomosis tube (CAT) functions in forming networks of conidial germlings during colony initiation. This hyphal type in Neurospora crassa is being used as a model for studies on hyphal self-signalling and self-fusion in filamentous fungi. Extraordinary new insights into the process of self-signalling that occurs during CAT self-fusion have recently been revealed by live-cell imaging of genetically engineered strains of N. crassa. A novel form of signalling involving the oscillatory recruitment of signal proteins to CAT tips that are communicating and growing towards each other has been observed. This 'ping-pong' mechanism operates over a very short time scale and comparisons with non-self-signalling during yeast cell mating indicate that this mechanism probably does not involve transcriptional regulation. It is proposed that this mechanism has evolved to increase the efficiency of fusion between genetically identical cells that are non-motile.
Collapse
|
37
|
Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood 2009; 114:3413-21. [PMID: 19661269 DOI: 10.1182/blood-2009-03-211920] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lytic bone disease in myeloma is characterized by an increase in multinucleate osteoclasts in close proximity to tumor cells. However, the nature of osteoclast precursors and the mechanisms underlying multinuclearity are less understood. Here we show that culture of myeloma cell lines as well as primary myeloma cells with human dendritic cells (DCs) but not monocytes or macrophages leads to spontaneous cell-cell fusion, which then leads to the facile formation of multinucleate bone-resorbing giant cells. Osteoclastogenesis is cell contact dependent, leading to up-regulation of thrombospondin-1 (TSP-1) in DCs. Disruption of CD47-TSP-1 interaction by TSP-1-blocking antibodies or down-regulation of CD47 on tumor cells by RNA interference abrogates tumor-induced osteoclast formation. Blockade of CD47-TSP-1 interactions also inhibits receptor activator for nuclear factor kappaB ligand- and macrophage colony-stimulating factor-induced formation of osteoclasts from human monocytes. Further, TSP-1 blockade attenuates hypercalcemia induced by parathyroid hormone in vivo. These data point to a role for CD47-TSP-1 interactions in regulating cell-fusion events involved in human osteoclast formation. They also suggest that DCs, known to be enriched in myeloma tumors, may be direct precursors for tumor-associated osteoclasts. Disruption of CD47-TSP-1 interactions or preventing the recruitment of DCs to tumors may provide novel approaches to therapy of myeloma bone disease and osteoporosis.
Collapse
|
38
|
Quinn MT, Schepetkin IA. Role of NADPH oxidase in formation and function of multinucleated giant cells. J Innate Immun 2009; 1:509-26. [PMID: 20375608 DOI: 10.1159/000228158] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023] Open
Abstract
Macrophages play essential roles in a wide variety of physiological and pathological processes. One of the unique features of these phagocytic leukocytes is their ability to fuse, forming multinucleated giant cells. Multinucleated giant cells are important mediators of tissue remodeling and repair and are also responsible for removal or sequestration of foreign material, intracellular bacteria and non-phagocytosable pathogens, such as parasites and fungi. Depending on the tissue where fusion occurs and the inflammatory insult, multinucleated giant cells assume distinctly different phenotypes. Nevertheless, the ultimate outcome is the formation of large cells that can resorb bone tissue (osteoclasts) or foreign material and pathogens (giant cells) extracellularly. While progress has been made in recent years, the mechanisms and factors involved in macrophage fusion are still not fully understood. In addition to cytokines and a number of adhesion proteins and receptors, it is becoming increasingly clear that NADPH oxidase-generated reactive oxygen species (ROS) also play an important role in macrophage fusion. In this review, we provide an overview of macrophage multinucleation, with a specific focus on the role of NADPH oxidases and ROS in macrophage fusion and in the function of multinucleated giant cells. In addition, we provide an updated overview of the role of these cells in inflammation and various autoimmune diseases.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
39
|
Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009; 119:1880-7. [PMID: 19603546 PMCID: PMC2701880 DOI: 10.1172/jci38677] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023] Open
Abstract
The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.
Collapse
Affiliation(s)
- Séverine Celton-Morizur
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Grégory Merlen
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Dominique Couton
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Germain Margall-Ducos
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Chantal Desdouets
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| |
Collapse
|
40
|
Abstract
Recent reports have shown that bone marrow-derived cells (BMDCs) contribute to the formation of vasculature after stroke. However, the mechanism by which mural cells are formed from BMDC remains elusive. Here, we provide direct evidence that the cell fusion process contributes to the formation of pericytes after stroke. We generated mouse bone marrow chimeras using a cre/lox system that allows the detection of fusion events by X-gal staining. In these mice, we detected X-gal-positive cells that expressed vimentin and desmin, specific markers of mature murine pericytes. Electron microscopy confirmed that fused cells possessed basal lamina and characteristics of pericytes. Furthermore, induction of stroke increased significantly the presence of fused cells in the ischemic area. These cells expressed markers of developing pericytes such as NG2. We conclude that cell fusion participates actively in the generation of vascular tissue through pericyte formation under normal as well as pathologic conditions.
Collapse
|