1
|
Das R, Abraham TJ, Sen A, Rajisha R, Nadella RK, Chatterjee NS, Patil PK. Impact of graded doses of enrofloxacin on the safety and biological responses of Nile tilapia Oreochromis niloticus. Drug Chem Toxicol 2024:1-13. [PMID: 39322996 DOI: 10.1080/01480545.2024.2405831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The cultivation of tilapias, the third most farmed fish group globally, has been rapidly growing, especially in Southeast Asia. This surge in tilapia farming intensification has led to increased use of antibiotics to control bacterial diseases. This study investigated the safety implications of administering graded doses of enrofloxacin (ENF) at 0 (control), 10, 30, 50 and 100 mg/kg biomass/day orally to Oreochromis niloticus. The 43-day study comprised 7 days of pre-dosing, 15 days of ENF-dosing, and a 21-day recovery period with a periodical assessment of the biological responses of fish. The results revealed that the overdosed groups experienced up to 21% reduction in feed consumption, 11% mortalities, and adverse impacts on hematology, including a decrease in erythrocytes, and monocytes and an increase in leukocytes, thrombocytes, lymphocytes, and neutrophils. Haematological indices like mean corpuscular volume and mean corpuscular hemoglobin decreased, while mean corpuscular hemoglobin concentration increased. The plasma biochemical parameters including glucose and liver and kidney enzymes unveiled a significant dose- and time-dependent increase, while calcium and chloride levels decreased. Erythrocytes displayed several erythrocyte cellular and nuclear abnormalities. The frequency of micronucleus increased with dose and time, suggesting potential genotoxicity of ENF. Additionally, a dose-dependent increase in residues in the tissues with the highest accumulation in muscle was documented. Nevertheless, the recovery of the measured parameters upon dose termination indicated that the ENF-induced alterations are reversible. The study affirmed the safety of ENF at the recommended dose (10 mg) in O. niloticus and their adoptive responses to higher doses.
Collapse
Affiliation(s)
- Ratnapriya Das
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Arya Sen
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Ravindran Rajisha
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Ranjit Kumar Nadella
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | | | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Odetti LM, Paravani EV, Simoniello MF, Poletta GL. Micronucleus test in reptiles: Current and future perspectives. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503772. [PMID: 39054003 DOI: 10.1016/j.mrgentox.2024.503772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Micronucleus (MN) cell counting emerged in 1973-1975 as a valid alternative for characterizing chromosomal damage caused by different agents. It was first described in mammals, but its application was rapidly extended to other vertebrates, mainly fish. However, it was not until 28 years later that this test was implemented in studies on reptiles. Nowadays, reptiles are found to be excellent non-target species from environmental contamination exposure and MN test has become a fundamental tool for analyzing genotoxic effects induced by various xenobiotics. In this article we provide an updated review of the application of the MN test in reptile species, from an ecotoxicological perspective. Therefore, we present (I) a bibliometric analysis of the available research on genotoxic-induced MN formation in reptile species; (II) the use of reptiles as sentinel organisms in ecotoxicological studies; and (III) the strength and weakness of the application of the MN test in this group. With this review, we aim to provide a comprehensive view on the use of the MN test in ecotoxicology and to encourage further studies involving reptile species.
Collapse
Affiliation(s)
- L M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina.
| | - E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Ma F Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - G L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 12 1917, CABA C1033AAJ, Argentina
| |
Collapse
|
4
|
Seo JE, Li X, Le Y, Mei N, Zhou T, Guo X. High-throughput micronucleus assay using three-dimensional HepaRG spheroids for in vitro genotoxicity testing. Arch Toxicol 2023; 97:1163-1175. [PMID: 36847820 DOI: 10.1007/s00204-023-03461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
The in vitro micronucleus (MN) assay is a component of most test batteries used in assessing potential genotoxicity. Our previous study adapted metabolically competent HepaRG cells to the high-throughput (HT) flow-cytometry-based MN assay for genotoxicity assessment (Guo et al. in J Toxicol Environ Health A 83:702-717, 2020b, https://doi.org/10.1080/15287394.2020.1822972 ). We also demonstrated that, compared to HepaRG cells grown as two-dimensional (2D) cultures, 3D HepaRG spheroids have increased metabolic capacity and improved sensitivity in detecting DNA damage induced by genotoxicants using the comet assay (Seo et al. in ALTEX 39:583-604, 2022, https://doi.org/10.14573/altex.22011212022 ). In the present study, we have compared the performance of the HT flow-cytometry-based MN assay in HepaRG spheroids and 2D HepaRG cells by testing 34 compounds, including 19 genotoxicants or carcinogens and 15 compounds that show different genotoxic responses in vitro and in vivo. 2D HepaRG cells and spheroids were exposed to the test compounds for 24 h, followed by an additional 3- or 6-day incubation with human epidermal growth factor to stimulate cell division. The results demonstrated that HepaRG spheroids showed generally higher sensitivity in detecting several indirect-acting genotoxicants (require metabolic activation) compared to 2D cultures, with 7,12-dimethylbenzanthracene and N-nitrosodimethylamine inducing higher % MN formation along with having significantly lower benchmark dose values for MN induction in 3D spheroids. These data suggest that 3D HepaRG spheroids can be adapted to the HT flow-cytometry-based MN assay for genotoxicity testing. Our findings also indicate that integration of the MN and comet assays improved the sensitivity for detecting genotoxicants that require metabolic activation. These results suggest that HepaRG spheroids may contribute to New Approach Methodologies for genotoxicity assessment.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
5
|
Severin I, Dahbi L, Domenek S, Nguyen PM, Platel A, Vitrac O, Chagnon MC. Stratégie pour une sécurité chimique intégrée des matériaux d’emballage au contact des denrées alimentaires. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023. [DOI: 10.1016/j.cnd.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Terpilowska S, Gluszek S, Czerwosz E, Wronka H, Firek P, Szmidt J, Suchanska M, Keczkowska J, Kaczmarska B, Kozlowski M, Diduszko R. Nano-Ag Particles Embedded in C-Matrix: Preparation, Properties and Application in Cell Metabolism. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5826. [PMID: 36079207 PMCID: PMC9457446 DOI: 10.3390/ma15175826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical treatments. The aim of this study is to investigate the influence of nano-Ag grains embedded in a carbonaceous matrix on cytotoxicity, genotoxicity in fibroblasts, and mutagenicity. The nanocomposite film is composed of silver nanograins embedded in a carbonaceous matrix and it was obtained via the PVD method by deposition from two separated sources of fullerenes and silver acetate powders. This method allows for the preparation of material in the form of a film or powder, in which Ag nanograins are stabilized by a carbon network. The structure and morphology of this material were studied using SEM/EDX, XRD, and Raman spectroscopy. The toxicology studies were performed for various types of the material differing in the size of Ag nanograins. Furthermore, it was found that these properties, such as cell viability, genotoxicity, and mutagenicity, depend on Ag grain size.
Collapse
Affiliation(s)
- Sylwia Terpilowska
- Jan Kochanowski University, Collegium Medicum, Department of Surgical Medicine with the Laboratory of Medical Genetics, IX Wieków Kielc 19A Av., 25-317 Kielce, Poland
| | - Stanislaw Gluszek
- Jan Kochanowski University, Collegium Medicum, Department of Surgical Medicine with the Laboratory of Medical Genetics, IX Wieków Kielc 19A Av., 25-317 Kielce, Poland
| | - Elzbieta Czerwosz
- Institute of Micro- and OptoElectronics, Warsaw Technical University, Nowowiejska 15/19, 00-665 Warszawa, Poland
| | - Halina Wronka
- Institute of Micro- and OptoElectronics, Warsaw Technical University, Nowowiejska 15/19, 00-665 Warszawa, Poland
| | - Piotr Firek
- Institute of Micro- and OptoElectronics, Warsaw Technical University, Nowowiejska 15/19, 00-665 Warszawa, Poland
| | - Jan Szmidt
- Institute of Micro- and OptoElectronics, Warsaw Technical University, Nowowiejska 15/19, 00-665 Warszawa, Poland
| | - Malgorzata Suchanska
- Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
| | - Justyna Keczkowska
- Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
| | - Bozena Kaczmarska
- Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
| | - Mirosław Kozlowski
- Łukasiewicz Research Network, Tele and Radio Research Institute, ul. Ratuszowa 11, 03-450 Warszawa, Poland
| | - Ryszard Diduszko
- Łukasiewicz Research Network, Institute of Microelectronics and Photonics, ul. Wólczyńskiej 133, 01-919 Warszawa, Poland
| |
Collapse
|
7
|
Kapoor MP, Moriwaki M, Timm D, Satomoto K, Minegawa K. Genotoxicity and mutagenicity evaluation of isoquercitrin-γ-cyclodextrin molecular inclusion complex using Ames test and a combined micronucleus and comet assay in rats. J Toxicol Sci 2022; 47:221-235. [PMID: 35650139 DOI: 10.2131/jts.47.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Flavonoids such as quercetin and its glucosides, especially isoquercitrin are well known as anti-inflammatory, anti-allergic, and anti-carcinogenic, etc. The safety of isoquercitrin formulations needs to be established prior to their use in functional food applications. The mutagenicity and genotoxicity of the IQC-γCD inclusion complex were assessed with three standard assays of the bacterial reverse mutation assay (Ames test) and using a combined in-vivo micronucleus and comet assay under the Organisation for Economic Co-operation and Development (OECD) guidelines. In combined rat bone marrow micronucleus and rat liver comet assay performed in male Sprague Dawley (SD) rats, the various doses of IQC-γCD inclusion complex (max. 2000 mg/kg bw) and positive controls ethyl methanesulfonate (EMS) and mitomycin C (MMC), respectively, and negative control (vehicle) were administrated. The results of the Salmonella typhimurium mutagenicity assay (strains TA100, TA1535, WP2uvrA, TA98, and TA1537) after exposure to the IQC-γCD inclusion complex with the absence and presence of the metabolic activation system (S9 fraction from rat liver) revealed a weakly positive response but with no biologically relevant mutagenicity at the conditions examined according to recommended regulatory guidelines. The combined micronucleus and comet assay results reveal that the IQC-γCD inclusion complex did not induce in-vivo genotoxic potential or indication of any oxidative DNA damage in rat liver tissues. Altogether, considering the results of the study, it is unlikely that the consumption of IQC-γCD inclusion complex as food or supplement would present any concern for humans regarding the mutagenicity and genotoxicity.
Collapse
|
8
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
10
|
Valdés-Arellanes M, Ortega-Hernández G, Cervantes-Santos DM, Rendón-Barrón MJ, Madrigal-Santillán EO, Morales-González JA, Paniagua-Pérez R, Madrigal-Bujaidar E, Álvarez-González I. In vivo genotoxic and cytotoxic evaluation of venom obtained from the species of the snake ophryacus, cope, viperidae. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1975752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mariel Valdés-Arellanes
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Ortega-Hernández
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Doralí M. Cervantes-Santos
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Michael Joshue Rendón-Barrón
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
11
|
Chrysouli MP, Banti CN, Kourkoumelis N, Moushi EE, Tasiopoulos AJ, Douvalis A, Papachristodoulou C, Hatzidimitriou AG, Bakas T, Hadjikakou SK. Ciprofloxacin conjugated to diphenyltin(IV): a novel formulation with enhanced antimicrobial activity. Dalton Trans 2021; 49:11522-11535. [PMID: 32656556 DOI: 10.1039/d0dt01665a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The metalloantibiotic of formula Ph2Sn(CIP)2 (CIPTIN) (HCIP = ciprofloxacin) was synthesized by reacting ciprofloxacin hydrochloride (HCIP·HCl) (an antibiotic in clinical use) with diphenyltin dichloride (Ph2SnCl2DPTD). The complex was characterized in the solid state by melting point, FT-IR, X-ray Powder Diffraction (XRPD) analysis, 119Sn Mössbauer spectroscopy, X-ray Fluorescence (XRF) spectroscopy, and Thermogravimetry/Differential Thermal Analysis (TG-DTA) and in solution by UV-Vis, 1H NMR spectroscopic techniques and Electrospray Ionisation Mass Spectrometry (ESI-MS). The crystal structure of CIPTIN and its processor HCIP was also determined by X-ray crystallography. The antibacterial activity of CIPTIN, HCIP·HCl, HCIP and DPTD was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Inhibition Zones (IZs). CIPTIN shows lower MIC values than those of HCIP·HCl (up to 4.2-fold), HCIP (up to 2.7-fold) or DPTD (>135-fold), towards the tested microbes. CIPTIN is classified into bactericidal agents according to MBC/MIC values. The developing IZs are 40.8 ± 1.5, 34.0 ± 0.8, 36.0 ± 1.1 and 42.7 ± 0.8 mm, respectively which classify the microbes P. aeruginosa, E. coli, S. aureus and S. epidermidis to susceptible ones to CIPTIN. These IZs are greater than the corresponding ones of HCIP·HCl by 1.1 to 1.5-fold against both the tested Gram negative and Gram positive bacteria. CIPTIN eradicates the biofilm of P. aeruginosa and S. aureus more efficiently than HCIP·HCl and HCIP. The in vitro toxicity and genotoxicity of CIPTIN were tested against human skin keratinocyte cells (HaCaT) (IC50 = 2.33 μM). CIPTIN exhibits 2 to 9-fold lower MIC values than its IC50 against HaCaT, while its genotoxic effect determined by micronucleus assay is equivalent to the corresponding ones of HCIP·HCl or HCIP.
Collapse
Affiliation(s)
- M P Chrysouli
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - C N Banti
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece
| | - E E Moushi
- Department of Life Sciences, The School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A J Tasiopoulos
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - A Douvalis
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - A G Hatzidimitriou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T Bakas
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | - S K Hadjikakou
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
12
|
Dopp E, Pannekens H, Gottschlich A, Schertzinger G, Gehrmann L, Kasper-Sonnenberg M, Richard J, Joswig M, Grummt T, Schmidt TC, Wilhelm M, Tuerk J. Effect-based evaluation of ozone treatment for removal of micropollutants and their transformation products in waste water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:418-439. [PMID: 33622194 DOI: 10.1080/15287394.2021.1881854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this interdisciplinary research project in North Rhine-Westphalia (NRW), Germany, entitled "Elimination of pharmaceuticals and organic micropollutants from waste water" involved the conception of cost-effective and innovative waste-water cleaning methods. In this project in vitro assays, in vivo assays and chemical analyses were performed on three municipal waste-water treatment plants (WWTP). This publication focuses on the study of the in vitro bioassays. Cytotoxic, estrogenic, genotoxic and mutagenic effects of the original as well as enriched water samples were monitored before and after wastewater treatment steps using MTT and PAN I, ER Calux and A-YES, micronucleus and Comet assays as well as AMES test. In most cases, the measured effects were reduced after ozonation, but in general, the biological response depended upon the water composition of the WWTP, in particular on the formed by-products and concentration of micropollutants. In order to be able to assess the genotoxic and/or mutagenic potential of waste-water samples using bioassays like Ames test, Comet assay or micronucleus test an enrichment of the water sample via solid-phase extraction is recommended. This is in agreement with previous studies such as the "ToxBox"-Project of the Environmental Agency in Germany.
Collapse
Affiliation(s)
- Elke Dopp
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Helena Pannekens
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Anne Gottschlich
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Gerhard Schertzinger
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Linda Gehrmann
- Department of Environmental Hygiene and Trace Substances, Institute of Energy and Environmental Technology (IUTA), Duisburg, Germany
| | - Monika Kasper-Sonnenberg
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Jessica Richard
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Matthias Joswig
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Tamara Grummt
- Department of Water Hygiene and Toxicology, Umweltbundesamt (UBA), Bad Elster, Germany
| | - Torsten C Schmidt
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry (IAC), University of Duisburg-Essen, Essen, Germany
| | - Michael Wilhelm
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Jochen Tuerk
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Environmental Hygiene and Trace Substances, Institute of Energy and Environmental Technology (IUTA), Duisburg, Germany
| |
Collapse
|
13
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
14
|
Kargar-Shouroki F, Miri M, Zare Sakhvidi MJ, Hosseini Sangchi SZ, Madadizadeh F. Genotoxic effect of exposure to polycyclic aromatic hydrocarbons (PAHs) in asphalt workers. EXCLI JOURNAL 2021; 20:686-697. [PMID: 33883991 PMCID: PMC8056049 DOI: 10.17179/excli2021-3487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 11/10/2022]
Abstract
Asphalt workers are at risk due to exposure to asphalt fumes containing polycyclic aromatic hydrocarbons (PAHs). The main purpose of this study was to measure the urinary metabolite of PAHs and to determine its effect on micronucleus (MN) formation as an indicator of genotoxic damage. In this cross-sectional study, the MN frequency in 48 male asphalt workers exposed to PAHs was measured and compared with 48 male non-exposed employees. PAHs exposure was evaluated by determining urinary 1-Hydroxypyrene (1-OHP). The mean concentrations of 1-OHP in the exposed and non-exposed groups were 0.58 ± 0.41 μmol/mol creatinine and 0.38 ± 0.25 μmol/mol creatinine, respectively. 1-OHP concentration was significantly higher in smokers compared with non-smokers in both exposed and non-exposed groups. Moreover, the mean MN frequency in the exposed group was significantly higher than in the non-exposed group. The MN frequency was significantly higher in asphalt workers with a work history of ≥ 15 years compared to workers with lower work history. In a fully adjusted model, there was a statistically significant association between exposure to PAHs, with MN and 1-OHP concentration, and between smoking status with 1-OHP. The findings of the present study indicated that occupational exposure to PAHs was associated with increased urinary 1-OHP as well as DNA damage in the asphalt workers.
Collapse
Affiliation(s)
- Fatemeh Kargar-Shouroki
- Occupational Health Research Center, Department of Occupational Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Javad Zare Sakhvidi
- Occupational Health Research Center, Department of Occupational Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Zahra Hosseini Sangchi
- Occupational Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzan Madadizadeh
- Research Center of Prevention and Epidemiology of Non-Communicable Disease, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
HASSANEIN AM, MOHAMED AH, ABD ALLAH HA, ZAKI H. Cytogenetic and molecular studies on two faba bean cultivars revealed their difference in their aluminum tolerance. ACTA AGRICULTURAE SLOVENICA 2020; 116. [DOI: 10.14720/aas.2020.116.2.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Two cultivars of faba bean (Vicia faba ‘Giza 843’ and ‘Nobaria 3’) that differ in aluminum (Al) tolerance were used to study cytogenetic and genomic alterations under the influence of Al Cl3 (5, 15, and 25 mmol AlCl3) for different periods (6, 12 and 24 h). Under Al treatments, mitotic index in both cultivars decreased and total chromosomal abnormalities increased. The frequencies of micronuclei and chromosomal abnormalities (C-anaphase, metaphase-star chromosomes, breaks, sticky and disturbed chromosomes during metaphase or anaphase) in ‘Giza 843’ were lower than in ‘Nabaria 3’. Increase of the registered cytogenetic events under the influence of Al stress led to increase the detected polymorphism using RAPD and ISSR markers. Application of RAPD primers gave the same value of polymorphism in both faba bean cultivars under Al stress. Polymorphism average of nine ISSR primers of ’Giza 843’ (65.36 %) was lower than that of ‘Nobaria 3’ (71.59 %). Molecular markers, cytogenetic characteristics and seedling growth data indicate that Al tolerance of ‘Giza 843’ was higher than of ‘Nobaria 3’. This work shows that cytogenetic and ISSR techniques could be used efficiently to distinguish between the ability of two faba bean cultivars to tolerate toxic effects of Al.
Collapse
|
16
|
Curl CL, Spivak M, Phinney R, Montrose L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Environ Health Rep 2020; 7:13-29. [PMID: 31960353 DOI: 10.1007/s40572-020-00266-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers. RECENT FINDINGS Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects. This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects.
Collapse
Affiliation(s)
- Cynthia L Curl
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA.
| | - Meredith Spivak
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Rachel Phinney
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Luke Montrose
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| |
Collapse
|
17
|
Popescu RC, Straticiuc M, Mustăciosu C, Temelie M, Trușcă R, Vasile BȘ, Boldeiu A, Mirea D, Andrei RF, Cenușă C, Mogoantă L, Mogoșanu GD, Andronescu E, Radu M, Veldwijk MR, Savu DI. Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells. Int J Mol Sci 2020; 21:ijms21197220. [PMID: 33007844 PMCID: PMC7583846 DOI: 10.3390/ijms21197220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Cosmin Mustăciosu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihaela Temelie
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Research Center for Micro and Nanomaterials, “Politehnica” University of Bucharest (UPB), 313 Splaiul Independenţei, 060042 Bucharest, Romania; (R.T.); (B.Ș.V.)
| | - Adina Boldeiu
- Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies (IMT), 12A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Dragoş Mirea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
| | - Radu Florin Andrei
- Department of Applied Nuclear Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.M.); (R.F.A.)
- Department of Physics, Applied Science Faculty, “Politehnica” University of Bucharest (UPB), 303 Splaiul Independentei, 060042 Bucharest, Romania
| | - Constantin Cenușă
- Radioisotopes and Radiation Metrology Department, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania;
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova (UMFCV), 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, “Politehnica” University of Bucharest (UPB), 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim (UMM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, “Horia Hulubei” National Insitute of Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Magurele, Romania; (R.C.P.); (C.M.); (M.T.); (M.R.)
- Correspondence: (M.R.V.); (D.I.S.); Tel.: +49-621-383-3750 (M.R.V.); +40-214-046-134 (D.I.S.)
| |
Collapse
|
18
|
Fernández-Bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Evaluation of cytotoxicity and genotoxicity induced by oleic acid-coated iron oxide nanoparticles in human astrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:816-829. [PMID: 31415110 DOI: 10.1002/em.22323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are gaining importance as diagnostic and therapeutic tool of central nervous system diseases. Although oleic acid-coated ION (O-ION) have been described as stable and biocompatible, their potential neurotoxicity was scarcely evaluated in human nervous cells so far. The primary aim of this work was to assess the molecular and cellular effects of O-ION on human astrocytes (A172 cells) under different experimental conditions. An extensive set of cyto- and genotoxicity tests was carried out, including lactate dehydrogenase release assay, cell cycle alterations, and cell death production, as well as comet assay, γH2AX assay, and micronucleus (MN) test, considering also iron ion release capacity and alterations in DNA repair ability. Results showed a moderate cytotoxicity related to cell cycle arrest and cell death promotion, regardless of serum presence. O-ION induced genotoxic effects, namely primary DNA damage, as detected by the comet assay and H2AX phosphorylation, but A172 cells were able to repair this particular damage because no chromosome alterations were found (confirmed by MN test results). Accordingly, no effects on the DNA repair ability were observed. The presence of serum proteins did not influence O-ION toxicity. Iron ions released from the O-ION surface seemed not to be responsible for the cytotoxic and genotoxic effects observed. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- Department of Cell and Molecular Biology, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Fátima Brandão
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Joao Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Vanessa Valdiglesias
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Blanca Laffon
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| |
Collapse
|
19
|
Bhatti F, Asad S, Khan QM, Mobeen A, Iqbal MJ, Asif M. Risk assessment of genetically modified sugarcane expressing AVP1 gene. Food Chem Toxicol 2019; 130:267-275. [PMID: 31132391 DOI: 10.1016/j.fct.2019.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Biosafety is a multidisciplinary approach that encompasses social, societal, ethical issues and policies for the regulations of genetically modified (GM) organisms. The potential health risks associated with GM sugarcane containing AVP1 gene confers resistance against drought and salinity were evaluated by animal feeding studies and some genotoxicity assays. Acute and sub-chronic toxicity examinations were carried out via oral dose administration of GM sugarcane juice supplemented with the normal diet (modified from certified rodent standard diet) on Wistar rats. AVP1 protein concentration in sugarcane juice was 1mg/1 mL. Biochemical, haematological blood analyses were performed and the results revealed that there were non-significant differences among all the treatment groups; GM sugarcane juice, non-GM sugarcane juice and the control group (normal diet and water). Genotoxicity assessment based on the comet assay and the micronucleus assay data exhibited that AVP1 GM sugarcane was not genotoxic or cytotoxic in rat's peripheral blood. These research findings supported the conclusion that GM AVP1 sugarcane was non-toxic in experimental animals. Therefore, data generated through this research work would be helpful for the commercial release of GM AVP1 sugarcane.
Collapse
Affiliation(s)
- Farheen Bhatti
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS) University, Islamabad, Pakistan
| | - Shaheen Asad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Qaiser Mahmood Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Ameena Mobeen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Javed Iqbal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
20
|
Polychronis N, Banti C, Raptopoulou C, Psycharis V, Kourkoumelis N, Hadjikakou S. Non steroidal anti-inflammatory drug (NSAIDs) in breast cancer chemotherapy; antimony(V) salicylate a DNA binder. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Nautiyal A, Mondal T, Mukherjee A, Mitra D, Kaushik A, Goel HC, Goel A, Dey SK. Quantification of DNA damage in patients undergoing non-contrast and contrast enhanced whole body PET/CT investigations using comet assay and micronucleus assay. Int J Radiat Biol 2019; 95:710-719. [PMID: 30707050 DOI: 10.1080/09553002.2019.1577569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: To quantify DNA damage in patients undergoing non-contrast and contrast-enhanced 18F-FDG PET/CT whole body positron emission tomography/computed tomography (WB PET/CT) investigations using comet assay technique and micronucleus assay, and to study the effect of other baseline parameters of patients on DNA damage. Methodology: Eighty-four patients referred for 18F-FDG PET/CT investigation were included in the study of which 44 patients underwent contrast-enhanced WB PET/CT and 40 patients underwent non-contrast WB PET/CT investigations. The investigations were performed on Discovery 690 PET/CT. For contrast-enhanced investigation, Omnipaque300 was injected intravenously based on the patient body weight. Absorbed dose resulting from the intravenous administration of 18F-FDG was estimated using the ICRP 106 dose coefficients. Radiation dose from the acquisition of CT scans was estimated using CT dose index and dose-length product. Blood samples were collected from the patients for DNA damage analysis. Comet assay and MN assay was used to assess the DNA damage. The Differences in the comet TM (Tail Moment) and MNBC % in both groups were calculated. Result: The radiation dose received by the study population during 18F-FDG WB PET/CT examination was 27.03 ± 2.33 mSv. Comet TM and percentage frequency of MNBC % was 65.22 ± 35.42 and 18.55 ± 10.14, respectively in the patients injected with contrast and 42.49 ± 28.52 and 13.76 ± 7.52 for non-contrast group. Significant increase in DNA damage was observed in the contrast group as compared to non-contrast group. Significant association was observed between patient weight, contrast volume and TM and MNBC%. Baseline parameters of the patients did not show significant correlation with TM and MNBC%. Conclusion: The patients undergoing contrast-enhanced WB PET/CT investigations have demonstrated higher DNA damage. The DNA damage was also observed to be more in heavier patients. The other baseline parameters of patients like age, sex, CBG, serum creatinine did not show any correlation with DNA damage.
Collapse
Affiliation(s)
- Amit Nautiyal
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Tanmoy Mondal
- b Department of Biotechnology , Maulana Abul Kalam Azad University of Technology , Kolkata , India
| | - Anirban Mukherjee
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Deepanjan Mitra
- a Institute of Nuclear Medicine & Molecular Imaging , AMRI Hospitals , Kolkata , India
| | - Aruna Kaushik
- c Institute of Nuclear Medicine & Allied Sciences , Delhi , India
| | | | - Alpana Goel
- e Amity Institute of Nuclear Science & Technology, Amity University , Noida , India
| | - Subrata Kumar Dey
- b Department of Biotechnology , Maulana Abul Kalam Azad University of Technology , Kolkata , India
| |
Collapse
|
22
|
Smith CJ, Perfetti TA, King JA. Rodent 2-year cancer bioassays and in vitro and in vivo genotoxicity tests insufficiently predict risk or model development of human carcinomas. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319849648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Carr J Smith
- Albemarle Corporation, Mobile, AL, USA
- Department of Nurse Anesthesia, Florida State University, Panama City, FL, USA
| | | | - Judy A King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
23
|
Gassman NR, Holton NW. Targets for repair: detecting and quantifying DNA damage with fluorescence-based methodologies. Curr Opin Biotechnol 2018; 55:30-35. [PMID: 30114673 DOI: 10.1016/j.copbio.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36607, USA.
| | - Nathaniel W Holton
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36607, USA
| |
Collapse
|
24
|
Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 2018; 406-407:81-91. [DOI: 10.1016/j.tox.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
|
25
|
Sommaggio LRD, Mazzeo DEC, Pamplona-Silva MT, Marin-Morales MA. Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays. CHEMOSPHERE 2018; 199:10-15. [PMID: 29427809 DOI: 10.1016/j.chemosphere.2018.01.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/30/2017] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Among the bioremediation processes, biostimulation is an effective methodology for the decontamination of organic waste by the addition of agents that stimulate the indigenous microbiota development. Rice hull is a biostimulating agent that promotes the aeration of edaphic systems and stimulates the aerobiotic activity of soil microorganisms. The present study aimed to evaluate the efficacy of the bioremediation and biostimulation processes in reducing the toxicity of sewage sludge (SS) and to evaluate its possible application in agriculture using cytotoxic and genotoxic assays in human hepatoma cells (HepG2). SS of domestic origin was tested as both the pure product (PSS) and mixed with soil (S) and with a stimulating agent, such as rice hull (RH), in different proportions (SS + S and SS + S + RH); we also examined different remediation periods (3 months - T1 and 6 months - T2). For the PSS sample, a significant induction of micronucleus (MN) in T2 was observed with nuclear buds in all of the periods assessed, and we observed the presence of more than one alteration per cell (MN and nuclear bud) in T1 and T2. The PSS sample caused genotoxic effects in the HepG2 cells even after being bioremediated. For the samples containing soil and/or rice hull, no toxic effects were observed in the test system used. Therefore, the addition of SS to agricultural soils should be conducted with caution, and it is important that the SS undergoes a remediation process, such as bioremediation and biostimulation treatments.
Collapse
Affiliation(s)
- Lais Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Rua Professor Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Maria Tereza Pamplona-Silva
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
26
|
Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118:13-23. [PMID: 29709612 DOI: 10.1016/j.fct.2018.04.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells.
Collapse
|
27
|
Sarıgöl Kılıç Z, Aydın S, Ündeğer Bucurgat Ü, Başaran N. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food Chem Toxicol 2018; 113:90-98. [DOI: 10.1016/j.fct.2018.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
|
28
|
Hintzsche H, Montag G, Stopper H. Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells. Sci Rep 2018; 8:3371. [PMID: 29463873 PMCID: PMC5820321 DOI: 10.1038/s41598-018-21680-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.
Collapse
Affiliation(s)
- Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany.,Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058, Erlangen, Germany
| | - Gracia Montag
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany.
| |
Collapse
|
29
|
Chrysouli M, Banti C, Kourkoumelis N, Panayiotou N, Markopoulos G, Tasiopoulos A, Hadjikakou S. Chloro(triphenylphosphine)gold(I) a forefront reagent in gold chemistry as apoptotic agent for cancer cells. J Inorg Biochem 2018; 179:107-120. [DOI: 10.1016/j.jinorgbio.2017.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
|
30
|
Souton E, Severin I, Le Hegarat L, Hogeveen K, Aljawish A, Fessard V, Marie-Christine C. Genotoxic effects of food contact recycled paperboard extracts on two human hepatic cell lines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:159-170. [PMID: 29076405 DOI: 10.1080/19440049.2017.1397774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Food contact paperboards may be a potential source of food contamination as they can release chemicals (intentionally added or not), especially recycled paperboards. This study assessed the in vitro genotoxicity of food contact paperboard samples from a manufacturer, collected at the beginning and at the end of a recycling production chain. Samples were extracted in water to mimic a wet food contact. Different genotoxic endpoints were evaluated in two human hepatic cell lines (HepG2 and HepaRG) using bioassays: γH2AX and p53 activation, primary DNA damage with the comet assay and micronucleus formation. It was found that the samples from the beginning and the end of the production chain induced, with the same potency, γH2AX and p53-ser15 activation and DNA damage with the comet assay. The micronucleus assay was negative with the paperboard extract from the beginning of the chain, whereas positive data were observed for the end paperboard extract. These results indicate that samples from recycled food contact paperboard can induce in vitro genotoxic effects in this study's experimental conditions.
Collapse
Affiliation(s)
- Emilie Souton
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Isabelle Severin
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Ludovic Le Hegarat
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Kevin Hogeveen
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Abdulhadi Aljawish
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Valérie Fessard
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Chagnon Marie-Christine
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| |
Collapse
|
31
|
Galvani NC, Vilela TC, Domingos AC, Fagundes MÍ, Bosa LM, Della Vechia IC, Scussel R, Pereira M, Steiner BT, Damiani AP, Chávez-Olórtegui C, De Andrade VM, de Ávila RAM. Genotoxicity evaluation induced by Tityus serrulatus scorpion venom in mice. Toxicon 2017; 140:132-138. [PMID: 29107080 DOI: 10.1016/j.toxicon.2017.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/09/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
Abstract
Tityus serrulatus is the scorpion associated with the most severe cases of scorpion envenoming in Brazil. However, there are no studies reporting the genotoxic effects of this venom in natural or experimental envenomations. It is well known that DNA-damage responses are providing opportunities for improving disease detection and management. In this study was evaluating the genotoxicity of the T. serrulatus venom in different organs (hippocampus, cortex, striatum, blood, heart, lung, liver and kidney) and periods in mice experimentally envenomed. ELISA and the Comet assays were used to quantification of venoms antigens and DNA damage, respectively. Forty-eight Swiss mice were divided into five groups and 0.5 DL50 of T. serrulatus venom (0.90 mg/kg) was administered intraperitoneally in each animal. Euthanasia was performed by cervical dislocation in the period of 0h (control group) 1h, 2h, 6h and 12h, where it the tissues were removed. The results showed high DNA damage in all structures analyzed, suggesting that T. serrulatus venom presented genotoxic activity or some secondary effect generated by venom injection. In the ELISA test, toxic circulant antigens were verified in practically all organs at the time intervals analyzed. Therefore, the distribution of the venom changes from organ to organ. We conclude that scorpion envenoming affects DNA in all organs analyzed even when the venom concentration is lower or no detectable, DNA damage persists.
Collapse
Affiliation(s)
- Nathalia Coral Galvani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Thais Ceresér Vilela
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| | - Angelino Chitoma Domingos
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mírian Ívens Fagundes
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Luiza Macarini Bosa
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Rahisa Scussel
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Márcia Pereira
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Bethina Trevisol Steiner
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Carlos Chávez-Olórtegui
- Laboratório de Imunoquímica de Proteínas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Moraes De Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | |
Collapse
|
32
|
Singireesu SSNR, Misra S, Mondal SK, Yerramsetty S, Sahu N, K SB. Costunolide induces micronuclei formation, chromosomal aberrations, cytostasis, and mitochondrial-mediated apoptosis in Chinese hamster ovary cells. Cell Biol Toxicol 2017; 34:125-142. [PMID: 28914393 DOI: 10.1007/s10565-017-9411-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56 μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE's clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.
Collapse
Affiliation(s)
| | - Sunil Misra
- Genetic Toxicology Laboratory, Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sujan Kumar Mondal
- Biomaterials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Yerramsetty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nivedita Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Suresh Babu K
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
33
|
Dass Singh M, Thomas P, Hor M, Almond T, Owens J, Hague W, Fenech M. Infant birth outcomes are associated with DNA damage biomarkers as measured by the cytokinesis block micronucleus cytome assay: the DADHI study. Mutagenesis 2017; 32:355-370. [DOI: 10.1093/mutage/gex001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Comparative study of human neuronal and glial cell sensitivity for in vitro neurogenotoxicity testing. Food Chem Toxicol 2017; 102:120-128. [PMID: 28174116 DOI: 10.1016/j.fct.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 01/14/2023]
Abstract
Cell cultures from neuronal and glial origin have proven to be powerful tools for elucidating cellular and molecular mechanisms of nervous system development and physiology, and as neurotoxicity models to evaluate in vitro the possible effects of chemicals. But cellular heterogeneity of nervous system is considerable and these cells have been shown to respond diversely to neurotoxic insults, leading to disparate results from different studies. To shed more light on suitability of cellular models of nervous origin for neurotoxicity screening, the objective of this study was to compare the sensitivity to genetic damage induction of two nervous cell lines. To this aim, neurons (SH-SY5Y) and glial (A172) cells were treated with differently-acting genotoxic agents (bleomycin, actinomycin-D, methyl methanesulfonate, mitomycin C, and griseofulvin). After discarding cytotoxicity, genotoxicity was evaluated by a battery of assays encompassing detection of different genetic lesions. Results obtained showed that glial cells are generally more resistant to genotoxic damage induced by clastogenic agents, but more sensitive to aneugenic effects. These results highlight the need of proper design of in vitro neurotoxicology studies, especially for neurogenotoxicity screening, emphasizing the importance of employing more than one nervous cell type for testing the potential toxicity of a particular exposure.
Collapse
|
35
|
Suárez-Rodríguez M, Montero-Montoya RD, Macías Garcia C. Anthropogenic Nest Materials May Increase Breeding Costs for Urban Birds. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
36
|
Soleymanifard S, Bahreyni Toossi MT, Kamran Samani R, Mohebbi S. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study. CELL JOURNAL 2016; 18:346-52. [PMID: 27602316 PMCID: PMC5011322 DOI: 10.22074/cellj.2016.4562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/04/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. MATERIALS AND METHODS This experimental study irradiated three groups of target cells for one, two and three times with(60)Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. RESULTS RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. CONCLUSION The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy).
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Omid Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro. Chem Biol Interact 2016; 257:119-24. [PMID: 27502151 DOI: 10.1016/j.cbi.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022]
|
38
|
Shruthi S, Vijayalaxmi K. Antigenotoxic effects of a polyherbal drug septilin against the genotoxicity of cyclophosphamide in mice. Toxicol Rep 2016; 3:563-571. [PMID: 28959580 PMCID: PMC5615931 DOI: 10.1016/j.toxrep.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022] Open
Abstract
Septilin (Spt) is a polyherbal drug formulation from Himalaya Drug Company, consisting of extracts from different medicinal plants and minerals. In the traditional system of medicine, septilin is being used as immunomodulatory, antioxidant and anti-inflammatory agent. In the present study, the protective effects of septilin against the genotoxicity of cyclophosphamide (CP) a widely used alkylating anticancer drug was evaluated by using in vivo micronucleus (MN) and sperm shape abnormality assays in Swiss albino mice. CP administered intraperitoneally at a dose of 50 mg/kg b.w. was used as positive mutagen. Different doses of septilin viz., 125, 250 and 500 mg/kg b.w. was orally administered for 5 consecutive days. CP was administered intraperitoneally on 5th day. MN and sperm preparations were made after 24 h and 35 days respectively. CP induced significant MN in both bone marrow and peripheral blood cells and also a high frequency of abnormal sperms. In septilin supplemented animals, no significant induction of MN and abnormal sperms was recorded. In septilin supplemented groups, a dose dependent significant decrease in CP induced clastogenicity was observed. Thus the current in vivo study revealed the antigenotoxic effects of septilin against CP induced damage, in both somatic and germ cells of Swiss albino mice.
Collapse
Key Words
- A, amorphous
- Antigenotoxic
- B, banana shaped
- BSA, bovine serum albumin
- CMC, carboxymethyl cellulose
- CP, cyclophosphamide
- Cyclophosphamide
- DH, double headed
- DT, double tailed
- F, folded
- H, hookless
- MN, micronucleus
- MNNCE, micronucleus in normochromatic erythrocytes
- MNPCE, micronucleus in polychromatic erythrocytes
- Micronucleus test
- NCE, normochromatic erythrocytes
- PCE, polychromatic erythrocytes
- Septilin
- Sperm abnormality
- Spt, septilin
Collapse
Affiliation(s)
- S. Shruthi
- Department of Applied Zoology, Mangalore University, Mangalagangothri, 574 199, D.K., India
| | | |
Collapse
|
39
|
Abstract
Visualization of micronuclei induction by chemicals and drugs enables measurement of possible compound genotoxicity. A loss of entire chromosome or a fragment of chromosome can lead to formation of micronuclei (MNi). The in vitro micronucleus assay can be conducted using nuclear dyes with high-content imaging platforms. This chapter describes the cytochalasin block method of measuring micronuclei in CHO-K1 cell lines.
Collapse
|
40
|
Singh MD, Thomas P, Owens J, Hague W, Fenech M. Potential role of folate in pre-eclampsia. Nutr Rev 2015; 73:694-722. [PMID: 26359215 DOI: 10.1093/nutrit/nuv028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia.
Collapse
Affiliation(s)
- Mansi Dass Singh
- M.D. Singh, J. Owens, and W. Hague are with the School of Pediatrics and Reproductive Health, Discipline of Obstetrics and Gynecology, Faculty of Health Sciences, Robinson Institute, Australian Research Centre for Health of Women and Babies, The University of Adelaide, Adelaide, South Australia, Australia. M.D. Singh, P. Thomas and M. Fenech are with the Genome Health and Personalized Nutrition Laboratory Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia
| | - Philip Thomas
- M.D. Singh, J. Owens, and W. Hague are with the School of Pediatrics and Reproductive Health, Discipline of Obstetrics and Gynecology, Faculty of Health Sciences, Robinson Institute, Australian Research Centre for Health of Women and Babies, The University of Adelaide, Adelaide, South Australia, Australia. M.D. Singh, P. Thomas and M. Fenech are with the Genome Health and Personalized Nutrition Laboratory Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia
| | - Julie Owens
- M.D. Singh, J. Owens, and W. Hague are with the School of Pediatrics and Reproductive Health, Discipline of Obstetrics and Gynecology, Faculty of Health Sciences, Robinson Institute, Australian Research Centre for Health of Women and Babies, The University of Adelaide, Adelaide, South Australia, Australia. M.D. Singh, P. Thomas and M. Fenech are with the Genome Health and Personalized Nutrition Laboratory Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia
| | - William Hague
- M.D. Singh, J. Owens, and W. Hague are with the School of Pediatrics and Reproductive Health, Discipline of Obstetrics and Gynecology, Faculty of Health Sciences, Robinson Institute, Australian Research Centre for Health of Women and Babies, The University of Adelaide, Adelaide, South Australia, Australia. M.D. Singh, P. Thomas and M. Fenech are with the Genome Health and Personalized Nutrition Laboratory Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia
| | - Michael Fenech
- M.D. Singh, J. Owens, and W. Hague are with the School of Pediatrics and Reproductive Health, Discipline of Obstetrics and Gynecology, Faculty of Health Sciences, Robinson Institute, Australian Research Centre for Health of Women and Babies, The University of Adelaide, Adelaide, South Australia, Australia. M.D. Singh, P. Thomas and M. Fenech are with the Genome Health and Personalized Nutrition Laboratory Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, Adelaide, South Australia, Australia.
| |
Collapse
|
41
|
Yang J, Deng W, Hau PM, Liu J, Lau VMY, Cheung ALM, Huen MSY, Tsao SW. Epstein-Barr virus BZLF1 protein impairs accumulation of host DNA damage proteins at damage sites in response to DNA damage. J Transl Med 2015; 95:937-950. [PMID: 26006018 DOI: 10.1038/labinvest.2015.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/08/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is closely associated with several human malignancies including nasopharyngeal carcinoma (NPC). The EBV immediate-early protein BZLF1 is the key mediator that switches EBV infection from latent to lytic forms. The lytic form of EBV infection has been implicated in human carcinogenesis but its molecular mechanisms remain unclear. BZLF1 has been shown to be a binding partner of several DNA damage response (DDR) proteins. Its functions in host DDR remain unknown. Thus, we explore the effects of BZLF1 on cellular response to DNA damage in NPC cells. We found that expression of BZLF1 impaired the binding between RNF8 and MDC1 (mediator of DNA damage checkpoint 1), which in turn interfered with the localization of RNF8 and 53BP1 to the DNA damage sites. The RNF8-53BP1 pathway is important for repair of DNA double-strand breaks and DNA damage-induced G2/M checkpoint activation. Our results showed that, by impairing DNA damage repair as well as abrogating G2/M checkpoint, BZLF1 induced genomic instability and rendered cells more sensitive to ionizing radiation. Moreover, the blockage of 53BP1 and RNF8 foci formation was recapitulated in EBV-infected cells. Taken together, our study raises the possibility that, by causing mis-localization of important DDR proteins, BZLF1 may function as a link between lytic EBV infection and impaired DNA damage repair, thus contributing to the carcinogenesis of EBV-associated human epithelial malignancies.
Collapse
Affiliation(s)
- Jie Yang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wen Deng
- 1] Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China [2] School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pok M Hau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Victoria M Y Lau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie L M Cheung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael S Y Huen
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai W Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
42
|
Soloneski S, Kujawski M, Scuto A, Larramendy ML. Carbamates: A study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells. Toxicol In Vitro 2015; 29:834-44. [PMID: 25820133 DOI: 10.1016/j.tiv.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
In vitro effects of the carbamates pirimicarb and zineb and their formulations Aficida® (50% pirimicarb) and Azzurro® (70% zineb), respectively, were evaluated in Chinese hamster ovary (CHO-K1) cells. Whereas the cytokinesis-blocked micronucleus cytome assay was employed to test for genotoxicity, MTT, neutral red (NR), and apoptosis evaluation were used as tests for estimating cell viability and succinic dehydrogenase activity, respectively. Concentrations tested were 10-300 μg/ml for pirimicarb and Aficida®, and 1-50 μg/ml for zineb and Azzurro®. All compounds were able to increase the frequency of micronuclei. A marked reduction in the nuclear division index was observed after treatment with 5 μg/ml of zineb and Azzurro® and 10 μg/ml of Azzurro®. Alterations in the cellular morphology not allowing the recognition of binucleated cells exposed to 300 μg/ml pirimicarb and Aficida® as well as 10-50 μg/ml zineb and Azzurro®. All four compounds induced inhibition of both cell viability and succinic dehydrogenase activity and trigger apoptosis in CHO-K1 cells, at least when exposed for 24 h. The data herein demonstrate the genotoxic and cytotoxic effects exerted by these carbamates and reveal the potential risk factor of these pesticides, still extensively used worldwide, for both human health and the environment.
Collapse
Affiliation(s)
- Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Maciej Kujawski
- Department of Immunology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte Rd, Duarte, CA 91010, USA
| | - Anna Scuto
- Department of Anatomic Pathology, Medical Center at City of Hope Comprehensive Cancer Center, Duarte Rd, Duarte, CA 91010, USA
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
43
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Katarkar A, Mukherjee S, Khan MH, Ray JG, Chaudhuri K. Comparative evaluation of genotoxicity by micronucleus assay in the buccal mucosa over comet assay in peripheral blood in oral precancer and cancer patients. Mutagenesis 2014; 29:325-334. [DOI: 10.1093/mutage/geu023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
45
|
Guiraldelli MF, Eyster C, Pezza RJ. Genome instability and embryonic developmental defects in RMI1 deficient mice. DNA Repair (Amst) 2013; 12:835-43. [PMID: 23900276 DOI: 10.1016/j.dnarep.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
RMI1 forms an evolutionarily conserved complex with BLM/TOP3α/RMI2 (BTR complex) to prevent and resolve aberrant recombination products, thereby promoting genome stability. Most of our knowledge about RMI1 function has been obtained from biochemical studies in vitro. In contrast, the role of RMI1 in vivo remains unclear. Previous attempts to generate an Rmi1 knockout mouse line resulted in pre-implantation embryonic lethality, precluding the use of mouse embryonic fibroblasts (MEFs) and embryonic morphology to assess the role of RMI1 in vivo. Here, we report the generation of an Rmi1 deficient mouse line (hy/hy) that develops until 9.5 days post coitum (dpc) with marked defects in development. MEFs derived from Rmi1(hy/hy) are characterized by severely impaired cell proliferation, frequently having elevated DNA content, high numbers of micronuclei and an elevated percentage of partial condensed chromosomes. Our results demonstrate the importance of RMI1 in maintaining genome integrity and normal embryonic development.
Collapse
Affiliation(s)
- Michel F Guiraldelli
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
46
|
Souza AD, Devi R. Cytokinesis blocked micronucleus assay of peripheral lymphocytes revealing the genotoxic effect of formaldehyde exposure. Clin Anat 2013; 27:308-12. [PMID: 23893659 DOI: 10.1002/ca.22291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
Formaldehyde (FA), which is said to be a carcinogenic agent, is commonly used in anatomy laboratories. This study used the cytokinesis blocked micronucleus assay (CBMN) to assess DNA damage due to FA exposure by measuring the frequency of micronuclei (MN) in lymphocytes. The extent of DNA damage was assessed with respect to the duration of exposure. Thirty male anatomy laboratory workers from various medical colleges involved with storing specimens and embalming were included in the study. Thirty males who were not exposed to FA were included as a comparison group. Blood samples were collected after informed consent was given. Information regarding age, duration of FA exposure and smoking habits was obtained by a questionnaire. The CBMN assay was conducted on cultured isolated lymphocytes stained with Giemsa. MN were counted in a total of 1000 binucleated lymphocytes. The effect of smoking was assessed using appropriate statistical tests. The frequency of MN in lymphocytes was significantly higher in the exposed group (P < 0.001). The duration of exposure correlated positively with the frequency of MN (r = 0.5, P = 0.02). Neither aging nor smoking correlated significantly with the formation of MN. The present study highlights significant DNA damage in people exposed to FA. The extent of damage was directly proportional to the duration of exposure.
Collapse
Affiliation(s)
- Anne D Souza
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, India
| | | |
Collapse
|
47
|
Qiao Y, An J, Ma L. Single Cell Array Based Assay for in Vitro Genotoxicity Study of Nanomaterials. Anal Chem 2013; 85:4107-12. [DOI: 10.1021/ac400242w] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Qiao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jincui An
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Liyuan Ma
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
48
|
Marcussi S, Stábeli RG, Santos-Filho NA, Menaldo DL, Silva Pereira LL, Zuliani JP, Calderon LA, da Silva SL, Greggi Antunes LM, Soares AM. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon 2013; 65:9-14. [DOI: 10.1016/j.toxicon.2012.12.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022]
|
49
|
Abstract
With increasing production and application of a variety of nanomaterials (NMs), research on their cytotoxic and genotoxic potential grows, as the exposure to these nano-sized materials may potentially result in adverse health effects. In large part, indications for potential DNA damaging effects of nanoparticles (NPs) originate from inconsistent in vitro studies. To clarify these effects, the implementation of in vivo studies has been emphasised. This paper summarises study results of genotoxic effects of NPs, which are available in the recent literature. They provide indications that some NP types cause both DNA strand breaks and chromosomal damages in experimental animals. Their genotoxic effects, however, do not depend only on particle size, surface modification (particle coating), and exposure route, but also on exposure duration. Currently available animal studies may suggest differing mechanisms (depending on the duration of exposure) by which living organisms react to NP contact. Nevertheless, due to considerable inconsistencies in the recent literature and the lack of standardised test methods - a reliable hazard assessment of NMs is still limited. Therefore, international organisations (e.g. NIOSH) suggest utmost caution when potential exposure of humans to NMs occurs, as long as evidence of their toxicological and genotoxic effect(s) is limited.
Collapse
|
50
|
|