1
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
2
|
King K, Rosenthal A. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms. Osteoarthritis Cartilage 2015; 23:841-50. [PMID: 25837996 PMCID: PMC5530368 DOI: 10.1016/j.joca.2015.03.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 02/02/2023]
Abstract
Projected increases in the prevalence of both diabetes mellitus (DM) and osteoarthritis (OA) ensure their common co-existence. In an era of increasing attention to personalized medicine, understanding the influence of common comorbidities such as DM should result in improved care of patients with OA. In this narrative review, we summarize the literature addressing the interactions between DM and OA spanning the years from 1962 to 2014. We separated studies depending on whether they investigated clinical populations, animal models, or cells and tissues. The clinical literature addressing the influence of DM on OA and its therapeutic outcomes suggests that DM may augment the development and severity of OA and that DM increases risks associated with joint replacement surgery. The few high quality studies using animal models also support an adverse effect of DM on OA. We review strengths and weaknesses of the common rodent models of DM. The heterogeneous literature derived from studies of articular cells and tissues also supports the existence of biochemical and biomechanical changes in articular tissues in DM, and begins to characterize molecular mechanisms activated in diabetic-like environs which may contribute to OA. Increasing evidence from the clinic and the laboratory supports an adverse effect of DM on the development, severity, and therapeutic outcomes for OA. To understand the mechanisms through which DM contributes to OA, further studies are clearly necessary. Future studies of DM-influenced mechanisms may shed light on general mechanisms of OA pathogenesis and result in more specific and effective therapies for all OA patients.
Collapse
Affiliation(s)
- K.B. King
- Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, USA,Surgical Service, Orthopaedic Service, Eastern Colorado Health Care System, Veterans Affairs, Denver, CO, USA
| | - A.K. Rosenthal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA,Medicine Service, Rheumatology Service, The Clement J. Zablocki Medical Center, Veterans Affairs, Milwaukee, WI, USA,Address correspondence and reprint requests to: A.K. Rosenthal, Zablocki VA Medical Center, 5000 W. National Avenue, Milwaukee, WI 53295-1000, USA. Tel: 1-(414)-955-7027; Fax: 1-(414)-955-6205
| |
Collapse
|
3
|
Wollaston-Hayden EE, Harris RBS, Liu B, Bridger R, Xu Y, Wells L. Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance. Front Endocrinol (Lausanne) 2014; 5:223. [PMID: 25657638 PMCID: PMC4302944 DOI: 10.3389/fendo.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023] Open
Abstract
Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance.
Collapse
Affiliation(s)
- Edith E. Wollaston-Hayden
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ruth B. S. Harris
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | - Bingqiang Liu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- *Correspondence: Lance Wells, Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA e-mail:
| |
Collapse
|
4
|
Omar BA, Vikman J, Winzell MS, Voss U, Ekblad E, Foley JE, Ahrén B. Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia 2013; 56:1752-60. [PMID: 23636640 DOI: 10.1007/s00125-013-2927-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/11/2013] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Studies have shown that dipeptidyl peptidase-4 (DPP4) inhibitors stimulate insulin secretion and increase beta cell mass in rodents. However, in these models hyperglycaemia has been induced early on in life and the treatment periods have been short. To explore the long-term effects of DPP4 inhibition on insulin secretion and beta cell mass, we have generated a high-fat diet (HFD)-induced-obesity model in mice of advanced age (10 months old). METHODS After 1 month of HFD alone, the mice were given the DPP4 inhibitor vildagliptin for a further 11 months. At multiple time points throughout the study, OGTTs were performed and beta cell area and long-term survival were evaluated. RESULTS Beta cell function and glucose tolerance were significantly improved by vildagliptin with both diets. In contrast, in spite of the long treatment period, beta cell area was not significantly different between vildagliptin-treated mice and controls. Mice of advanced age chronically fed an HFD displayed clear and extensive pancreatic inflammation and peri-insulitis, mainly formed by CD3-positive T cells, which were completely prevented by vildagliptin treatment. Chronic vildagliptin treatment also improved survival rates for HFD-fed mice. CONCLUSIONS/INTERPRETATION In a unique advanced-aged HFD-induced-obesity mouse model, insulin secretion was improved and the extensive peri-insulitis prevented by chronic DPP4 inhibition. The improved survival rates for obese mice chronically treated with vildagliptin suggest that chronic DPP4 inhibition potentially results in additional quality-adjusted life-years for individuals with type 2 diabetes, which is the primary goal of any diabetes therapy.
Collapse
Affiliation(s)
- B A Omar
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Tan JTM, McLennan SV, Williams PF, Rezaeizadeh A, Lo LWY, Bonner JG, Twigg SM. Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 2013; 304:E1291-302. [PMID: 23571711 DOI: 10.1152/ajpendo.00654.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Connective tissue growth factor (CTGF), also known as CCN-2, is a cysteine-rich secreted protein that is involved in a range of biological processes, including regulation of cell growth and differentiation. Our previous in vitro studies have shown that CCN-2 inhibits adipocyte differentiation, although whether CCN-2 is regulated in vivo in adipogenesis is undetermined and was investigated in this study. C57BL/6 male mice were fed either standard laboratory chow (ND) or a diet high in fat (HFD; 45% fat) for 15 or 24 wk. HFD animals that gained >5 g in weight (termed HFD-fat) were insulin resistant and were compared with HFD-fed animals, which failed to gain weight (termed HFD-lean). HFD-fat mice had significantly increased CCN-2 mRNA levels in both the subcutaneous and epididymal fat pads, whereas CCN-2 mRNA was not induced in the epididymal site in HFD-lean mice. Also in HFD-fed animals, epididymal CCN-2 mRNA correlated positively with key genes involved in adipocyte differentiation, adiponectin and PPARγ (P < 0.001 and P < 0.002, respectively). Additionally, epididymal CCN-2 mRNA correlated positively with two markers of tissue turnover, PAI-1 in HFD-fat mice only and TIMP-1, but only in the HFD-lean mice. Collectively, these findings suggest that CCN-2 plays a role in adipocyte differentiation in vivo and thus in the pathogenesis of obesity linked with insulin resistance.
Collapse
Affiliation(s)
- Joanne T M Tan
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; and
| | | | | | | | | | | | | |
Collapse
|
6
|
Salido EM, Bordone M, De Laurentiis A, Chianelli M, Keller Sarmiento MI, Dorfman D, Rosenstein RE. Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats. J Pineal Res 2013; 54:179-89. [PMID: 22946773 DOI: 10.1111/jpi.12008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages and provokes significant retinal alterations. The aim of this work was to analyze the effect of melatonin on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water. Three weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25 mg/kg). One day or 3 wk after vehicle or STZ injection, animals were subcutaneously implanted with a pellet of melatonin. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 wk of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Melatonin, which did not affect glucose metabolism in control or diabetic rats, prevented the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels. In addition, melatonin prevented the decrease in retinal catalase activity. These results indicate that melatonin protected the retina from the alterations observed in an experimental model of DR associated with type 2 diabetes.
Collapse
Affiliation(s)
- Ezequiel M Salido
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Salido EM, Dorfman D, Bordone M, Chianelli MS, Sarmiento MIK, Aranda M, Rosenstein RE. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes. Exp Neurol 2012; 240:1-8. [PMID: 23153579 DOI: 10.1016/j.expneurol.2012.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 02/02/2023]
Abstract
Diabetic retinopathy is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages, and provokes significant retinal alterations. We investigated the effect of ischemic conditioning on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water, and 3 weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25mg/kg). Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 weeks after vehicle or STZ injection and was weekly repeated in one eye, while control eyes were submitted to a sham procedure. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 weeks of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Brief ischemia pulses in one eye and a sham procedure in the contralateral eye did not affect glucose metabolism in control or diabetic rats. Ischemic pulses reduced the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels observed in diabetic animals. In addition, ischemic conditioning prevented the decrease in retinal catalase activity induced by T2DM. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies to treat diabetic retinopathy associated with T2DM.
Collapse
Affiliation(s)
- Ezequiel M Salido
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
8
|
Cordoba-Chacon J, Gahete MD, Pozo-Salas AI, Moreno-Herrera A, Castaño JP, Kineman RD, Luque RM. Peripubertal-onset but not adult-onset obesity increases IGF-I and drives development of lean mass, which may lessen the metabolic impairment in adult obesity. Am J Physiol Endocrinol Metab 2012; 303:E1151-7. [PMID: 22932784 PMCID: PMC3774069 DOI: 10.1152/ajpendo.00340.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has been suggested that adult metabolic dysfunction may be more severe in individuals who become obese as children compared with those who become obese later in life. To determine whether adult metabolic function differs if diet-induced weight gain occurs during the peripubertal age vs. if excess weight gain occurs after puberty, male C57Bl/6J mice were fed a low-fat (LF; 10% kcal from fat) or high-fat (HF; 60% kcal from fat) diet starting during the peripubertal period (pHF; 4 wk of age) or as adults (aHF; 12 wk of age). Both pHF and aHF mice were hyperinsulinemic and hyperglycemic, and both showed impaired glucose tolerance and insulin resistance compared with their LF-fed controls. However, despite a longer time on diet, pHF mice were relatively more insulin sensitive than aHF mice, which was associated with higher lean mass and circulating IGF-I levels. In addition, HF feeding had an overall stimulatory effect on circulating corticosterone levels; however, this rise was associated only with elevated plasma ACTH in the aHF mice. Despite the belief that adult metabolic dysfunction may be more severe in individuals who become obese as children, data generated using a diet-induced obese mouse model suggest that adult metabolic dysfunction associated with peripubertal onset of obesity is not worse than that associated with adult-onset obesity.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, University of Cordoba Centro de Investigacion Biomedica en Red Fisiopatologia de Obesidad y Nutricion, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Salido EM, de Zavalía N, Schreier L, De Laurentiis A, Rettori V, Chianelli M, Keller Sarmiento MI, Arias P, Rosenstein RE. Retinal changes in an experimental model of early type 2 diabetes in rats characterized by non-fasting hyperglycemia. Exp Neurol 2012; 236:151-60. [PMID: 22554865 DOI: 10.1016/j.expneurol.2012.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Diabetic retinopathy is a leading cause of acquired blindness in young, but also in elder adults, mostly affected by type 2 diabetes mellitus (T2DM). The aim of this work was to develop an experimental model of early human T2DM in adult rats, and to analyze retinal functional, morphological, and biochemical changes arising during the early stages of the moderate metabolic derangement. For this purpose, animals were divided in four groups: adult male Wistar rats receiving: tap water and citrate buffer i.p. (group 1), tap water with 30% sucrose and citrate buffer i.p. (group 2), tap water and 25mg/kg i.p streptozotocin (STZ, group 3), or 30% sucrose and STZ (group 4). Fasting and postprandial glycemia, fructosamine and serum insulin levels were assessed. In addition, i.p. glucose and insulin tolerance tests were performed. Retinal function (electroretinogram, ERG) and morphology (optical microscopy), retinal nitric oxide synthase (NOS) activity (using (3)H-arginine), lipid peroxidation (thiobarbituric acid reactive substances, TBARS), and TNFα levels (ELISA) were evaluated. At 6 and 12 weeks of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in most metabolic tests, as compared with the other groups. At 12 weeks of treatment, a significant decrease in the ERG a- and b- wave and oscillatory potential amplitudes, and a significant increase in retinal NOS activity, TBARS, TNFα, glial fibrillary acidic protein in Müller cells, and vascular endothelial growth factor levels were observed. These results indicate that the combination of diet-induced insulin resistance and a slight secretory impairment resulting from a low-dose STZ treatment mimics some features of human T2DM at its initial stages, and provokes significant retinal alterations.
Collapse
Affiliation(s)
- Ezequiel M Salido
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine, University of Buenos Aires/CEFyBO, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C. Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology 2010; 151:595-605. [PMID: 19966179 PMCID: PMC2817622 DOI: 10.1210/en.2009-1015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/30/2009] [Indexed: 12/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy of reproductive-aged women and is exacerbated by obesity. Exposure of ewes to excess testosterone (T) from d 30-90 of gestation culminates in anovulation, functional hyperandrogenism, LH excess, and polyfollicular ovaries, features similar to those of women with PCOS, with some reproductive defects programmed by androgenic actions of T and others not. Excess weight gain during postnatal life increases the severity of these reproductive defects. Prenatal T-treated ewes also manifest reduced insulin sensitivity, a feature found in more than 70% of PCOS women. We tested the hypotheses that reduced insulin sensitivity of prenatal T-treated ewes is programmed by androgenic actions of T, and excess postnatal weight gain exaggerates this defect. In addition, we tested whether disruptive effects of excess weight gain on insulin sensitivity index are transferred to female offspring. Insulin sensitivity was assessed using iv glucose tolerance tests. Results revealed that disruptive effects of prenatal T excess on insulin sensitivity were programmed by androgenic action of T and postnatal overfeeding-impaired insulin sensitivity in both T-treated and controls and that prenatal T-treated sheep tend to manifest such overfeeding impairments earlier than controls. Importantly, offspring of overweight controls also manifest defects in insulin dynamics supportive of intergenerational transfer of obesity-related traits. The findings are of relevance in the context of developmental programming of insulin resistance by prenatal steroids and excess weight gain.
Collapse
Affiliation(s)
- V Padmanabhan
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, 300 North Ingalls Building, Ann Arbor, Michigan 48109-0404, USA.
| | | | | | | | | |
Collapse
|