1
|
Chniguir A, Saguem MH, Dang PMC, El-Benna J, Bachoual R. Eugenol Inhibits Neutrophils Myeloperoxidase In Vitro and Attenuates LPS-Induced Lung Inflammation in Mice. Pharmaceuticals (Basel) 2024; 17:504. [PMID: 38675465 PMCID: PMC11054673 DOI: 10.3390/ph17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Amina Chniguir
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| | | | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, 75018 Paris, France; (P.M.-C.D.); (J.E.-B.)
- Inflamex Laboratories, Faculty of Medicine, University of Paris City, Xavier Bichat, 75018 Paris, France
| | - Rafik Bachoual
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia;
| |
Collapse
|
2
|
Chniguir A, Zioud F, Marzaioli V, El-Benna J, Bachoual R. Syzygium aromaticum aqueous extract inhibits human neutrophils myeloperoxidase and protects mice from LPS-induced lung inflammation. PHARMACEUTICAL BIOLOGY 2019; 57:56-64. [PMID: 30707845 PMCID: PMC6366422 DOI: 10.1080/13880209.2018.1557697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 10/01/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae), commonly known as clove, originally found in the Muluku Islands in East Indonesia, is widely used as a spice and has numerous medicinal properties. OBJECTIVE This study investigated the antioxidant potential of S. aromaticum aqueous extract (SAAE) in vitro and its protective effects on lipopolysaccharide (LPS)-induced lung inflammation in mice. MATERIAL AND METHODS Neutrophils were isolated from healthy donors and reactive oxygen species (ROS) generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by cytochrome c reduction assay. H2O2 was detected by DCFH fluorescence assay. Myeloperoxidase (MPO) activity was mesured by tetramethyl benzidine oxidation method. To study the anti-inflammatory activity of SAAE, lung inflammation was induced in mice (BALB/c) by intra-tracheal instillation of lypopolysaccharide (5 µg/mouse), and SAAE (200 mg/kg body weight) was injected intraperitoneally prior to LPS administration. Bronchoalveolar lavage and lung tissue were collected to assess inflammatory cells count and total protein content. Metalloproteinases activity was detected by zymography technique. RESULTS SAAE inhibited luminol-amplified chemiluminescence of resting neutrophils and N-formyl-methionyl-leucyl-phenylalanine- or phorbol myristate acetate-stimulated neutrophils, with an inhibitory effect starting at a concentration as low as 0.5 µg/mL. Moreover, SAAE reduced significantly MPO activity and it exhibits a dose-dependent action (IC50 = 0.5 µg/mL). In vivo results showed that SAAE decreased markedly neutrophil count (From 61% to 15%) and proteins leakage into bronchoalveolar lavage fluid. Gelatin zymography assay showed that S. aromaticum inhibited MMP-2 (15%) and MMP-9 (18%) activity in lung homogenates. DISCUSSION AND CONCLUSION Our results suggest that the anti-inflammatory activity of SAAE, in vivo, is due to the inhibition of ROS production and metalloproteinases activity via its action on MPO. According to these findings, SAAE could be a potential source of new compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
- Amina Chniguir
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Plant Improvement and Valorization of Agroresources, National School of Engineering of Sfax, Sfax, Tunisia
| | - Fatma Zioud
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Plant Improvement and Valorization of Agroresources, National School of Engineering of Sfax, Sfax, Tunisia
| | - Viviana Marzaioli
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, Paris, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252 Inflammation Research Center, Paris, France
- Sorbonne Paris City, Inflamex Laboratories, Faculty of Medicine, University of Paris Diderot, Paris, France
| | - Rafik Bachoual
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Plant Improvement and Valorization of Agroresources, National School of Engineering of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Jabri MA, Hajaji S, Marzouki L, El-Benna J, Sakly M, Sebai H. Human neutrophils ROS inhibition and protective effects of Myrtus communis leaves essential oils against intestinal ischemia/reperfusion injury. RSC Adv 2016. [DOI: 10.1039/c5ra26085j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present work was to investigate the mechanism implicated in the protective effects ofMyrtus communisleaves essential oils (MCEO) on human neutrophils reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Laboratoire de Physiologie Intégrée
- Faculté des Sciences de Bizerte
- Université de Carthage
- 7021 Zarzouna
- Tunisia
| | - Soumaya Hajaji
- Laboratoire de Parasitologie
- Université de la Manouba
- École Nationale de Médecine Vétérinaire de Sidi Thabet
- 2020 Sidi Thabet
- Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources – Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| | - Jamel El-Benna
- INSERM
- U1149
- Centre de Recherche Sur l'Inflammation – Faculté de Médecine X. Bichat
- 75018-Paris
- France
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée
- Faculté des Sciences de Bizerte
- Université de Carthage
- 7021 Zarzouna
- Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Intégrée
- Faculté des Sciences de Bizerte
- Université de Carthage
- 7021 Zarzouna
- Tunisia
| |
Collapse
|
4
|
Secondary necrotic neutrophils release interleukin-16C and macrophage migration inhibitory factor from stores in the cytosol. Cell Death Discov 2015; 1:15056. [PMID: 27551482 PMCID: PMC4979515 DOI: 10.1038/cddiscovery.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 11/08/2022] Open
Abstract
Neutrophils harbor a number of preformed effector proteins that allow for immediate antimicrobial functions without the need for time-consuming de novo synthesis. Evidence indicates that neutrophils also contain preformed cytokines, including interleukin (IL)-1ra, CXCL8 and CXCL2. In the search for additional preformed cytokines, a cytokine array analysis identified IL-16 and macrophage migration inhibitory factor (MIF) as preformed cytokines in lysates from human primary neutrophils. Both IL-16 and MIF are unconventional cytokines because they lack a signal sequence. Using confocal immunofluorescence microscopy as well as western blot analysis of subcellular fractions, IL-16 and MIF were found to be stored in the cytosol rather than in the granules of human neutrophils, which implies an unconventional secretion mechanism for both cytokines. IL-16 is synthesized and stored as a precursor (pre-IL-16). We present evidence that the processing of pre-IL-16 to the biologically active IL-16C is mediated by caspase-3 and occurs during both spontaneous and UV-induced apoptosis of human neutrophils. Although IL-16 processing occurs during apoptosis, IL-16C and MIF release was observed only during secondary necrosis of neutrophils. Screening a panel of microbial substances and proinflammatory cytokines did not identify a stimulus that induced the release of IL-16C and MIF independent of secondary necrosis. The data presented here suggest that IL-16 and MIF are neutrophil-derived inflammatory mediators released under conditions of insufficient clearance of apoptotic neutrophils, as typically occurs at sites of infection and autoimmunity.
Collapse
|
5
|
Rtibi K, Jabri MA, Selmi S, Souli A, Sebai H, El-Benna J, Amri M, Marzouki L. Carob pods (Ceratonia siliqua L.) inhibit human neutrophils myeloperoxidase and in vitro ROS-scavenging activity. RSC Adv 2015. [DOI: 10.1039/c5ra14719k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromatographic profiles of aqueous extract of carob pods ((A) pulp and (B) seeds).
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Mohamed Amine Jabri
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Slimen Selmi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Abdelaziz Souli
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Jamel El-Benna
- INSERM U773 Centre de Recherche Biomédicale
- Faculté de Médecine X. Bichat
- 75018 Paris
- France
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| |
Collapse
|
6
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
7
|
Loison F, Zhu H, Karatepe K, Kasorn A, Liu P, Ye K, Zhou J, Cao S, Gong H, Jenne DE, Remold-O'Donnell E, Xu Y, Luo HR. Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. J Clin Invest 2014; 124:4445-58. [PMID: 25180606 DOI: 10.1172/jci76246] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Caspase-3-mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8- or caspase-9-mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death.
Collapse
|
8
|
Stenberg Å, Karlsson A, Feuk-Lagerstedt E, Christenson K, Bylund J, Oldenborg A, Vesterlund L, Matozaki T, Sehlin J, Oldenborg PA. Signal regulatory protein alpha is present in several neutrophil granule populations and is rapidly mobilized to the cell surface to negatively fine-tune neutrophil accumulation in inflammation. J Innate Immun 2014; 6:553-60. [PMID: 24516072 DOI: 10.1159/000357820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/09/2013] [Indexed: 01/13/2023] Open
Abstract
Signal regulatory protein alpha (SIRPα) is a cell surface glycoprotein with inhibitory functions, which may regulate neutrophil transmigration. SIRPα is mobilized to the neutrophil surface from specific granules, gelatinase granules, and secretory vesicles following inflammatory activation in vitro and in vivo. The lack of SIRPα signaling and the ability to upregulate SIRPα to the cell surface promote neutrophil accumulation during inflammation in vivo.
Collapse
Affiliation(s)
- Åsa Stenberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bakele M, Joos M, Burdi S, Allgaier N, Pöschel S, Fehrenbacher B, Schaller M, Marcos V, Kümmerle-Deschner J, Rieber N, Borregaard N, Yazdi A, Hector A, Hartl D. Localization and functionality of the inflammasome in neutrophils. J Biol Chem 2014; 289:5320-9. [PMID: 24398679 DOI: 10.1074/jbc.m113.505636] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis.
Collapse
|
10
|
Clemmensen SN, Udby L, Borregaard N. Subcellular fractionation of human neutrophils and analysis of subcellular markers. Methods Mol Biol 2014; 1124:53-76. [PMID: 24504946 DOI: 10.1007/978-1-62703-845-4_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The neutrophil has long been recognized for its impressive number of cytoplasmic granules that harbor proteins indispensable for innate immunity. Analysis of isolated granules has provided important information on how the neutrophil grades its response to match the challenges it meets on its passage from blood to tissues. Nitrogen cavitation was developed as a method for disruption of cells on the assumption that sudden reduction of the partial pressure of nitrogen would lead to aeration of nitrogen dissolved in the lipid bilayer of plasma membranes. We find that cells are broken by the shear stress that is associated with passage through the outlet valve under high pressure and that this results in disruption of the neutrophil cell membrane while granules remain intact. The unique properties of Percoll as a sedimentable density medium with no inherent tonicity or viscosity are used for creation of continuous density gradients with shoulders in the density profile created to optimize the physical separation of granule subsets and light membranes. Immunological methods (sandwich enzyme-linked immunosorbent assays) are used for quantitation of proteins that are characteristic constituents of the granule subsets of neutrophils.
Collapse
Affiliation(s)
- Stine Novrup Clemmensen
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Perera NC, Wiesmüller KH, Larsen MT, Schacher B, Eickholz P, Borregaard N, Jenne DE. NSP4 is stored in azurophil granules and released by activated neutrophils as active endoprotease with restricted specificity. THE JOURNAL OF IMMUNOLOGY 2013; 191:2700-7. [PMID: 23904161 DOI: 10.4049/jimmunol.1301293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas neutrophil elastase, cathepsin G, and proteinase 3 have been known as granule-associated serine proteases of neutrophils for decades, a fourth member, called neutrophil serine protease 4 (NSP4), was just recently described and provisionally characterized. In this study, we identified NSP4 as a novel azurophil granule protein of neutrophils by Western blot analyses of subcellular fractions as well as by RT-PCR analyses of neutrophil precursors from human bone marrow. The highest mRNA levels were observed in myeloblasts and promyelocytes, similar to myeloperoxidase, a marker of azurophil granules. To determine the extended sequence specificity of recombinant NSP4, we used an iterative fluorescence resonance energy transfer-based optimization strategy. In total, 142 different peptide substrates with arginine in P1 and variations at the P1', P2', P3, P4, and P2 positions were tested. This enabled us to construct an α1-proteinase inhibitor variant (Ile-Lys-Pro-Arg-/-Ser-Ile-Pro) with high specificity for NSP4. This tailor-made serpin was shown to form covalent complexes with all NSP4 of neutrophil lysates and supernatants of activated neutrophils, indicating that NSP4 is fully processed and stored as an already activated enzyme in azurophil granules. Moreover, cathepsin C was identified as the activator of NSP4 in vivo, as cathepsin C deficiency resulted in a complete absence of NSP4 in a Papillon-Lefèvre patient. Our in-depth analysis of NSP4 establishes this arginine-specific protease as a genuine member of preactivated serine proteases stored in azurophil granules of human neutrophils.
Collapse
Affiliation(s)
- Natascha C Perera
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Rørvig S, Østergaard O, Heegaard NHH, Borregaard N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol 2013; 94:711-21. [PMID: 23650620 DOI: 10.1189/jlb.1212619] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes.
Collapse
Affiliation(s)
- Sara Rørvig
- 2.Department of Hematology, University of Copenhagen, Rigshospitalet-9322, 20 Juliane Mariesvej, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
13
|
Berger M, Hsieh CY, Bakele M, Marcos V, Rieber N, Kormann M, Mays L, Hofer L, Neth O, Vitkov L, Krautgartner WD, von Schweinitz D, Kappler R, Hector A, Weber A, Hartl D. Neutrophils express distinct RNA receptors in a non-canonical way. J Biol Chem 2012; 287:19409-17. [PMID: 22532562 DOI: 10.1074/jbc.m112.353557] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics.
Collapse
Affiliation(s)
- Michael Berger
- Department of Pediatric Surgery, Research Center, Dr von Hauner Children's Hospital, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de A. Paes AM, Veríssimo-Filho S, Guimarães LL, Silva ACB, Takiuti JT, Santos CXC, Janiszewski M, Laurindo FRM, Lopes LR. Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation. J Leukoc Biol 2011; 90:799-810. [DOI: 10.1189/jlb.0610324] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
15
|
Bachoual R, Talmoudi W, Boussetta T, Braut F, El-Benna J. An aqueous pomegranate peel extract inhibits neutrophil myeloperoxidase in vitro and attenuates lung inflammation in mice. Food Chem Toxicol 2011; 49:1224-8. [PMID: 21376769 DOI: 10.1016/j.fct.2011.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 11/25/2022]
Abstract
Punica granatum peel aqueous extract (PGE) is widely used to treat disorders such as inflammation, ulcers and infections, but its pharmacological target is not known. In this study we investigated the effect of PGE on human neutrophil reactive oxygen species (ROS) production in vitro and on LPS-induced lung inflammation in vivo in mice. Neutrophils were isolated and ROS generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by the cytochrome c reduction assay. H(2)O(2) was detected by DCFH fluorescence assay. Myeloperoxidase (MPO) activity was measured by the tetramethyl benzidine oxidation method. Lung inflammation was induced in mice by LPS instillation. PGE inhibited luminol-amplified chemiluminescence of resting neutrophils and N-formyl-methionyl-leucyl-phenylalanine (fMLF)- or phorbol myristate acetate (PMA)-stimulated neutrophils, in a concentration-dependent manner. PGE had no effect on superoxide anion generation, suggesting that it does not directly inhibit NADPH oxidase activity or activation pathways, or scavenge superoxide anions. PGE did not scavenge H(2)O(2) but directly inhibited myeloperoxidase activity in vitro. In vivo studies showed that PGE also attenuated LPS-induced lung inflammation in mice. So this study reveals that PGE inhibits neutrophil MPO activity and attenuates LPS-induced lung inflammation in mice. Inhibition of MPO activity by PGE could explain its anti-inflammatory action.
Collapse
Affiliation(s)
- Rafik Bachoual
- Faculté des Sciences de Gabès, Université de Gabès, Tunisia.
| | | | | | | | | |
Collapse
|
16
|
Luerman GC, Powell DW, Uriarte SM, Cummins TD, Merchant ML, Ward RA, McLeish KR. Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation. Mol Cell Proteomics 2010; 10:M110.001552. [PMID: 21097543 DOI: 10.1074/mcp.m110.001552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulated exocytosis of neutrophil intracellular storage granules is necessary for neutrophil participation in the inflammatory response. The signal transduction pathways that participate in neutrophil exocytosis are complex and poorly defined. Several protein kinases, including p38 MAPK and the nonreceptor tyrosine kinases, Hck and Fgr, participate in this response. However, the downstream targets of these kinases that regulate exocytosis are unknown. The present study combined a novel inhibitor of neutrophil exocytosis with proteomic techniques to identify phosphopeptides and phosphoproteins from a population of gelatinase and specific granules isolated from unstimulated and fMLF-stimulated neutrophils. To prevent loss of granule-associated phosphoproteins upon exocytosis, neutrophils were pretreated with a TAT-fusion protein containing a SNARE domain from SNAP-23 (TAT-SNAP-23), which inhibited fMLF-stimulated CD66b-containing granule exocytosis by 100±10%. Following TAT-SNAP-23 pretreatment, neutrophils were stimulated with the chemotactic peptide fMLF for 0 min, 1 min, and 2 min. Granules were isolated by gradient centrifugation and subjected to proteolytic digestion with trypsin or chymotrypsin to obtain peptides from the outer surface of the granule. Phosphopeptides were enriched by gallium or TiO2 affinity chromatography, and phosphopeptides and phosphorylation sites were identified by reversed phase high performance liquid chromatography-electrospray ionization-tandem MS. This resulted in the identification of 243 unique phosphopeptides corresponding to 235 proteins, including known regulators of vesicle trafficking. The analysis identified 79 phosphoproteins from resting neutrophils, 81 following 1 min of fMLF stimulation, and 118 following 2 min of stimulation. Bioinformatic analysis identified a potential Src tyrosine kinase motif from a phosphopeptide corresponding to G protein coupled receptor kinase 5 (GRK5). Phosphorylation of GRK5 by Src was confirmed by an in vitro kinase reaction and by precursor ion scanning for phospho-tyrosine specific immonium ions containing Tyr251 and Tyr253. Immunoprecipitation of phosphorylated GRK5 from intact cells was reduced by a Src inhibitor. In conclusion, targets of signal transduction pathways were identified that are candidates to regulate neutrophil granule exocytosis.
Collapse
Affiliation(s)
- Gregory C Luerman
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rørvig S, Honore C, Larsson LI, Ohlsson S, Pedersen CC, Jacobsen LC, Cowland JB, Garred P, Borregaard N. Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with fMLP. J Leukoc Biol 2009; 86:1439-49. [PMID: 19741154 DOI: 10.1189/jlb.1008606] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ficolins are soluble molecules that bind carbohydrate present on the surface of microorganisms and function as recognition molecules in the lectin complement pathway. Three ficolins have been identified in humans: ficolin-1, ficolin-2, and ficolin-3. Ficolin-1 is synthesized in monocytes and type II alveolar epithelial cells. Ficolin-1 has been shown to be present in secretory granules of human neutrophils, but it is not known which subset of the neutrophils' secretory granules harbors ficolin-1. To determine the exact subcellular localization of ficolin-1 in neutrophils, recombinant ficolin-1 was expressed in Chinese hamster ovary cells and used for generation of polyclonal antibodies. This allowed detection of ficolin-1 in subcellular fractions of human neutrophils by ELISA, by Western blotting, and by immunohistochemistry. Real-time PCR examination of normal human bone marrow showed FCN1 gene expression largely in myelocytes, metamyelocytes, and band cells with a profile quite similar to that of gelatinase. In accordance with this, biosynthesis studies of neutrophils precursor cells showed that ficolin-1 was primarily synthesized in myelocytes, metamyelocytes, and band cells. Immunohistochemistry and subcellular fractionation demonstrated that ficolin-1 is primarily localized in gelatinase granules but also in highly exocytosable gelatinase-poor granules, not described previously. Ficolin-1 is released from neutrophil granules by stimulation with fMLP or PMA, and the majority becomes associated with the surface membrane of the cells and can be detected by flow cytometry. Our studies show that neutrophils are a major source of ficolin-1, which can be readily exocytosed by stimulation.
Collapse
Affiliation(s)
- Sara Rørvig
- The Granulocyte Research Laboratory, Department of Hematology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|