1
|
Choi EJ, Baek IC, Park S, Kim HJ, Kim TG. Development of cost-effective and fast KIR genotyping by multiplex PCR-SSP. HLA 2024; 103:e15191. [PMID: 37688498 DOI: 10.1111/tan.15191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/11/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIR) control natural killer (NK) cell functions by recognizing HLA molecules and modulating the activity of NK cells. The KIR gene cluster contains polymorphic and highly homologous genes. Diversity of the KIR region is achieved through differences in gene content, allelic polymorphism, and gene copy number, which result in unrelated individuals having different KIR genotypes and individualized immune responses that are relevant to multiple aspects of human health and disease. Therefore, KIR genotyping is increasingly used in epidemiological studies. Here, we developed multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP) to compensate for the shortcomings of the conventional PCR-SSP method, which is most commonly used for KIR analysis. Multiplex PCR-SSP method involves six multiplex reactions that detect 16 KIR genes and distinguish variant types of some KIR genes by adding two reactions. The assay was evaluated in a blind survey using a panel of 40 reference DNA standards from the UCLA KIR Exchange Program. The results are 100% concordant with the genotype determined using Luminex-based reverse sequence-specific oligonucleotide typing systems. Additionally, we investigated the currently known 16 KIR genes and their common variants in 120 unrelated Korean individuals. The results were consistent with the KIR genotype previously reported by Hwang et al. This multiplex PCR-SSP is an efficient method for analyzing KIR genotypes in both small- and large-scale studies with minimal labor, reagents, and DNA. Furthermore, by providing a better definition of KIR polymorphisms it can contribute to developments in immunogenetics.
Collapse
Affiliation(s)
- Eun-Jeong Choi
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wright PW, Li H, Rahman MA, Anderson EM, Karwan M, Carrell J, Anderson SK. The KIR2DL1 intermediate upstream element participates in gene activation. Immunogenetics 2023; 75:495-506. [PMID: 37801092 PMCID: PMC10651540 DOI: 10.1007/s00251-023-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
The human KIR genes encode a family of class I MHC receptors that are expressed on subsets of NK cells. The expression of KIR proteins is controlled by a stochastic process, and competition between sense and antisense promoter elements has been suggested to program the variegated expression of these genes. Previous studies have demonstrated distinct roles of distal, intermediate, and proximal sense promoter/enhancer elements in gene activation and expression. Conversely, proximal and intronic antisense promoter transcripts have been associated with gene silencing at different stages of NK cell development. In the current study, we examine the effect of intermediate promoter deletion on KIR2DL1 expression in the YTS cell line. Homozygous deletion of the KIR2DL1 intermediate element did not affect proximal promoter activity but resulted in increased detection of upstream transcripts. No significant changes in alternative mRNA splicing or expression levels of KIR2DL1 protein were observed. However, intermediate element deletion was associated with a reduced frequency of gene activation by 5-azacytidine. Taken together, these results indicate that the intermediate element is not an enhancer required for KIR expression; however, it is required for the efficient activation of the gene.
Collapse
Affiliation(s)
- Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Megan Karwan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, Center for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Jeffrey Carrell
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, Center for Cancer Research, NCI, Frederick, MD, 21702, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, Center for Cancer Research, NCI, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Ivison GT, Vendrame E, Martínez-Colón GJ, Ranganath T, Vergara R, Zhao NQ, Martin MP, Bendall SC, Carrington M, Cyktor JC, McMahon DK, Eron J, Jones RB, Mellors JW, Bosch RJ, Gandhi RT, Holmes S, Blish CA. Natural Killer Cell Receptors and Ligands Are Associated With Markers of HIV-1 Persistence in Chronically Infected ART Suppressed Patients. Front Cell Infect Microbiol 2022; 12:757846. [PMID: 35223535 PMCID: PMC8866573 DOI: 10.3389/fcimb.2022.757846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The latent HIV-1 reservoir represents a major barrier to achieving a long-term antiretroviral therapy (ART)-free remission or cure for HIV-1. Natural Killer (NK) cells are innate immune cells that play a critical role in controlling viral infections and have been shown to be involved in preventing HIV-1 infection and, in those who are infected, delaying time to progression to AIDS. However, their role in limiting HIV-1 persistence on long term ART is still uncharacterized. To identify associations between markers of HIV-1 persistence and the NK cell receptor-ligand repertoire, we used twin mass cytometry panels to characterize the peripheral blood NK receptor-ligand repertoire in individuals with long-term antiretroviral suppression enrolled in the AIDS Clinical Trial Group A5321 study. At the time of testing, participants had been on ART for a median of 7 years, with virological suppression <50 copies/mL since at most 48 weeks on ART. We found that the NK cell receptor and ligand repertoires did not change across three longitudinal samples over one year-a median of 25 weeks and 50 weeks after the initial sampling. To determine the features of the receptor-ligand repertoire that associate with markers of HIV-1 persistence, we performed a LASSO normalized regression. This analysis revealed that the NK cell ligands CD58, HLA-B, and CRACC, as well as the killer cell immunoglobulin-like receptors (KIRs) KIR2DL1, KIR2DL3, and KIR2DS4 were robustly predictive of markers of HIV-1 persistence, as measured by total HIV-1 cell-associated DNA, HIV-1 cell-associated RNA, and single copy HIV-RNA assays. To characterize the roles of cell populations defined by multiple markers, we augmented the LASSO analysis with FlowSOM clustering. This analysis found that a less mature NK cell phenotype (CD16+CD56dimCD57-LILRB1-NKG2C-) was associated with lower HIV-1 cell associated DNA. Finally, we found that surface expression of HLA-Bw6 measured by CyTOF was associated with lower HIV-1 persistence. Genetic analysis revealed that this was driven by lower HIV-1 persistence in HLA-Bw4/6 heterozygotes. These findings suggest that there may be a role for NK cells in controlling HIV-1 persistence in individuals on long-term ART, which must be corroborated by future studies.
Collapse
Affiliation(s)
- Geoffrey T Ivison
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elena Vendrame
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Giovanny J Martínez-Colón
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemary Vergara
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nancy Q Zhao
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National, Cancer Institute, Frederick, MD, United States.,Laboratory of Integrative Cancer, Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.,Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, MA, United States
| | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Deborah K McMahon
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Joseph Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for AIDS Research, Harvard University, Boston, MA, United States
| | - Susan Holmes
- Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, United States
| | - Catherine A Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | |
Collapse
|
4
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Mkorombindo T, Tran-Nguyen TK, Yuan K, Zhang Y, Xue J, Criner GJ, Kim YI, Pilewski JM, Gaggar A, Cho MH, Sciurba FC, Duncan SR. HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk. JCI Insight 2021; 6:e150187. [PMID: 34464355 PMCID: PMC8525585 DOI: 10.1172/jci.insight.150187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) and human leukocyte antigen–Class I (HLA–Class I) molecules on target cells. We hypothesized HLA–Class I and KIR inheritance affect risks for COPD. HLA–Class I alleles and KIR genotypes were defined by candidate gene analyses in multiple cohorts of patients with COPD (total n = 392) and control smokers with normal spirometry (total n = 342). Compared with controls, patients with COPD had overrepresentations of HLA-C*07 and activating KIR2DS1, with underrepresentations of HLA-C*12. Particular HLA-KIR permutations were synergistic; e.g., the presence of HLA-C*07 + KIR2DS1 + HLA-C12null versus HLAC*07null + KIR2DS1null + HLA-C12 was associated with COPD, especially among HLA-C1 allotype homozygotes. Cytotoxicity of COPD lymphocytes was more enhanced by KIR stimulation than those of controls and was correlated with lung function. These data show HLA-C and KIR polymorphisms strongly influence COPD susceptibility and highlight the importance of lymphocyte-mediated cytotoxicity in COPD pathogenesis. Findings here also indicate that HLA-KIR typing could stratify at-risk patients and raise possibilities that HLA-KIR axis modulation may have therapeutic potential.
Collapse
Affiliation(s)
- Takudzwa Mkorombindo
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thi K Tran-Nguyen
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaiyu Yuan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jianmin Xue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Young-Il Kim
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael H Cho
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R Duncan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Manzanares-Martin B, Cebrián Aranda A, Del Puerto-Nevado L, González R, Solanes S, Gómez-España MA, García-Foncillas J, Aranda E. Improving selection of patients with metastatic colorectal cancer to benefit from cetuximab based on KIR genotypes. J Immunother Cancer 2021; 9:jitc-2020-001705. [PMID: 33833048 PMCID: PMC8039212 DOI: 10.1136/jitc-2020-001705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
AIM Cetuximab is a standard-of-care treatment for KRAS wild-type metastatic colorectal cancer (mCRC), but it may also be effective in a subgroup of KRAS mutant patients by its immunomodulatory activity. Here, we explore if KIR (killer cell immunoglobulin-like receptor) genotyping can provide a significant added value in the clinical outcome of patients with KRAS mutant mCRC based on cetuximab treatment. METHODS We included 69 patients with histologically confirmed mCRC and KRAS mutation, positive EGFR expression, and Eastern Cooperative Oncology Group performance status ≤2. Based on KIR gene content, haplotype (A or B) was defined and genotypes (AA or Bx) were grouped for each patient. RESULTS We demonstrated with new evidence the immunomodulatory activity of cetuximab in patients with KRAS mutant mCRC. Patients with homozygous genotypes (AA or BB) showed shorter 12-month progression-free survival (PFS12) and poorer overall survival (OS) than those with heterozygotes (AB). Moreover, multivariate analysis confirmed stratification of patients based on genotype was an independent marker of PFS12 (HR 2.16) and the centromeric and telomeric distribution of KIRs was an independent predictor of both PFS12 (HR 2.26) and OS (HR 1.93) in patients with mCRC with KRAS mutation treated with cetuximab. CONCLUSIONS Selection of patients with mCRC based on their KIR genotypes opens a therapeutic opportunity for patients with KRAS mutation, and it should be tested in clinical trials in comparison with other alternatives with scarce benefit. TRIAL REGISTRATION NUMBER NCT01450319, EudraCT 2010-023580-18.
Collapse
Affiliation(s)
| | - Arancha Cebrián Aranda
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Laura Del Puerto-Nevado
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Rafael González
- Immunology Unit, Reina Sofia University Hospital, Cordoba, Andalucía, Spain
| | - Sonia Solanes
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | | | - Jesús García-Foncillas
- Oncology, Translational Oncology Division, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Madrid, Spain
| | - Enrique Aranda
- Medical Oncology, Reina Sofia University Hospital, Cordoba, Andalucía, Spain
| |
Collapse
|
7
|
Killer-Cell Immunoglobulin-Like Receptors (KIR) in HIV-Exposed Infants in Cameroon. J Immunol Res 2021; 2021:9053280. [PMID: 33521134 PMCID: PMC7817297 DOI: 10.1155/2021/9053280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
The biological reason(s) behind persistent mother-to-child transmission (MTCT) of HIV (albeit at reduced rate compared to the preantiretroviral therapy era) in spite of the successful implementation of advanced control measures in many African countries remains a priority concern to many HIV/AIDS control programs. This may be partly due to differences in host immunogenetic factors in highly polymorphic regions of the human genome such as those encoding the killer-cell immunoglobulin-like receptor (KIR) molecules which modulate the activities of natural killer cells. The primary aim of this study was to determine the variants of KIR genes that may have a role to play in MTCT in a cohort of infants born to HIV-infected mothers in Yaoundé, Cameroon. We designed a cross-sectional study to molecularly determine the frequencies of 15 KIR genes in 14 HIV-exposed infected (HEI), 39 HIV-exposed/uninfected (HEU), and 27 HIV-unexposed/uninfected (HUU) infants using the sequence specific primer polymerase chain reaction (PCR-SSP) method. We found that all 15 KIR genes were present in our cohort. The frequency of KIR2DL1 was significantly higher in the unexposed (control) group than in the HIV-exposed group (OR = 0.22, P = 0.006). Stratifying analysis by infection status but focusing only on exposed infants revealed that KIR2DL5, KIR2DS1, and KIR2DS5 were significantly overrepresented among the HIV-exposed/uninfected compared to infected infants (OR = 0.20, P = 0.006). Similarly, the frequencies of KIR2DS1, KIR2DS5, and KIR2DL5 were significantly different between infants perinatally infected with HIV (HIV+ by 6 months of age) and HIV-negative infants. Our study demonstrates that KIR genes may have differential effects with regard to MTCT of HIV-1.
Collapse
|
8
|
Torimiro J, Yengo CK, Bimela JS, Tiedeu AB, Lebon PA, Sake CS, Kouanfack C, Nchinda G, Rowland-Jones S, Yindom LM. Killer Cell Immunoglobulin-Like Receptor Genotypes and Haplotypes Contribute to Susceptibility to Hepatitis B Virus and Hepatitis C Virus Infection in Cameroon. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:110-115. [PMID: 31977279 DOI: 10.1089/omi.2019.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over 325 million people worldwide are living with hepatitis B and C viral infections and are at greater risk of developing hepatocellular carcinoma. The interactions between killer cell immunoglobulin-like receptors (KIRs) and their cognate ligands, human leukocyte antigens, modulate both infection processes and disease progression. We report here (1) genotype and haplotype variations in KIR genes in Cameroon and (2) their impact on susceptibility to hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. In 98 unrelated individuals (33 HCV+, 31 HBV+, and 34 uninfected healthy controls), we determined the presence of 15 KIR genes by polymerase chain reaction-sequence-specific primer techniques. One pseudogene and all 14 KIR genes were present. We identified 36 KIR genotypes, 5 of which have not been previously reported in public databases. Two inhibitory (KIR2DL1 and KIR2DL3) and three activating (KIR2DS4, KIR2DS2, and KIR2DS3) genes were present in all HCV-infected individuals. Similarly, KIR3DL1, KIR2DL1, and KIR2DS4 were present at 100% in the HBV+ group. Compared with uninfected healthy controls, the frequencies of KIR2DL2 and KIR3DS1 were significantly lower in the HBV+ group (p = 0.003 and p < 0.001, respectively). Conversely, KIR3DS1 was significantly overrepresented in the HCV+ group compared with controls (97.0% vs. 64.7%, respectively, p < 0.001). These results may imply that KIR3DS1 carriers were less likely to be HBV infected, but may be predisposed to HCV infection compared with uninfected controls, indicating their important role in transmission of these viruses. However, phenotypic, functional, and genomic studies to elucidate the role of these KIR genotypes and haplotypes in infection with HBV and HCV are important.
Collapse
Affiliation(s)
- Judith Torimiro
- Chantal Biya International Reference Centre for Research on Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Clauvis Kunkeng Yengo
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jude Saber Bimela
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Atogho Barbara Tiedeu
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Patrick Awoumou Lebon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Carole Stephanie Sake
- Department of Microbiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Charles Kouanfack
- Central Hospital of Yaoundé, AIDS Outpatient Clinic, Yaoundé, Cameroon.,Public Health Department, University of Dschang, Dschang, Cameroon
| | - Godwin Nchinda
- Chantal Biya International Reference Centre for Research on Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Louis-Marie Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Mori M, Leitman E, Walker B, Ndung’u T, Carrington M, Goulder P. Impact of HLA Allele-KIR Pairs on HIV Clinical Outcome in South Africa. J Infect Dis 2019; 219:1456-1463. [PMID: 30520960 PMCID: PMC6467198 DOI: 10.1093/infdis/jiy692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND HLA class I contributes to HIV immune control through antigen presentation to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. In contrast to investigations of CTL, studies of NK cells in HIV control through HLA-killer immunoglobulin-like receptor (KIR) interactions remain sparse in African cohorts. METHODS Treatment-naive, chronically HIV-infected adults (N = 312) were recruited from South Africa, and the effects of HLA-KIR pairs on clinical outcome were analyzed. RESULTS There was no significant difference in viral load among all subjects with HLA alleles from the HLA-C1 group (P = .1). However, differences in HLA-C type significantly influenced viremia among 247 KIR2DL3 positives (P = .04), suggesting that specific HLA-KIR interactions contribute to immune control. Higher viral load (P = .02) and lower CD4+ T-cell counts (P = .008) were observed in subjects with HLA-C*16:01+KIR2DL3+. Longitudinal analysis showed more rapid progression to AIDS among HLA-C*16:01+KIR2DL3+ subjects (adjusted hazard ratio 1.9, P = .03) than those without this genotype, independent of CD4+ T-cell count and viral load. CONCLUSIONS These results highlight the existence of unique anti-HIV innate immunity within distinct populations and the contribution of KIR on NK cells and some CTLs to the well-described HLA-mediated impact on HIV disease progression.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Paediatrics, University of Oxford
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Japan
| | | | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
| | - Thumbi Ndung’u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Maryland
| | - Philip Goulder
- Department of Paediatrics, University of Oxford
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal
| |
Collapse
|
10
|
Jayaraman J, Kirgizova V, Di D, Johnson C, Jiang W, Traherne JA. qKAT: Quantitative Semi-automated Typing of Killer-cell Immunoglobulin-like Receptor Genes. J Vis Exp 2019:10.3791/58646. [PMID: 30907867 PMCID: PMC6794157 DOI: 10.3791/58646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are a set of inhibitory and activating immune receptors, on natural killer (NK) and T cells, encoded by a polymorphic cluster of genes on chromosome 19. Their best-characterized ligands are the human leukocyte antigen (HLA) molecules that are encoded within the major histocompatibility complex (MHC) locus on chromosome 6. There is substantial evidence that they play a significant role in immunity, reproduction, and transplantation, making it crucial to have techniques that can accurately genotype them. However, high-sequence homology, as well as allelic and copy number variation, make it difficult to design methods that can accurately and efficiently genotype all KIR genes. Traditional methods are usually limited in the resolution of data obtained, throughput, cost-effectiveness, and the time taken for setting up and running the experiments. We describe a method called quantitative KIR semi-automated typing (qKAT), which is a high-throughput multiplex real-time polymerase chain reaction method that can determine the gene copy numbers for all genes in the KIR locus. qKAT is a simple high-throughput method that can provide high-resolution KIR copy number data, which can be further used to infer the variations in the structurally polymorphic haplotypes that encompass them. This copy number and haplotype data can be beneficial for studies on large-scale disease associations, population genetics, as well as investigations on expression and functional interactions between KIR and HLA.
Collapse
Affiliation(s)
- Jyothi Jayaraman
- Department of Pathology, University of Cambridge; Department of Physiology, Development and Neuroscience, University of Cambridge; Department of Obstetrics and Gynaecology, University of Cambridge School of Medicine, NIHR Cambridge Biomedical Research Centre; Centre for Trophoblast Research, University of Cambridge
| | | | - Da Di
- Department of Pathology, University of Cambridge; Department of Genetics & Evolution, University of Geneva
| | | | - Wei Jiang
- Department of Pathology, University of Cambridge; Department of Plant Sciences, University of Cambridge
| | | |
Collapse
|
11
|
Amorim LM, Santos THS, Hollenbach JA, Norman PJ, Marin WM, Dandekar R, Ribeiro EMDSF, Petzl-Erler ML, Augusto DG. Cost-effective and fast KIR gene-content genotyping by multiplex melting curve analysis. HLA 2018; 92:384-391. [PMID: 30468002 PMCID: PMC6433384 DOI: 10.1111/tan.13430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Killer cell immunoglobulin-like receptor (KIR) genes encode cell surface molecules that recognize HLA molecules and modulate the activity of natural killer (NK) cells. KIR genes exhibit presence and absence polymorphism, which generates a variety of gene-content haplotypes in worldwide populations. KIR gene-content variation is implicated in many diseases and is also important for placentation and transplantation. Because of the complexity of KIR polymorphism, variation in this family is still mostly studied at the gene-content level, even with the advent of next-generation sequencing (NGS) methods. Gene-content determination is generally expensive and/or time-consuming. To overcome these difficulties, we developed a method based on multiplex polymerase chain reaction with specific sequence primers (PCR-SSP) followed by melting curve analysis that allows cost-effective, precise and fast generation of results. Our method was 100% concordant with a gel-based method and 99.9% concordant with presence and absence determination by NGS. The limit of detection for accurate typing was 30 ng of DNA (0.42 μM) with 260/230 and 260/280 ratios as low as 0.19 and of 0.44. In addition, we developed a user-friendly Java-based computational application called killerPeak that interprets the raw data generated by Viia7 or QuantStudio 7 quantitative PCR machines and reliably exports the final genotyping results in spreadsheet file format. The combination of a reliable method that requires low amount of DNA with an automated interpretation of results allows scaling the KIR genotyping in large cohorts with reduced turnaround time.
Collapse
Affiliation(s)
| | | | - Jill A. Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado, Denver, USA
| | - Wesley M. Marin
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Danillo G. Augusto
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Setor de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
12
|
Harishankar M, Selvaraj P, Bethunaickan R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front Med (Lausanne) 2018; 5:213. [PMID: 30167433 PMCID: PMC6106802 DOI: 10.3389/fmed.2018.00213] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is still remains the major threat for human health worldwide. Several case-control, candidate-gene, family studies and genome-wide association studies (GWAS) suggested the association of host genetic factors to TB susceptibility or resistance in various ethnic populations. Moreover, these factors modulate the host immune responses to tuberculosis. Studies have reported genetic markers to predict TB development in human leukocyte antigen (HLA) and non-HLA genes like killer immunoglobulin-like receptor (KIR), toll-like receptors (TLRs), cytokine/chemokines and their receptors, vitamin D receptor (VDR) and SLC11A1 etc. Highly polymorphic HLA loci may influence antigen presentation specificities by modifying peptide binding motifs. The recent meta-analysis studies revealed the association of several HLA alleles in particular class II HLA-DRB1 with TB susceptibility and valuable marker for disease development especially in Asian populations. Case-control studies have found the association of HLA-DR2 in some populations, but not in other populations, this could be due to an ethnic specific association of gene variants. Recently, GWAS conducted in case-control and family based studies in Russia, Chinese Han, Morocco, Uganda and Tanzania revealed the association of genes such as ASAP1, Alkylglycerol monooxygenase (AGMO), Forkhead BoxP1 (FOXP1), C-terminal domain phosphatase 1 (UBLCP1) and intergenic SNP rs932347C/T with TB. Whereas, SNP rs10956514A/G were not associated with TB in western Chinese Han and Tibetan population. In this review, we summarize the recent findings of genetic variants with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Murugesan Harishankar
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | - Paramasivam Selvaraj
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
13
|
Martin MP, Naranbhai V, Shea PR, Qi Y, Ramsuran V, Vince N, Gao X, Thomas R, Brumme ZL, Carlson JM, Wolinsky SM, Goedert JJ, Walker BD, Segal FP, Deeks SG, Haas DW, Migueles SA, Connors M, Michael N, Fellay J, Gostick E, Llewellyn-Lacey S, Price DA, Lafont BA, Pymm P, Saunders PM, Widjaja J, Wong SC, Vivian JP, Rossjohn J, Brooks AG, Carrington M. Killer cell immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. J Clin Invest 2018; 128:1903-1912. [PMID: 29461980 PMCID: PMC5919796 DOI: 10.1172/jci98463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
HLA-B*57 control of HIV involves enhanced CD8+ T cell responses against infected cells, but extensive heterogeneity exists in the level of HIV control among B*57+ individuals. Using whole-genome sequencing of untreated B*57+ HIV-1-infected controllers and noncontrollers, we identified a single variant (rs643347A/G) encoding an isoleucine-to-valine substitution at position 47 (I47V) of the inhibitory killer cell immunoglobulin-like receptor KIR3DL1 as the only significant modifier of B*57 protection. The association was replicated in an independent cohort and across multiple outcomes. The modifying effect of I47V was confined to B*57:01 and was not observed for the closely related B*57:03. Positions 2, 47, and 54 tracked one another nearly perfectly, and 2 KIR3DL1 allotypes differing only at these 3 positions showed significant differences in binding B*57:01 tetramers, whereas the protective allotype showed lower binding. Thus, variation in an immune NK cell receptor that binds B*57:01 modifies its protection. These data highlight the exquisite specificity of KIR-HLA interactions in human health and disease.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Patrick R. Shea
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nicolas Vince
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- ATIP-Avenir, Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | | | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Steven G. Deeks
- San Francisco General Hospital Medical Center, San Francisco, California, USA
| | - David W. Haas
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephen A. Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nelson Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jacques Fellay
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Emma Gostick
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
| | - David A. Price
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bernard A. Lafont
- Viral Immunology Section, Office of the Scientific Director, NIAID, NIH, Bethesda, Maryland, USA
| | - Phillip Pymm
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Philippa M. Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Julian P. Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Cardiff University School of Medicine, Heath Park, University Hospital of Wales, Cardiff, United Kingdom
- Non-Human Primate Immunogenetics and Cellular Immunology Unit, NIAID, NIH, Bethesda, Maryland, USA
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wang L, Zhang Y, Xu K, Dong T, Rowland-Jones S, Yindom LM. Killer-cell immunoglobulin-like receptors associate with HIV-1 infection in a narrow-source Han Chinese cohort. PLoS One 2018; 13:e0195452. [PMID: 29664957 PMCID: PMC5903672 DOI: 10.1371/journal.pone.0195452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background The HIV pandemic remains the most serious challenge to public health worldwide. The hallmark characteristics of the disease is the eventual failure of the immune system to control opportunistic infections and death. However not everyone who has HIV develops the disease at the same rate and so we are studying how the immune system works to control the virus in those who have been infected for decades and remain relatively healthy without the need of anti-retroviral therapy (ART). Methods Genomic DNA samples from 513 Chinese Han individuals from Henan province were typed for 15 KIR and 3 HLA class I genes. Genotype frequencies were compared between a village cohort of 261 former plasma donors (SM cohort) infected with HIV-1 through an illegal plasma donor scheme who survived more than 10 years of infection without ART and 252 ethnically-matched healthy controls from a nearby village. KIR and HLA were molecularly typed using a combination of polymerase chain reaction (PCR) with sequence-specific primers (PCR-SSP) and sequence based techniques. Results All 15 KIR genes were observed in the study population at various frequencies. KIR2DL3 was significantly less common in the HIV-1 infected group (95.8% vs 99.2%, p = 0.021). The combination of KIR3DS1 with homozygosity for HLA-Bw4 alleles (the putative ligand for KIR3DS1) was significantly less frequent in the HIV-1 infected group than in the control group (6.0% vs 12.0% respectively, p = 0.023). Conclusion Specific KIR-HLA compound genotypes associate with differential outcomes to infection and disease progression following exposure to a narrow-source HIV-1.
Collapse
Affiliation(s)
- Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yonghong Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.,Beijing You An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keyi Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Dong
- Nuffield Department of Medicine, Headington, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
15
|
Li H, Ivarsson MA, Walker-Sperling VE, Subleski J, Johnson JK, Wright PW, Carrington M, Björkström NK, McVicar DW, Anderson SK. Identification of an elaborate NK-specific system regulating HLA-C expression. PLoS Genet 2018; 14:e1007163. [PMID: 29329284 PMCID: PMC5785035 DOI: 10.1371/journal.pgen.1007163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Martin A. Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Victoria E. Walker-Sperling
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jeff Subleski
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jenna K. Johnson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul W. Wright
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Mary Carrington
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| |
Collapse
|
16
|
Yindom LM, Mendy M, Bodimeade C, Chambion C, Aka P, Whittle HC, Rowland-Jones SL, Walton R. KIR content genotypes associate with carriage of hepatitis B surface antigen, e antigen and HBV viral load in Gambians. PLoS One 2017; 12:e0188307. [PMID: 29149205 PMCID: PMC5693433 DOI: 10.1371/journal.pone.0188307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/04/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) causes over 800,000 deaths worldwide annually, mainly in low income countries, and incidence is rising rapidly in the developed world with the spread of hepatitis B (HBV) and C (HCV) viruses. Natural Killer (NK) cells protect against viral infections and tumours by killing abnormal cells recognised by Killer-cell Immunoglobulin-like Receptors (KIR). Thus genes and haplotypes encoding these receptors may be important in determining both outcome of initial hepatitis infection and subsequent chronic liver disease and tumour formation. HBV is highly prevalent in The Gambia and the commonest cause of liver disease. The Gambia Liver Cancer Study was a matched case-control study conducted between September 1997 and January 2001 where cases with liver disease were identified in three tertiary referral hospitals and matched with out-patient controls with no clinical evidence of liver disease. METHODS We typed 15 KIR genes using the polymerase chain reaction with sequence specific primers (PCR-SSP) in 279 adult Gambians, 136 with liver disease (HCC or Cirrhosis) and 143 matched controls. We investigated effects of KIR genotypes and haplotypes on HBV infection and associations with cirrhosis and HCC. RESULTS Homozygosity for KIR group A gene-content haplotype was associated with HBsAg carriage (OR 3.7, 95% CI 1.4-10.0) whilst telomeric A genotype (t-AA) was associated with reduced risk of e antigenaemia (OR 0.2, 95% CI 0.0-0.6) and lower viral loads (mean log viral load 5.2 vs. 6.9, pc = 0.022). One novel telomeric B genotype (t-ABx2) containing KIR3DS1 (which is rare in West Africa) was also linked to e antigenaemia (OR 8.8, 95% CI 1.3-60.5). There were no associations with cirrhosis or HCC. CONCLUSION Certain KIR profiles may promote clearance of hepatitis B surface antigen whilst others predispose to e antigen carriage and high viral load. Larger studies are necessary to quantify the effects of individual KIR genes, haplotypes and KIR/HLA combinations on long-term viral carriage and risk of liver cancer. KIR status could potentially inform antiviral therapy and identify those at increased risk of complications for enhanced surveillance.
Collapse
MESH Headings
- Adult
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Chromosomes, Human, Pair 19/chemistry
- Female
- Gambia
- Gene Expression
- Genotype
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver Cirrhosis/complications
- Liver Cirrhosis/genetics
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Male
- Receptors, KIR/classification
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Tertiary Care Centers
- Viral Load/genetics
Collapse
Affiliation(s)
- Louis-Marie Yindom
- University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
- Medical Research Council (UK), Fajara, The Gambia
| | - Maimuna Mendy
- Medical Research Council (UK), Fajara, The Gambia
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Peter Aka
- Medical Research Council (UK), Fajara, The Gambia
- Demographic and Health Surveys, ICF International, Rockville, Maryland United States of America
| | - Hilton C. Whittle
- Medical Research Council (UK), Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah L. Rowland-Jones
- University of Oxford, Nuffield Department of Medicine, Oxford, United Kingdom
- Medical Research Council (UK), Fajara, The Gambia
| | - Robert Walton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Primary Care and Public Health, Barts and the London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom
| |
Collapse
|
17
|
Mhandire K, Zijenah LS, Yindom LM, Duri K, Mlambo T, Tshabalala M, Mazengera LR, Mhandire DZ, Musarurwa C, Dandara C, Rowland-Jones S, Matarira HT, Stray-Pedersen B. KIR Gene Content Diversity in a Zimbabwean Population: Does KIR2DL2 Have a Role in Protection Against Human Immunodeficiency Virus Infection? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:727-735. [PMID: 27930093 DOI: 10.1089/omi.2016.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) mediate natural killer cell function through interaction with their cognate human leukocyte antigen ligands. Thus, KIR gene variants have been implicated in resistance or susceptibility to viral infections. However, research on the role of these variants remains contradictory and inconclusive. In the present study, we investigated KIR gene content diversity and its association with human immunodeficiency virus (HIV) infection in an adult Black Zimbabwean population. Presence or absence of 15 KIR genes was determined in 189 HIV-infected adults and 97 HIV-uninfected blood donors using sequence specific primer polymerase chain reaction. Frequencies of KIR genes, genotypes, and haplotypes were compared between the cases and controls to identify putative associations between KIR gene variants and HIV status. We report in this study the frequencies of 15 KIR genes and 43 KIR genotypes (40 known and 3 novel) among Zimbabweans. Importantly, the frequency of the inhibitory KIR2DL2 gene was significantly higher in the uninfected group (62%) compared to the HIV-infected group (47%) (OR = 0.55, 95% CI: 0.33-0.90, p = 0.019). KIR2DL2/2DL2 homozygosity was also significantly higher in the uninfected group (35%) compared to HIV-infected group (53%) (OR = 0.33, 95% CI: 0.16-0.72, p = 0.005) under a recessive model. We conclude that the KIR2DL2 gene may be involved in protection against HIV infection. It may be possible that inhibitory KIR genes may have an important role to play in HIV acquisition among populations of African origin in whom the activating KIR genes are less frequent compared to among Caucasians.
Collapse
Affiliation(s)
- Kudakwashe Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | | | - Louis-Marie Yindom
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Kerina Duri
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | - Tommy Mlambo
- 3 Department of Immunology, University of Zimbabwe , Harare, Zimbabwe
| | | | | | - Doreen Zvipo Mhandire
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,2 Letten Foundation Research House , Harare, Zimbabwe
| | - Cuthbert Musarurwa
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 5 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Sarah Rowland-Jones
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Hilda Tendisa Matarira
- 1 Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Babill Stray-Pedersen
- 2 Letten Foundation Research House , Harare, Zimbabwe .,6 Institute of Clinical Medicine, University of Oslo and Womens' Clinic, Rikshospitalet, University Hospital , Oslo, Norway
| |
Collapse
|
18
|
Jiang W, Johnson C, Simecek N, López-Álvarez MR, Di D, Trowsdale J, Traherne JA. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med 2016; 8:99. [PMID: 27686127 PMCID: PMC5041586 DOI: 10.1186/s13073-016-0358-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy number variation makes KIRs technically laborious and expensive to type. To aid the investigation of KIRs in human disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of 1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved information and identifies KIR haplotype alterations that were not previously visible using other approaches.
Collapse
Affiliation(s)
- W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - N Simecek
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - M R López-Álvarez
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - D Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - J Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - J A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
19
|
Goedert JJ, Martin MP, Vitale F, Lauria C, Whitby D, Qi Y, Gao X, Carrington M. Risk of Classic Kaposi Sarcoma With Combinations of Killer Immunoglobulin-Like Receptor and Human Leukocyte Antigen Loci: A Population-Based Case-control Study. J Infect Dis 2016; 213:432-8. [PMID: 26268853 PMCID: PMC4719589 DOI: 10.1093/infdis/jiv413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a complication of KS-associated herpesvirus (KSHV) infection. Other oncogenic viral infections and malignancies are associated with certain HLA alleles and their natural killer (NK) cell immunoglobulin-like receptor (KIR) ligands. We tested whether HLA-KIR influences the risk of KSHV infection or KS. METHODS In population-based case-control studies, we compared HLA class I and KIR gene frequencies in 250 classic (non-AIDS) KS cases, 280 KSHV-seropositive controls, and 576 KSHV-seronegative controls composing discovery and validation cohorts. Logistic regression was used to calculate sex- and age-adjusted odds ratios (ORs) and 95% confidence intervals. RESULTS In both the discovery and validation cohorts, KS was associated with HLA-A*11:01 (adjusted OR for the combined cohorts, 0.4; P = .002) and HLA-C*07:01 (adjusted OR, 1.6; P = .002). Consistent associations across cohorts were also observed with activating KIR3DS1 plus HLA-B Bw4-80I and homozygosity for HLA-C group 1. With KIR3DS1 plus HLA-B Bw4-80I, the KSHV seroprevalence was 40% lower (adjusted OR for the combined cohorts, 0.6; P = .01), but the KS risk was 2-fold higher (adjusted OR, 2.1; P = .002). Similarly, the KSHV seroprevalence was 40% lower (adjusted OR, 0.6; P = .01) but the KS risk 80% higher with HLA-C group 1 homozygosity (adjusted OR, 1.8; P = .005). CONCLUSIONS KIR-mediated NK cell activation may decrease then risk of KSHV infection but enhance KSHV dissemination and progression to KS if infection occurs.
Collapse
Affiliation(s)
- James J Goedert
- Division of Cancer Epidemiology and Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Maureen P Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Francesco Vitale
- Dipartimento di Igiene e Microbiologia Giuseppe D'Alessandro, Universitá degli Studi di Palermo
| | - Carmela Lauria
- Lega Italiana per la Lotta Contro i Tumori-Sez Ragusa, Italy
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
20
|
Nazari M, Mahmoudi M, Rahmani F, Akhlaghi M, Beigy M, Azarian M, Shamsian E, Akhtari M, Mansouri R. Association of Killer Cell Immunoglobulin- Like Receptor Genes in Iranian Patients with Rheumatoid Arthritis. PLoS One 2015; 10:e0143757. [PMID: 26658904 PMCID: PMC4687638 DOI: 10.1371/journal.pone.0143757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by persistent synovitis, ultimately leading to cartilage and bone degeneration. Natural Killer cells and CD28 null T-cells are suspected as role players in RA pathogenesis. These cells are similar in feature and function, as they both exert their cytotoxic effect via Killer Cell Immunoglobulin- Like Receptors (KIR) on their surface. KIR genes have either an inhibitory or activating effect depending on their intracytoplasmic structure. Herein we genotyped 16 KIR genes, 3 pseudo genes and 6 HLA class І genes as their corresponding ligands in RA patients and control subjects. Methods In this case-control study, KIR and HLA genes were genotyped in 400 RA patients and 372 matched healthy controls using sequence-specific primers (SSP-PCR). Differences in the frequency of genes and haplotypes were determined by χ² test. Results KIR2DL2, 2DL5a, 2DL5b and activating KIR: KIR2DS5 and 3DS1 were all protective against RA. KIR2DL5 removal from a full Inhibitory KIR haplotype converted the mild protection (OR = 0.56) to a powerful predisposition to RA (OR = 16.47). Inhibitory haplotype No. 7 comprising KIR2DL5 in the absence of KIR2DL1 and KIR2DL3 confers a 14-fold protective effect against RA. Conclusion Individuals carrying the inhibitory KIR haplotype No. 6 have a high potential risk for developing RA.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Immunology Department, Shahid Sadoughi University of Medical Sciences (International Campus), Yazd, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MM); (RM)
| | - Farzaneh Rahmani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maani Beigy
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Azarian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Shamsian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences (International Campus), Yazd, Iran
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- * E-mail: (MM); (RM)
| |
Collapse
|
21
|
Braun K, Wolfe J, Kiazyk S, Kaushal Sharma M. Evaluation of host genetics on outcome of tuberculosis infection due to differences in killer immunoglobulin-like receptor gene frequencies and haplotypes. BMC Genet 2015; 16:63. [PMID: 26077983 PMCID: PMC4467048 DOI: 10.1186/s12863-015-0224-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Outcome of Mycobacterium tuberculosis (Mtb) infection is affected by virulence of the infecting strain of Mtb, host environment, co-morbidities, and the genetic composition of the host, specifically the presence or absence of genes involved in immune responses/regulation. It is hypothesized that specific killer immunoglobulin-like receptor (KIR) genes may be associated with Mtb infection and clinical outcome. This cross-sectional study examined the KIR gene frequencies, profiles, and haplotypes of individuals with active tuberculosis, latent tuberculosis infection, compared to TB and HIV negative healthy controls. Results Analysis of KIR gene frequencies revealed differences among disease status groups, suggesting that enrichment or depletion of specific KIR genes may direct the disease outcome. Mtb infected individuals were more likely to have a centromeric-AA haplotype compared to controls. Conclusion The differences in KIR gene frequencies and haplotypes may result in differential cytokine expression, contributing to different disease outcomes, and suggest a genetic influence on Mtb susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Kali Braun
- Department of Medical Microbiology, University of Manitoba, 543-745 Bannatyne Avenue, Winnipeg, R3E 0 J9, MB, Canada.
| | - Joyce Wolfe
- National Reference Centre for Mycobacteriology, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2, MB, Canada.
| | - Sandra Kiazyk
- Department of Medical Microbiology, University of Manitoba, 543-745 Bannatyne Avenue, Winnipeg, R3E 0 J9, MB, Canada. .,National Reference Centre for Mycobacteriology, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2, MB, Canada.
| | - Meenu Kaushal Sharma
- Department of Medical Microbiology, University of Manitoba, 543-745 Bannatyne Avenue, Winnipeg, R3E 0 J9, MB, Canada. .,National Reference Centre for Mycobacteriology, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2, MB, Canada.
| |
Collapse
|
22
|
Association of KIR3DL1/S1 and HLA-Bw4 with CD4 T cell counts in HIV-infected Mexican mestizos. Immunogenetics 2015; 67:413-24. [PMID: 26033692 DOI: 10.1007/s00251-015-0848-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
Certain genotypic combinations of killer-cell immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA) have been associated with favourable outcomes after exposure to human immunodeficiency virus in Caucasoid and African populations. Human immunodeficiency virus (HIV) infection is characterized by a rapid exhaustion of CD4 cells, which results in impaired cellular immunity. During this early phase of infection, it is thought that the natural killer (NK) cells represent the main effector arm of the host immune response to HIV. This study investigates whether KIR and HLA factors are associated to CD4 T cell numbers after HIV infection in Mexican mestizos as assessed at the time of initial medical evaluation and subsequent clinical follow-up. KIR and HLA-B gene carrier frequency differences were compared between groups of patients stratified by CD4 T cell numbers as assessed during their first medical evaluation (a point in time at which all patients were anti-retroviral therapy naïve). In addition, the influence that these genetic factors have on averaged historical CD4 cell counts in patients subjected to follow-up (mostly therapy-experienced) was also evaluated. Our results suggest a protective role for the HLA-Bw4 and KIR3D + Bw4 combination in both therapy-naïve and therapy-experienced patients. This report furthers our understanding on the way that immune genes modulate HIV disease progression in less-studied human populations such as the Mexican mestizos with a special focus on CD4 T cell number and behaviour.
Collapse
|
23
|
Wright PW, Li H, Huehn A, O’Connor GM, Cooley S, Miller JS, Anderson SK. Characterization of a weakly expressed KIR2DL1 variant reveals a novel upstream promoter that controls KIR expression. Genes Immun 2014; 15:440-8. [PMID: 24989671 PMCID: PMC4208966 DOI: 10.1038/gene.2014.34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/03/2022]
Abstract
Members of the human KIR (killer cell immunoglobulin-like receptor) class I major histocompatibility complex receptor gene family contain multiple promoters that determine the variegated expression of KIR on natural killer cells. In order to identify novel genetic alterations associated with decreased KIR expression, a group of donors was characterized for KIR gene content, transcripts and protein expression. An individual with a single copy of the KIR2DL1 gene but a very low level of gene expression was identified. The low expression phenotype was associated with a single-nucleotide polymorphism (SNP) that created a binding site for the inhibitory ZEB1 (Zinc finger E-box-binding homeobox 1) transcription factor adjacent to a c-Myc binding site previously implicated in distal promoter activity. Individuals possessing this SNP had a substantial decrease in distal KIR2DL1 transcripts initiating from a novel intermediate promoter located 230 bp upstream of the proximal promoter start site. Surprisingly, there was no decrease in transcription from the KIR2DL1 proximal promoter. Reduced intermediate promoter activity revealed the existence of alternatively spliced KIR2DL1 transcripts containing premature termination codons that initiated from the proximal KIR2DL1 promoter. Altogether, these results indicate that distal transcripts are necessary for KIR2DL1 protein expression and are required for proper processing of sense transcripts from the bidirectional proximal promoter.
Collapse
Affiliation(s)
- Paul W. Wright
- Basic Science Program, Leidos Biomedical Research Inc., Lab of Experimental Immunology, Frederick National Lab, Frederick, Maryland 21702, USA
| | - Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Lab of Experimental Immunology, Frederick National Lab, Frederick, Maryland 21702, USA
| | - Andrew Huehn
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Geraldine M O’Connor
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Sarah Cooley
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Lab of Experimental Immunology, Frederick National Lab, Frederick, Maryland 21702, USA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
24
|
Vince N, Bashirova AA, Lied A, Gao X, Dorrell L, McLaren PJ, Fellay J, Carrington M. HLA class I and KIR genes do not protect against HIV type 1 infection in highly exposed uninfected individuals with hemophilia A. J Infect Dis 2014; 210:1047-51. [PMID: 24719475 PMCID: PMC4215081 DOI: 10.1093/infdis/jiu214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/26/2014] [Indexed: 01/15/2023] Open
Abstract
A recent genome-wide association study (GWAS) involving patients with hemophilia A who were exposed to but uninfected with human immunodeficiency virus type 1 (HIV-1) did not reveal genetic variants associated with resistance to HIV-1 infection, beyond homozygosity for CCR5-Δ32. Since variation in HLA class I and KIR genes is not well interrogated by standard GWAS techniques, we tested whether these 2 loci were involved in protection from HIV-1 infection in the same hemophilia cohort, using controls from the general population. Our data indicate that HLA class I alleles, presence or absence of KIR genes, and functionally relevant combinations of the HLA/KIR genotypes are not involved in resistance to parenterally transmitted HIV-1 infection.
Collapse
Affiliation(s)
- Nicolas Vince
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Arman A. Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Alexandra Lied
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Paul J. McLaren
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
25
|
Prentice HA, Ehrenberg PK, Baldwin KM, Geretz A, Andrews C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, O'Connell RJ, Robb ML, Kim JH, Michael NL, Thomas R. HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics 2014; 66:299-310. [PMID: 24682434 DOI: 10.1007/s00251-014-0765-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/23/2014] [Indexed: 11/25/2022]
Abstract
RV144 is the first phase 3 HIV vaccine clinical trial to demonstrate efficacy. This study consisted of more than 8,000 individuals in each arm of the trial, representing the four major regions of Thailand. Human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptor (KIR) genes, as well as 96 genome-wide ancestry informative markers (AIMs) were genotyped in 450 placebo HIV-1-uninfected individuals to identify the immunogenetic diversity and population structure of this cohort. High-resolution genotyping identified the common HLA alleles as A*02:03, A*02:07, A*11:01, A*24:02, A*24:07, A*33:03, B*13:01, B*15:02, B*18:01, B*40:01, B*44:03, B*46:01, B*58:01, C*01:02, C*03:02, C*03:04, C*07:01, C*07:02, C*07:04, and C*08:01. The most frequent three-loci haplotype was B*46:01-C*01:02-A*02:07. Framework genes KIR2DL4, 3DL2, and 3DL3 were present in all samples, and KIR2DL1, 2DL3, 3DL1, 2DS4, and 2DP1 occurred at frequencies greater than 90 %. The combined HLA and KIR profile suggests admixture with neighboring Asian populations. Principal component and correspondence analyses comparing the RV144 samples to the phase 3 International HapMap Project (HapMap3) populations using AIMs corroborated these findings. Structure analyses identified a distinct profile in the Thai population that did not match the Asian or other HapMap3 samples. This shows genetic variability unique to Thais in RV144, making it essential to take into account population stratification while performing genetic association studies. The overall analyses from all three genetic markers indicate that the RV144 samples are representative of the Thai population. This will inform subsequent host genetic analyses in the RV144 cohort and provide insight for future genetic association studies in the Thai population.
Collapse
Affiliation(s)
- Heather A Prentice
- U.S. Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marangon AV, Visentainer JEL, Guelsin GAS, Clementino SL, Rudnick CCC, de Melo FC, Braga MA, Sell AM. Investigation of deletion of 22pb in KIR2DS4 gene in a population of southern Brazil. J Clin Lab Anal 2014; 28:440-5. [PMID: 24659081 DOI: 10.1002/jcla.21707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the distribution of full-length and deleted variants of KIR2DS4 in a population of southern Brazil and compare the results with other populations, as well as comparing two techniques, PCR-SSP and PCR-SSO, for typing of variants. METHODS 258 individuals from southern Brazil were analysed by PCR-SSO ("polymerase chain reaction-sequence specific oligonucleotides", One Lambda, Inc., Canoga Park, CA), of which 161 were also analysed by PCR-SSP. RESULTS The study population showed similarities with other Caucasian populations; 46.5% of individuals had only KIR2DS4 variants, 21.3% had the full-length form and 25.1% had both forms. CONCLUSION The frequencies found in both groups (genotyped by PCR-SSP and PCR-SSO) were 100% concordant.
Collapse
Affiliation(s)
- Amanda Vansan Marangon
- Departamento de Ciências Básicas da Saúde, Laboratório de Imunogenética, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR 87020-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Braun K, Larcombe L, Orr P, Nickerson P, Wolfe J, Sharma M. Killer immunoglobulin-like receptor (KIR) centromeric-AA haplotype is associated with ethnicity and tuberculosis disease in a Canadian First Nations cohort. PLoS One 2013; 8:e67842. [PMID: 23861818 PMCID: PMC3701593 DOI: 10.1371/journal.pone.0067842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/21/2013] [Indexed: 01/12/2023] Open
Abstract
Killer immunoglobulin-like receptors (KIR) on natural killer (NK) cells interact with other immune cells to monitor the immune system and combat infectious diseases, such as tuberculosis (TB). The balance of activating and inhibiting KIR interactions helps determine the NK cell response. In order to examine the enrichment or depletion of KIRs as well as to explore the association between TB status and inhibitory/stimulatory KIR haplotypes, we performed KIR genotyping on samples from 93 Canadian First Nations (Dene, Cree, and Ojibwa) individuals from Manitoba with active, latent, or no TB infection, and 75 uninfected Caucasian controls. There were significant differences in KIR genes between Caucasians and First Nations samples and also between the First Nations ethnocultural groups (Dene, Cree, and Ojibwa). When analyzing ethnicity and tuberculosis status in the study population, it appears that the KIR profile and centromeric haplotype are more predictive than the presence or absence of individual genes. Specifically, the decreased presence of haplotype B centromeric genes and increased presence of centromeric-AA haplotypes in First Nations may contribute to an inhibitory immune profile, explaining the high rates of TB in this population.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Centromere
- Cohort Studies
- Female
- Gene Frequency
- Genetic Predisposition to Disease
- Haplotypes
- Humans
- Indians, North American
- Inuit
- Killer Cells, Natural/immunology
- Killer Cells, Natural/microbiology
- Latent Tuberculosis/ethnology
- Latent Tuberculosis/genetics
- Latent Tuberculosis/immunology
- Latent Tuberculosis/microbiology
- Linkage Disequilibrium
- Male
- Manitoba/epidemiology
- Middle Aged
- Receptors, KIR/classification
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Telomere
- Tuberculosis, Pulmonary/ethnology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- White People
Collapse
Affiliation(s)
- Kali Braun
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Linda Larcombe
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pamela Orr
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joyce Wolfe
- National Reference Centre for Mycobacteriology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meenu Sharma
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Reference Centre for Mycobacteriology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
28
|
Augusto DG, Piovezan BZ, Tsuneto LT, Callegari-Jacques SM, Petzl-Erler ML. KIR gene content in amerindians indicates influence of demographic factors. PLoS One 2013; 8:e56755. [PMID: 23451080 PMCID: PMC3581531 DOI: 10.1371/journal.pone.0056755] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Although the KIR gene content polymorphism has been studied worldwide, only a few isolated or Amerindian populations have been analyzed. This extremely diverse gene family codifies receptors that are expressed mainly in NK cells and bind HLA class I molecules. KIR-HLA combinations have been associated to several diseases and population studies are important to comprehend their evolution and their role in immunity. Here we analyzed, by PCR-SSP (specific sequencing priming), 327 individuals from four isolated groups of two of the most important Brazilian Amerindian populations: Kaingang and Guarani. The pattern of KIR diversity among these and other ten Amerindian populations disclosed a wide range of variation for both KIR haplotypes and gene frequencies, indicating that demographic factors, such as bottleneck and founder effects, were the most important evolutionary factors in shaping the KIR polymorphism in these populations.
Collapse
Affiliation(s)
| | - Bruno Zagonel Piovezan
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Luiza Tamie Tsuneto
- Laboratório de Imunogenética, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
- * E-mail:
| |
Collapse
|
29
|
HAN YU, ZHAO LING, JIANG ZHENYU, MA NING. Analysis of the expression of KIR and HLA-Cw in a Northeast Han population. Exp Ther Med 2013; 5:300-304. [PMID: 23251287 PMCID: PMC3524289 DOI: 10.3892/etm.2012.763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to investigate the expression of the human leukocyte antigen (HLA)-Cw and killer cell immunoglobulin-like receptor (KIR) genes in a Jilin Han population and to provide a theoretical basis for further studies of their roles in disease. A total of 154 unpaid Jilin Han blood donors were selected and KIR and HLA-Cw genotyping was performed using PCR-SSP. Recognition of HLA-Cw and the corresponding activatory or inhibitory KIR receptor was distinguished according to the identification of HLA-Cw and KIR. In the present study, the expression frequency of HLA-C2(Lys80)+2DL1 was 27.27%, HLA-C1(Asn80)+2DL2/2DL3 was 68.83%, 2DS2+HLA-C1(Asn80) was 9.74% and 2DS1+HLA-C2(Lys80) was 9.74%. Of the individuals in the study, 72.08% expressed only KIR2DL1 without HLA-Cw, 21.43% expressed only KIR2DS1 without HLA-Cw(Lys)-KIR2DL1 and 2.60% expressed only KIR2DS2 without HLA-Cw(Asn)-KIR2DL2/L3. In conclusion, the expression of inhibitory HLA-Cw-KIR is higher than the expression of activating HLA-Cw-KIR and approximately 20% of the individuals separately expressed the activated HLA-Cw-KIR in the Jilin Han population in the present study.
Collapse
Affiliation(s)
- YU HAN
- Jilin Blood Center, Changchun, Jilin 130033
| | - LING ZHAO
- Department of Rheumatology, First Hospital, Jilin Unversity, Changchun 130021,
P.R. China
| | - ZHENYU JIANG
- Department of Rheumatology, First Hospital, Jilin Unversity, Changchun 130021,
P.R. China
- Correspondence to: Professor Zhenyu Jiang, Department of Rheumatology, First Hospital, Jilin University, No. 71 Xinmin Street, Changchun 130032, P.R. China, E-mail:
| | - NING MA
- Department of Rheumatology, First Hospital, Jilin Unversity, Changchun 130021,
P.R. China
| |
Collapse
|
30
|
Portevin D, Via LE, Eum S, Young D. Natural killer cells are recruited during pulmonary tuberculosis and their ex vivo responses to mycobacteria vary between healthy human donors in association with KIR haplotype. Cell Microbiol 2012; 14:1734-44. [PMID: 22788220 PMCID: PMC3503254 DOI: 10.1111/j.1462-5822.2012.01834.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 12/01/2022]
Abstract
Humans vary widely in their susceptibility to tuberculosis. While only a minority will progress to disease, the majority of healthy individuals exposed to Mycobacterium tuberculosis mount an immune response that can clear or contain the infection in a quiescent form. Using immunofluorescence on human clinical samples, we identified natural killer (NK) cells infiltrating granulomatous pulmonary lesions during active disease. In order to compare the NK cell ability to react to free mycobacteria in the context of tuberculosis infection and Mycobacterium bovis BCG vaccination, NK cells were isolated from the peripheral blood of anonymous healthy human donors, and stimulated with M. tuberculosis H37Rv or M. bovis BCG. Extracellular M. tuberculosis and M. bovis BCG could equally trigger the release of IFNγ and TNFα from NK cells in the presence of IL-2. However, we found that this response varied 1000-fold between individuals (n = 52), with differences in KIR haplotype providing a significant criterion to distinguish between low and high responders. Our findings suggest that variations at the KIR locus and therefore of the NK cell repertoire may affect cytokine production in response to mycobacteria and we propose that this innate variability couldsustain different levels of susceptibility to M. tuberculosis infection.
Collapse
Affiliation(s)
- Damien Portevin
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK.
| | | | | | | |
Collapse
|
31
|
Tomescu C, Duh FM, Hoh R, Viviani A, Harvill K, Martin MP, Carrington M, Deeks SG, Montaner LJ. Impact of protective killer inhibitory receptor/human leukocyte antigen genotypes on natural killer cell and T-cell function in HIV-1-infected controllers. AIDS 2012; 26:1869-78. [PMID: 22874514 PMCID: PMC3810173 DOI: 10.1097/qad.0b013e32835861b0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Both protective T-cell genotypes and natural killer (NK) cell genotypes have been associated with delayed progression to AIDS and shown to be co-inherited in HIV-1-infected individuals who limit viral replication in absence of antiretroviral therapy ('controllers'). However, a comparative analysis of the genotype and function of the innate and adaptive immune compartments in HIV-1-infected controller individuals has been understudied to date. DESIGN Here, we simultaneously tested NK and T-cell function in controllers to investigate the mechanism(s) that might account for host immune control over viral replication. METHODS We measured CD8 T-cell responses against HIV-1 utilizing overlapping 15-mer peptides spanning the HIV-1 consensus clade B Gag protein and tested NK cell degranulation and cytokine secretion against tumor target cells following interferon-α (IFNα) stimulation. RESULTS Among a cohort of 37 controllers, the presence of protective major histocompatibility complex class I human leukocyte antigen (HLA) alleles (such as HLA-B*57) was not correlated with HIV-specific CD8 responses. In contrast, the inheritance of a protective killer inhibitory receptor KIR3DL1*h/*y receptor genotype along with the corresponding HLA-Bw4*80I ligand was associated with significantly heightened target cell-induced NK degranulation and cytokine secretion following IFNα stimulation (P = 0.0201, n = 13). Interestingly, we observed a significant inverse association between the IFNα stimulated NK response to K562 cells and the HIV-specific CD8 T-cell response to Gag among elite controllers (rho = -0.8321, P = 0.0010, n = 12). CONCLUSION Together, these results suggest that heightened NK responses can be evidenced independently of HIV-specific T-cell responses in HIV-1-infected elite controllers.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Fuh-Mei Duh
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - Rebecca Hoh
- The University of California, San Francisco, Positive Health AIDS Study, San Francisco, PA, 94110
| | - Anne Viviani
- The University of California, San Francisco, Positive Health AIDS Study, San Francisco, PA, 94110
| | - Kara Harvill
- The University of California, San Francisco, Positive Health AIDS Study, San Francisco, PA, 94110
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - Steven G. Deeks
- The University of California, San Francisco, Positive Health AIDS Study, San Francisco, PA, 94110
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| |
Collapse
|
32
|
Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S, Spuzic I. Investigation of NK cell function and their modulation in different malignancies. Immunol Res 2012; 52:139-56. [PMID: 22442005 DOI: 10.1007/s12026-012-8285-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NK cells have become a subject of investigation not only in the field of tumor immunology and infectious diseases, but also within all aspects of immunology, such as transplantation, autoimmunity, and hypersensitivity. Our early studies aside from investigating NK cell activity in experimental animals and humans included studies of perforin expression and modulation in this lymphocyte subset. As NK cell activity is modified by their environment, we showed clinical stage-dependent impairment of their activity and in vitro effect of different sera, Th1 cytokines, and their combination in breast cancer, Hodgkin's disease, and non-Hodgkin's lymphoma patients, especially with respect to metabolic and cell membrane changes of peripheral blood lymphocytes evaluated by spontaneous release of the enzyme lactate dehydrogenase (LDH) that led to the correction of the LDH enzyme release assay for natural cytotoxicity. By long-term immuno-monitoring of patients with malignancies, we also showed the kinetics of NK cell modulation during chemo-immunotherapy. In our more recent studies, we give data of NK function and novel families of NK cell receptor expression in healthy individuals that may be of help in NK cell profiling, by giving referent values of basic and cytokine-induced expression of some NK cell receptors either in evaluation of disease or in immuno-monitoring during cytokine therapy of patients with malignancies. Moreover, we give novel aspects of modulation of NK cell activity by cytokines approved for immunotherapy, IFN and IL-2, in melanoma and other malignancies with respect to alterations in new activating (NKG2D and CD161) and inhibitory (CD158a and CD158b) receptor characteristics and signaling molecules in CD16- and CD56-defined NK cells and their small immunoregulatory and large cytotoxic subsets in peripheral blood and lymph nodes, as NK cell-mediated killing of tumor cells depends on the balance between stimulatory and inhibitory signaling.
Collapse
Affiliation(s)
- Gordana Konjevic
- Laboratory for Experimental Immunology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yindom LM, Forbes R, Aka P, Janha O, Jeffries D, Jallow M, Conway DJ, Walther M. Killer-cell immunoglobulin-like receptors and malaria caused by Plasmodium falciparum in The Gambia. ACTA ACUST UNITED AC 2012; 79:104-13. [PMID: 22220719 PMCID: PMC3320664 DOI: 10.1111/j.1399-0039.2011.01818.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The relevance of innate immune responses to Plasmodium falciparum infection, in particular the central role of natural killer (NK) cell-derived interferon gamma (IFN-γ), is becoming increasingly recognised. Recently, it has been shown that IFN-γ production in response to P. falciparum antigens is in part regulated by killer-cell immunoglobulin-like receptor (KIR) genes, and a study from malaria-exposed Melanesians suggested an association between KIR genotypes and susceptibility to infection. This prompted us to determine and compare the frequencies of 15 KIR genes in Gambian children presenting with either severe malaria (n = 133) or uncomplicated malaria (n = 188) and in cord-blood population control samples (n = 314) collected from the same area. While no significant differences were observed between severe and uncomplicated cases, proportions of individuals with KIR2DS2+C1 and KIR2DL2+C1 were significantly higher among malaria cases overall than in population control samples. In an exploratory analysis, activating KIR genes KIR2DS2, KIR3DS1 and KIR2DS5 were slightly higher in children in disease subgroups associated with the highest mortality. In addition, our data suggest that homozygosity for KIR genotype A might be associated with different malaria outcomes including protection from infection and higher blood parasitaemia levels in those that do get infected. These findings are consistent with a probable role of KIR genes in determining susceptibility to malaria, and further studies are warranted in different populations.
Collapse
Affiliation(s)
- L-M Yindom
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Omosun YO, Blackstock AJ, Gatei W, Hightower A, van Eijk AM, Ayisi J, Otieno J, Lal RB, Steketee R, Nahlen B, ter Kuile FO, Slutsker L, Shi YP. Differential association of gene content polymorphisms of killer cell immunoglobulin-like receptors with placental malaria in HIV- and HIV+ mothers. PLoS One 2012; 7:e38617. [PMID: 22715396 PMCID: PMC3371008 DOI: 10.1371/journal.pone.0038617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/07/2012] [Indexed: 12/01/2022] Open
Abstract
Pregnant women have abundant natural killer (NK) cells in their placenta, and NK cell function is regulated by polymorphisms of killer cell immunoglobulin-like receptors (KIRs). Previous studies report different roles of NK cells in the immune responses to placental malaria (PM) and human immunodeficiency virus (HIV-1) infections. Given these references, the aim of this study was to determine the association between KIR gene content polymorphism and PM infection in pregnant women of known HIV-1 status. Sixteen genes in the KIR family were analyzed in 688 pregnant Kenyan women. Gene content polymorphisms were assessed in relation to PM in HIV-1 negative and HIV-1 positive women, respectively. Results showed that in HIV-1 negative women, the presence of the individual genes KIR2DL1 and KIR2DL3 increased the odds of having PM, and the KIR2DL2/KIR2DL2 homozygotes were associated with protection from PM. However, the reverse relationship was observed in HIV-1 positive women, where the presence of individual KIR2DL3 was associated with protection from PM, and KIR2DL2/KIR2DL2 homozygotes increased the odds for susceptibility to PM. Further analysis of the HIV-1 positive women stratified by CD4 counts showed that this reverse association between KIR genes and PM remained only in the individuals with high CD4 cell counts but not in those with low CD4 cell counts. Collectively, these results suggest that inhibitory KIR2DL2 and KIR2DL3, which are alleles of the same locus, play a role in the inverse effects on PM and PM/HIV co-infection and the effect of KIR genes on PM in HIV positive women is dependent on high CD4 cell counts. In addition, analysis of linkage disequilibrium (LD) of the PM relevant KIR genes showed strong LD in women without PM regardless of their HIV status while LD was broken in those with PM, indicating possible selection pressure by malaria infection on the KIR genes.
Collapse
Affiliation(s)
- Yusuf O. Omosun
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States of America
| | - Anna J. Blackstock
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Atlanta Research and Education Foundation, Atlanta, Georgia, United States of America
| | - Wangeci Gatei
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Allen Hightower
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anne Maria van Eijk
- Center for Vector Biology and Control Research, Kenyan Medical Research Institute, Kisumu, Kenya
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John Ayisi
- Center for Vector Biology and Control Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Juliana Otieno
- New Nyanza Provincial General Hospital, Ministry of Health, Kisumu, Kenya
| | - Renu B. Lal
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard Steketee
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard Nahlen
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Feiko O. ter Kuile
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ya Ping Shi
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ren G, Shao T, Zhuang Y, Hu H, Zhang X, Huang J, Liu Y, Liu D. Association of killer cell immunoglobulin-like receptor and human leukocyte antigen-C genotype with dry eye disease in a Chinese Han population. Genet Test Mol Biomarkers 2012; 16:910-4. [PMID: 22509813 DOI: 10.1089/gtmb.2011.0355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dry eye is one of the most prevalent eye diseases and dry eye disease (DED) is associated with ocular surface inflammation. The interaction between killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs) regulates the activation of natural killer (NK) cells and certain T cell subsets in response to inflammation. The objective of this study was to explore whether KIR gene and HLA-C allele polymorphisms were associated with DED in a Chinese Han population. Polymerase chain reaction with sequence-specific primers method was used to genotype KIR genes and HLA-C alleles in 106 DED patients and 220 healthy controls. Framework genes KIR2DL4, KIR3DL2, KIR3DL3, and KIR3DP1 were present in all individuals. There were no significant differences in the frequencies of inhibitory KIR genes between the two groups. However, the frequency of KIR2DS2 was significantly higher in severe DED patients than that in healthy controls (p=0.031, odds ratio [OR]=1.828, 95% confidence interval [CI]=1.05-3.17). Significantly different distributions of HLA-C allele groups were not observed in severe DED patients and controls. The frequency of the combination of HLA-C1 allele group with KIR2DS2 was significantly higher in severe DED patients compared with controls (p=0.013, OR=2.083, 95% CI=1.16-3.74). These data suggested that this genotype combination was associated with susceptibility to severe DED and that NK cells might have a role in the pathogenesis of DED. The results led to an interesting future research question of whether or not KIR and HLA-C genotypes were involved in the predisposition to or pathogenesis of DED.
Collapse
Affiliation(s)
- Guifang Ren
- Ophthalmology Department, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ndlovu BG, Danaviah S, Moodley E, Ghebremichael M, Bland R, Viljoen J, Newell ML, Ndung'u T, Carr WH. Use of dried blood spots for the determination of genetic variation of interleukin-10, killer immunoglobulin-like receptor and HLA class I genes. TISSUE ANTIGENS 2012; 79:114-22. [PMID: 22107032 PMCID: PMC3253194 DOI: 10.1111/j.1399-0039.2011.01807.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Optimal methods for using dried blood spots (DBSs) for population genetics-based studies have not been well established. Using DBS stored for 8 years from 21 pregnant South African women, we evaluated three methods of gDNA extraction with and without whole-genome amplification (WGA) to characterize immune-related genes: interleukin-10 (IL-10), killer immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I. We found that the QIAamp DNA mini kit yielded the highest gDNA quality (P< 0.05; Wilcoxon signed rank test) with sufficient yield for subsequent analyses. In contrast, we found that WGA was not reliable for sequence-specific primer polymerase chain reaction (SSP-PCR) analysis of KIR2DL1, KIR2DS1, KIR2DL5 and KIR2DL3 or high-resolution HLA genotyping using a sequence-based approach. We speculate that unequal template amplification by WGA underrepresents gene repertoires determined by sequence-based approaches.
Collapse
Affiliation(s)
- B G Ndlovu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Augusto DG, Zehnder-Alves L, Pincerati MR, Martin MP, Carrington M, Petzl-Erler ML. Diversity of the KIR gene cluster in an urban Brazilian population. Immunogenetics 2012; 64:143-52. [PMID: 21850526 PMCID: PMC3770263 DOI: 10.1007/s00251-011-0565-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
The activity of natural killer cells depends on the balance between activating and inhibitory signals coming from their receptors. Among these are the killer cell immunoglobulin-like receptors (KIR) that recognize specific HLA class I allotypes. Here we characterized KIR genetic diversity and their HLA ligands in the population of Curitiba, Paraná State (n = 164), and compared it with other worldwide populations. The distribution of 2DL4 alleles was also analyzed. The Curitiba population did not differ significantly from European and Euro-descendant populations, but as an admixed population showed higher genetic diversity. We found 27 KIR profiles, many of them uncommon in European populations, in agreement with the elevated historically recent gene flow in the study population. The frequencies of KIR genes and their respective HLA ligands were distributed independently and none of the analyzed individuals lacked functional KIR-HLA ligand combinations. KIR gene frequencies of 33 worldwide populations were consistent with geographic and ethnic distribution, in agreement with demography being the major factor shaping the observed gene content diversity of the KIR locus.
Collapse
Affiliation(s)
- D G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Caixa Postal 19071, Curitiba 81531-980, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Hong HA, Loubser AS, de Assis Rosa D, Naranbhai V, Carr W, Paximadis M, Lewis DA, Tiemessen CT, Gray CM. Killer-cell immunoglobulin-like receptor genotyping and HLA killer-cell immunoglobulin-like receptor-ligand identification by real-time polymerase chain reaction. ACTA ACUST UNITED AC 2012; 78:185-94. [PMID: 21810083 DOI: 10.1111/j.1399-0039.2011.01749.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effector function of natural killer (NK) cells is modulated by surface expression of a range of killer-cell immunoglobulin-like receptors (KIRs) that interact with human leukocyte antigen (HLA) class I ligands. We describe the use of real-time polymerase chain reaction (PCR) assays that allow easy and quick detection of 16 KIR genes and the presence/absence of KIR-ligands based on allelic discrimination at codon 80 in the HLA-A/B Bw4 and HLA-C C1/C2 genes. These methods overcome the tedious and expensive nature of conventional KIR genotyping and HLA class I typing using sequence-specific primer (SSP) PCR, sequence-specific oligonucleotide (SSO) hybridization or sequence-based typing (SBT). Using these two cost-effective assays, we measured the frequencies of KIRs, KIR-ligands and KIR/KIR-ligand pairs in a cohort of Black women recruited in South Africa.
Collapse
Affiliation(s)
- H A Hong
- AIDS Virus Research Unit, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Can immune-related genotypes illuminate the immunopathogenesis of cytomegalovirus disease in human immunodeficiency virus-infected patients? Hum Immunol 2011; 73:168-74. [PMID: 22154842 DOI: 10.1016/j.humimm.2011.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/18/2011] [Accepted: 11/07/2011] [Indexed: 11/21/2022]
Abstract
Most human immunodeficiency virus (HIV) patients are seropositive for cytomegalovirus (CMV) but a smaller proportion experience end-organ disease. This observation may reflect variations in genes affecting inflammatory and natural killer cell responses. DNA samples were collected from 240 HIV-infected patients followed at the University Hospitals/Case Medical Center (Cleveland, OH) between 1993 and 2008. Seventy-eight patients (African Americans = 41, Caucasians = 37) experienced CMV disease. Genotypes were determined using allele-specific fluorescent probes or multiplex polymerase chain reaction sequence-specific primers. IL12B3'UTR*(1) and SLC11A1 D543N*(1,2) were associated with CMV disease in African American patients (p = 0.04 and p = 0.02, respectively). IL10-1082*(1,2) and LILRB1 I142T*(1) were associated with CMV disease in Caucasians (p = 0.02 and p = 0.07, respectively). DARC T-46C*(1) and CD14 C-159T*(2) were associated with low nadir CD4(+) T cell counts in African American patients (p = 0.002 and p = 0.01, respectively). Caucasian patients carrying TNFA-308*2, TNFA-1031*(2), IL2-330*(1), CCL2-2518*(2), or LILRB1 I142T*(1) had significantly lower nadir CD4(+) T cells in a bootstrapped multivariable model (p = 0.006-0.02). In general, polymorphisms associated with CMV disease and CD4(+) T cell counts were distinct in Caucasian and African American patients in the United States. The LILRB1 I142T polymorphism was associated with both CMV disease and low nadir CD4(+) T cell counts in Caucasians, but the clearest determinant of low nadir CD4(+) T cell count in African American patients was DARC T-46C.
Collapse
|
40
|
Zhuang YL, Zhu CF, Zhang Y, Song YH, Wang DJ, Nie XM, Liu Y, Ren GJ. Association of KIR2DS4 and its variant KIR1D with syphilis in a Chinese Han population. Int J Immunogenet 2011; 39:114-8. [PMID: 22128817 DOI: 10.1111/j.1744-313x.2011.01063.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y-L Zhuang
- Blood Center of Shandong Province, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pelak K, Need AC, Fellay J, Shianna KV, Feng S, Urban TJ, Ge D, De Luca A, Martinez-Picado J, Wolinsky SM, Martinson JJ, Jamieson BD, Bream JH, Martin MP, Borrow P, Letvin NL, McMichael AJ, Haynes BF, Telenti A, Carrington M, Goldstein DB, Alter G. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol 2011; 9:e1001208. [PMID: 22140359 PMCID: PMC3226550 DOI: 10.1371/journal.pbio.1001208] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.
Collapse
Affiliation(s)
- Kimberly Pelak
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Anna C. Need
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jacques Fellay
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kevin V. Shianna
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheng Feng
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Thomas J. Urban
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dongliang Ge
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Andrea De Luca
- Institute of Clinical Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
- Division of Infectious Diseases, Siena University Hospital, Siena, Italy
| | - Javier Martinez-Picado
- irsiCaixa Foundation and Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jeremy J. Martinson
- Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Beth D. Jamieson
- Department of Medicine, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford and Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Norman L. Letvin
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. McMichael
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center; and University of Lausanne, Lausanne, Switzerland
| | - Mary Carrington
- Department of Medicine, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - David B. Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | |
Collapse
|
42
|
Ugolotti E, Vanni I, Raso A, Benzi F, Malnati M, Biassoni R. Human leukocyte antigen–B (-Bw6/-Bw4 I80, T80) and human leukocyte antigen–C (-C1/-C2) subgrouping using pyrosequence analysis. Hum Immunol 2011; 72:859-68. [DOI: 10.1016/j.humimm.2011.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/03/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|
43
|
Abalos AT, Eggers R, Hogan M, Nielson CM, Giuliano AR, Harris RB, Thompson PA. Design and validation of a multiplex specific primer-directed polymerase chain reaction assay for killer-cell immunoglobulin-like receptor genetic profiling. ACTA ACUST UNITED AC 2011; 77:143-8. [PMID: 21214526 DOI: 10.1111/j.1399-0039.2010.01588.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current methodologies for the analysis of the killer-cell immunoglobulin-like receptor (KIR) locus utilize specific primer-directed polymerase chain reaction (SSP-PCR), which require a wide range of DNA input, multiple reaction conditions, and up to 16 individual reactions. We have developed and validated a multiplex SSP-PCR method for the genetic analysis of the KIR locus. Design and optimization of four multiplex groups targeting 14 genes and their alleles on the KIR locus has been completed. Each multiplex group contains PCR products that differ in size by a minimum of 15 bp to allow sufficient fragment length resolution for size discrimination by gel electrophoresis. This assay allows for efficient genotyping of the KIR locus while requiring a minimum amount of DNA input, utilizing the simplicity of SSP-PCR.
Collapse
Affiliation(s)
- A T Abalos
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol 2011; 85:5415-22. [PMID: 21430058 DOI: 10.1128/jvi.00238-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations within MHC class I-restricted epitopes have been studied in relation to T cell-mediated immune escape, but their impact on NK cells via interaction with killer Ig-like receptors (KIRs) during early HIV infection is poorly understood. In two patients acutely infected with HIV-1, we observed the appearance of a mutation within the B*57-restricted TW10 epitope (G9E) that did not facilitate strong escape from T cell recognition. The NK cell receptor KIR3DL1, carried by these patients, is known to recognize HLA-B*5703 and is associated with good control of HIV-1. Therefore, we tested whether the G9E mutation influenced the binding of HLA-B*5703 to soluble KIR3DL1 protein by surface plasmon resonance, and while the wild-type sequence and a second (T3N) variant were recognized, the G9E variant abrogated KIR3DL1 binding. We extended the study to determine the peptide sensitivity of KIR3DL1 interaction with epitopes carrying mutations near the C termini of TW10 and a second HLA-B*57-restricted epitope, IW9. Several amino acid changes interfered with KIR3DL1 binding, the most extreme of which included the G9E mutation commonly selected by HLA-B*57. Our results imply that during HIV-1 infection, some early-emerging variants could affect KIR-HLA interaction, with possible implications for immune recognition.
Collapse
|
45
|
Martin MP, Borecki IB, Zhang Z, Nguyen L, Ma D, Gao X, Qi Y, Carrington M, Rader JS. HLA-Cw group 1 ligands for KIR increase susceptibility to invasive cervical cancer. Immunogenetics 2010; 62:761-5. [PMID: 20857097 PMCID: PMC3043355 DOI: 10.1007/s00251-010-0477-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023]
Abstract
Inherited genetic polymorphisms within immune response genes have been shown to associate with risk of invasive cervical cancer (ICC) and its immediate precursor, cervical intraepithelial neoplasia grade 3. Here, we used the transmission/disequilibrium test to detect disease-liability alleles and investigate haplotype transmission of KIR and HLA class I polymorphisms in a large family-based population of women with cervical cancer and their biological parents (359 trios). The effect of distinct human papillomavirus types was also explored. HLA-Cw group 1 (HLA-Cw alleles with asparagine at position 80), which serves as ligand for certain killer immunoglobulin-like receptors (KIR), was significantly overtransmitted in women with ICC (P = 0.04), and particularly in the subgroup of women infected with high risk HPV16 or 18 subtypes (P = 0.008). These data support the involvement of the HLA-C locus in modulating the risk of cervical neoplasia perhaps through its function as ligands for KIR, but functional studies are essential to confirm this hypothesis.
Collapse
Affiliation(s)
- Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702, USA
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhengyan Zhang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loan Nguyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Duanduan Ma
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702, USA
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD 21702, USA, Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02114, USA
| | - Janet S. Rader
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Tomescu C, Duh FM, Lanier MA, Kapalko A, Mounzer KC, Martin MP, Carrington M, Metzger DS, Montaner LJ. Increased plasmacytoid dendritic cell maturation and natural killer cell activation in HIV-1 exposed, uninfected intravenous drug users. AIDS 2010; 24:2151-60. [PMID: 20647906 PMCID: PMC3253656 DOI: 10.1097/qad.0b013e32833dfc20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Increased natural killer (NK) activation has been associated with resistance to HIV-1 infection in several cohorts of HIV-1 exposed, uninfected individuals. Inheritance of protective NK receptor alleles (KIR3DS1 and KIR3DL1) has also been observed in a subset of HIV-1 exposed, uninfected individuals. However, the exact mechanism contributing to NK activation in HIV-1 exposed, uninfected intravenous drug users (EU-IDU) remains to be elucidated. OBJECTIVE We investigated the role of both host genotype and pathogen-induced dendritic cell modulation of NK activation during high-risk activity in a cohort of 15 EU-IDU individuals and 15 control, uninfected donors from Philadelphia. DESIGN We assessed the activation status of NK cells and dendritic cells by flow cytometry and utilized functional assays of NK-DC cross-talk to characterize the innate immune compartment in EU-IDU individuals. RESULTS As previously reported, NK cell activation (CD69) and/or degranulation (CD107a) was significantly increased in EU-IDU individuals compared with control uninfected donors (P = 0.0056, n = 13). Genotypic analysis indicated that the frequency of protective KIR (KIR3DS1) and HLA-Bw4*80I ligands was not enriched in our cohort of EU-IDU individuals. Rather, plasmacytoid dendritic cells (PDC) from EU-IDU exhibited heightened maturation (CD83) compared with control uninfected donors (P = 0.0011, n = 12). When stimulated in vitro, both PDCs and NK cells from EU-IDU individuals maintained strong effector cell function and did not exhibit signs of exhaustion. CONCLUSION Increased maturation of PDCs is associated with heightened NK activation in EU-IDU individuals suggesting that both members of the innate compartment may contribute to resistance from HIV-1 infection in EU-IDU.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Fuh-Mei Duh
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - Michael A. Lanier
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Angela Kapalko
- Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, PA, 19017
| | - Karam C. Mounzer
- Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, PA, 19017
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, MA 02114
| | - David S. Metzger
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| |
Collapse
|
47
|
Abstract
Increasing evidence points to a role for killer immunoglobulin-like receptors (KIRs) in the development of autoimmune diseases. In particular, a positive association of KIR3DS1 (activating receptor) and a negative association of KIR3DL1 (inhibitory receptor) alleles with ankylosing spondylitis (AS) have been reported by several groups. However, none of the studies analyzed these associations in the context of functionality of polymorphic KIR3DL1. To better understand how the KIR3DL1/3DS1 genes determine susceptibility to AS, we analyzed the frequencies of alleles and genotypes encoding functional (KIR3DL1*F) and non-functional (KIR3DL1*004) receptors. We genotyped 83 AS patients and 107 human leukocyte antigen (HLA)-B27-positive healthy controls from the Russian Caucasian population using a two-stage sequence-specific primer PCR, which distinguishes KIR3DS1, KIR3DL1*F and KIR3DL1*004 alleles. For the patients carrying two functional KIR3DL1 alleles, those alleles were additionally genotyped to identify KIR3DL1*005 and KIR3DL1*007 alleles, which are functional but are expressed at low levels. KIR3DL1 was negatively associated with AS at the expense of KIR3DL1*F but not of KIR3DL1*004. This finding indicates that the inhibitory KIR3DL1 receptor protects against the development of AS and is not simply a passive counterpart of the segregating KIR3DS1 allele encoding the activating receptor. However, analysis of genotype frequencies indicates that the presence of KIR3DS1 is a more important factor for AS susceptibility than the absence of KIR3DL1*F. The activation of either natural killer (NK) or T cells via the KIR3DS1 receptor can be one of the critical events in AS development, while the presence of the functional KIR3DL1 receptor has a protective effect. Nevertheless, even individuals with a genotype that carried two inhibitory KIR3DL1 alleles expressed at high levels could develop AS.
Collapse
|
48
|
Yindom LM, Leligdowicz A, Martin MP, Gao X, Qi Y, Zaman SMA, van der Loeff MS, van Tienen C, Jaye A, Aveika A, Worwui A, Diatta M, Vincent T, Whittle HC, Rowland-Jones SL, Walton R, Carrington M. Influence of HLA class I and HLA-KIR compound genotypes on HIV-2 infection and markers of disease progression in a Manjako community in West Africa. J Virol 2010; 84:8202-8. [PMID: 20519398 PMCID: PMC2916551 DOI: 10.1128/jvi.00116-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/23/2010] [Indexed: 11/20/2022] Open
Abstract
Overall, the time to AIDS after HIV-2 infection is longer than with HIV-1, and many individuals infected with HIV-2 virus remain healthy throughout their lives. Multiple HLA and KIR gene products have been implicated in the control of HIV-1, but the effect of variation at these loci on HIV-2 disease is unknown. We show here for the first time that HLA-B*1503 is associated significantly with poor prognosis after HIV-2 infection and that HLA-B*0801 is associated with susceptibility to infection. Interestingly, previous data indicate that HLA-B*1503 is associated with low viral loads in HIV-1 clade B infection but has no significant effect on viral load in clade C infection. In general, alleles strongly associated with HIV-1 disease showed no effect in HIV-2 disease. These data emphasize the unique nature of the effects of HLA and HLA/KIR combinations on HIV-2 immune responses relative to HIV-1, which could be related to their distinct clinical course.
Collapse
Affiliation(s)
- Louis-Marie Yindom
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Aleksandra Leligdowicz
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Maureen P. Martin
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Xiaojiang Gao
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Ying Qi
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Syed M. A. Zaman
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Maarten Schim van der Loeff
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Carla van Tienen
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Assan Jaye
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Akum Aveika
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Archibald Worwui
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Mathurin Diatta
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Tim Vincent
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Hilton C. Whittle
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Sarah L. Rowland-Jones
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Robert Walton
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| | - Mary Carrington
- Medical Research Council (UK), The Gambia, MRC Human Immunology Unit, Oxford, United Kingdom, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, Centre for Infections, Health Protection Agency, Colindale, London NW9 5EQ, United Kingdom, GGD Amsterdam and Centre for Infection and Immunity Amsterdam, CE 1000 Amsterdam, Netherlands, Centre for Health Sciences, Barts and the London Medical School, London E1 2AT, United Kingdom, Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02114
| |
Collapse
|
49
|
Conesa A, Fernández-Mestre M, Padrón D, Toro F, Silva N, Tassinari P, Blanca I, Martin M, Carrington M, Layrisse Z. Distribution of killer cell immunoglobulin-like receptor genes in the mestizo population from Venezuela. TISSUE ANTIGENS 2010; 75:724-9. [PMID: 20210918 PMCID: PMC7366394 DOI: 10.1111/j.1399-0039.2010.01446.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study represents the first report on the distribution of KIR genes in 205 unrelated healthy mestizo Venezuelan individuals. Genotyping analysis showed that all KIR genes are present in this population. Frequency of inhibitory killer cell immunoglobulin-like receptors (KIRs) exceeded 0.69, except for KIR2DL2 (0.29) and 2DL5 (0.37). Activating KIRs showed low frequencies (0.11-0.29), except for KIR2DS4 (0.68). Forty-five different KIR genotypes were identified, with a predominance of three genotypes found in 50.7% of the population of which 25.9% were individuals homozygous for haplotype A. The frequencies of KIR genes reflect the ethnic admixture existing in the mestizo Venezuelan population.
Collapse
Affiliation(s)
- A. Conesa
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, FOCIS Center of Excellence, Caracas, Venezuela
| | - M. Fernández-Mestre
- Centro de Medicina Experimental ’Miguel Layrisse’, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - D. Padrón
- Centro de Medicina Experimental ’Miguel Layrisse’, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - F. Toro
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, FOCIS Center of Excellence, Caracas, Venezuela
| | - N. Silva
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, FOCIS Center of Excellence, Caracas, Venezuela
| | - P. Tassinari
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, FOCIS Center of Excellence, Caracas, Venezuela
| | - I. Blanca
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, FOCIS Center of Excellence, Caracas, Venezuela
| | - M.P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - M. Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Z. Layrisse
- Centro de Medicina Experimental ’Miguel Layrisse’, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
50
|
Wong AH, Williams K, Reddy S, Wilson D, Giddy J, Alter G, Ghebremichael M, Carrington MN, Ndung'u T, Walker BD, Altfeld M, Carr WH. Alterations in natural killer cell receptor profiles during HIV type 1 disease progression among chronically infected South African adults. AIDS Res Hum Retroviruses 2010; 26:459-69. [PMID: 20380481 DOI: 10.1089/aid.2009.0176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that innate immune responses by natural killer (NK) cells play a significant role in restricting human immunodeficiency virus type-1 (HIV-1) pathogenesis. Our aim was to characterize changes in NK cells associated with HIV-1 clade C disease progression. Here we used multiparametric flow cytometry (LSRII) to quantify phenotype and function of NK cells in a cross-sectional analysis of cryopreserved blood samples from a cohort of 41 chronically HIV-1-infected, treatment-naive adult South Africans. These individuals ranged in disease severity from early (CD4 count >500) to advanced HIV-1 disease (CD4 count <50). We found that the frequency of NK cells expressing KIR2DL1, an inhibitory receptor, and/or KIR2DS1, an activating receptor, tended to decrease with increasing HIV-1 viral load. We also discovered a significant increase (p < 0.05) in overall NK cell degranulation with disease progression. We found that acutely activated NK cells (CD69(pos)) were deficient in NKp46 expression ex vivo. In conclusion, we observed that with viremia and advanced HIV-1 disease, activated NK cells lack NKp46 expression, and KIR2DS1(pos) and/ or KIR2DL1(pos) NK cells are reduced in frequency. These findings suggest that modulation of receptor expression on NK cells may play a role in HIV-1 pathogenesis, and provide new insights on immunological changes in advanced HIV-1 disease.
Collapse
Affiliation(s)
- Ambrose H.W. Wong
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Katie Williams
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
| | - Sharon Reddy
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Douglas Wilson
- Edendale Hospital, Department of Medicine, Edendale, South Africa
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
| | | | - Mary N. Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| | - William H. Carr
- Ragon Institute of MGH, MIT, and Harvard (formerly Partners AIDS Research Center), Massachusetts General Hospital, Charleston, Massachusetts
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa
| |
Collapse
|