1
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Lake RJ, Haynes MK, Dreval K, Bilkis R, Sklar LA, Fan HY. A Novel Flow Cytometric Assay to Identify Inhibitors of RBPJ-DNA Interactions. SLAS DISCOVERY 2020; 25:895-905. [PMID: 32567455 DOI: 10.1177/2472555220932552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Notch signaling is often involved in cancer cell initiation and proliferation. Aberrant Notch activation underlies more than 50% of T-cell acute lymphoblastic leukemia (T-ALL); accordingly, chemicals disrupting Notch signaling are of potential to treat Notch-dependent cancer. Here, we developed a flow cytometry-based high-throughput assay to identify compounds that disrupt the interactions of DNA and RBPJ, the major downstream effector of Notch signaling. From 1492 compounds, we identified 18 compounds that disrupt RBPJ-DNA interactions in a dose-dependent manner. Cell-based assays further revealed that auranofin downregulates Notch-dependent transcription and decreases RBPJ-chromatin interactions in cells. Most strikingly, T-ALL cells that depend on Notch signaling for proliferation are more sensitive to auranofin treatment, supporting the notion that auranofin downregulates Notch signaling by disrupting RBPJ-DNA interaction. These results validate the feasibility of our assay scheme to screen for additional Notch inhibitors and provide a rationale to further test the use of auranofin in treating Notch-dependent cancer.
Collapse
Affiliation(s)
- Robert J Lake
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Mark K Haynes
- Department of Pathology, Program in Cancer Therapeutics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Center for Molecular Discovery, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Kostiantyn Dreval
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Rabeya Bilkis
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Program in Cancer Therapeutics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.,Center for Molecular Discovery, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Hua-Ying Fan
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cellular and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| |
Collapse
|
3
|
A Selective Ligand for Estrogen Receptor Proteins Discriminates Rapid and Genomic Signaling. Cell Chem Biol 2019; 26:1692-1702.e5. [PMID: 31706983 DOI: 10.1016/j.chembiol.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/05/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
Abstract
Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERβ), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.
Collapse
|
4
|
Very rapid flow cytometric assessment of antimicrobial susceptibility during the apparent lag phase of microbial (re)growth. Microbiology (Reading) 2019; 165:439-454. [DOI: 10.1099/mic.0.000777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Liu Z, O’Rourke J. Expediting Antibody Discovery with a Cell and Bead Multiplexed Competition Assay. SLAS DISCOVERY 2018; 23:667-675. [DOI: 10.1177/2472555218776308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With advances in molecular engineering and humanization, monoclonal antibodies are one of the fastest-growing classes of biopharmaceuticals. During antibody discovery, antibody from hybridoma or primary B-cell supernatants is screened for the desired binding characteristics, and secondary screens measure antibody function and concentration, identify immunoglobulin G (IgG) isotype, and assess cell health. In order to expedite the antibody discovery process, we developed a high-throughput, multiplexed cell and bead-based competition assay that identifies and quantitates mouse IgG isotypes and assesses cell health. No differences in assay performance were observed between single and multiplex formats. The linear range of the assay was from 0.5 to 50 µg/mL, and washing was not required, decreasing assay time and variability. Slight modifications to the protocol allowed quantification of dilute antibody supernatants (0.1–5 µg/mL). Using hybridoma cultures, we showed that cell viability measurements in the assay did not interfere with the bead-based IgG measurements. The assay described here is a simple mix-and-read, no-dilution screen that can reduce the time to antibody cloning and production. The high-content data can differentiate monoclonal and polyclonal wells, determine IgG quantity for downstream functional assays, provide isotype information, and monitor cell proliferation and viability.
Collapse
Affiliation(s)
- Zhaoping Liu
- Intellicyt, A Sartorius Brand, Albuquerque, NM, USA
| | | |
Collapse
|
6
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
7
|
Erasmus MF, Matlawska-Wasowska K, Kinjyo I, Mahajan A, Winter SS, Xu L, Horowitz M, Lidke DS, Wilson BS. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci Signal 2016; 9:ra116. [PMID: 27899526 DOI: 10.1126/scisignal.aaf3949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pre-B cell receptor (pre-BCR) is an immature form of the BCR critical for early B lymphocyte development. It is composed of the membrane-bound immunoglobulin (Ig) heavy chain, surrogate light chain components, and the signaling subunits Igα and Igβ. We developed monovalent quantum dot (QD)-labeled probes specific for Igβ to study the behavior of pre-BCRs engaged in autonomous, ligand-independent signaling in live B cells. Single-particle tracking revealed that QD-labeled pre-BCRs engaged in transient, but frequent, homotypic interactions. Receptor motion was correlated at short separation distances, consistent with the formation of dimers and higher-order oligomers. Repeated encounters between diffusing pre-BCRs appeared to reflect transient co-confinement in plasma membrane domains. In human B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, we showed that frequent, short-lived, homotypic pre-BCR interactions stimulated survival signals, including expression of BCL6, which encodes a transcriptional repressor. These survival signals were blocked by inhibitory monovalent antigen-binding antibody fragments (Fabs) specific for the surrogate light chain components of the pre-BCR or by inhibitors of the tyrosine kinases Lyn and Syk. For comparison, we evaluated pre-BCR aggregation mediated by dimeric galectin-1, which has binding sites for carbohydrate and for the surrogate light chain λ5 component. Galectin-1 binding resulted in the formation of large, highly immobile pre-BCR aggregates, which was partially relieved by the addition of lactose to prevent the cross-linking of galectin-BCR complexes to other glycosylated membrane components. Analysis of the pre-BCR and its signaling partners suggested that they could be potential targets for combination therapy in BCP-ALL.
Collapse
Affiliation(s)
- M Frank Erasmus
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Ichiko Kinjyo
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Avanika Mahajan
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Stuart S Winter
- UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Li Xu
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Michael Horowitz
- Sea Lane Biotechnologies, 2450 Bayshore Parkway, Mountain View, CA 94043, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA. .,UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Schepetkin IA, Khlebnikov AI, Giovannoni MP, Kirpotina LN, Cilibrizzi A, Quinn MT. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition. Curr Med Chem 2015; 21:1478-504. [PMID: 24350845 DOI: 10.2174/0929867321666131218095521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 10/14/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023]
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. These receptors play an important role in the regulation of inflammatory reactions and sensing cellular damage. They have also been implicated in the pathogenesis of various diseases, including neurodegenerative diseases, cataract formation, and atherogenesis. Thus, FPR ligands, both agonists and antagonists, may represent novel therapeutics for modulating host defense and innate immunity. A variety of molecules have been identified as receptor subtype-selective and mixed FPR agonists with potential therapeutic value during last decade. This review describes our efforts along with recent advances in the identification, optimization, biological evaluation, and structure-activity relationship (SAR) analysis of small molecule non-peptide FPR agonists and antagonists, including chiral molecules. Questions regarding the interaction at the molecular level of benzimidazoles, pyrazolones, pyridazin-3(2H)-ones, N-phenylureas and other derivatives with FPR1 and FPR2 are discussed. Application of computational models for virtual screening and design of FPR ligands is also considered.
Collapse
Affiliation(s)
| | | | | | | | | | - M T Quinn
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
9
|
Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, Sklar LA, Horswill AR, Hall PR, Gresham HD. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog 2014; 10:e1004174. [PMID: 24945495 PMCID: PMC4055767 DOI: 10.1371/journal.ppat.1004174] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022] Open
Abstract
Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureusvirulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development. New approaches are needed to lessen the burden of antibiotic resistant bacterial infections. One strategy is to develop therapies that target virulence which rely on host defense elements to clear the bacteria rather than direct antimicrobial killing. Quorum sensing is a bacterial signaling mechanism that often regulates virulence in medically relevant bacterial pathogens. Therefore, drugs that inhibit quorum sensing can promote host defense by rendering the pathogenic bacteria avirulent and/or less fit for survival within the host. Our work addressed this strategy in the pathogen Staphylococcus aureus which is the major cause of acute bacterial skin and soft tissue infections. We conducted a high throughput screen to identify compounds that could inhibit signaling by the quorum sensing operon, agr. We found a compound that we termed savirin (S. aureusvirulence inhibitor) that could inhibit signaling by this operon. The drug helped the innate immune system in animals to clear bacteria that express this operon without affecting clearance of bacteria that do not have this operon. We addressed the mechanism of action of this compound and whether resistance or tolerance to this compound would likely develop. Our data indicate for the first time that host defense against S. aureus skin infections can be enhanced by chemical inhibition of agr-mediated quorum sensing.
Collapse
Affiliation(s)
- Erin K. Sully
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Natalia Malachowa
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley O. Elmore
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Susan M. Alexander
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
| | - Jon K. Femling
- Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Brian M. Gray
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ambrose L. Cheung
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Bruce S. Edwards
- Center for Molecular Discovery and Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Larry A. Sklar
- Center for Molecular Discovery and Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Pamela R. Hall
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Hattie D. Gresham
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| |
Collapse
|
10
|
Smurthwaite CA, Hilton BJ, O'Hanlon R, Stolp ZD, Hancock BM, Abbadessa D, Stotland A, Sklar LA, Wolkowicz R. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry. Cytometry A 2013; 85:105-13. [DOI: 10.1002/cyto.a.22406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 01/19/2023]
Affiliation(s)
| | - Brett J. Hilton
- Department of Biology; San Diego State University; San Diego California 92182
| | - Ryan O'Hanlon
- Department of Biology; San Diego State University; San Diego California 92182
| | - Zachary D. Stolp
- Department of Biology; San Diego State University; San Diego California 92182
| | - Bryan M. Hancock
- Department of Biology; San Diego State University; San Diego California 92182
| | - Darin Abbadessa
- Department of Biology; San Diego State University; San Diego California 92182
| | - Aleksandr Stotland
- Department of Biology; San Diego State University; San Diego California 92182
| | - Larry A. Sklar
- UNM Center for Molecular Discovery; University of New Mexico School of Medicine; Albuquerque New Mexico 87131
- Department of Pathology; University of New Mexico School of Medicine; Albuquerque New Mexico 87131
| | - Roland Wolkowicz
- Department of Biology; San Diego State University; San Diego California 92182
| |
Collapse
|
11
|
Abstract
The use of fluidics is implicit in a technology named "flow cytometry," which flows a cell or particle through a sensing volume to obtain serial analysis of particles on a one by one basis. This flow of particles enables flow cytometry to collect information on multiple particle populations, giving it a distinct advantage over bulk analysis approaches. Moreover, flow cytometers can analyze thousands of particles per second in a single flowing stream. Additionally, use of volumetric sample delivery makes it possible for flow cytometers to accurately count cells and particles. Furthermore, the analysis results can be coupled with a fluidic diversion mechanism to sort and collect particles based on desired properties. Finally, when high-throughput sampling technologies are employed to rapidly change the input of the sample stream, a flow cytometer can become an integral tool for high-throughput screening. The above properties have made flow cytometry useful in a wide range of biomedical applications. In this unit we will present an overview of fluidic systems that make flow cytometry possible. This will introduce historical approaches, explanations of the commonly implemented current fluidics, and brief discussions of potential future fluidics where appropriate.
Collapse
Affiliation(s)
| | - Steven W Graves
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
12
|
High-throughput screen using a single-cell tyrosine phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase CD45. Proc Natl Acad Sci U S A 2012; 109:13972-7. [PMID: 22891353 DOI: 10.1073/pnas.1205028109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many cellular signaling events are regulated by tyrosine phosphorylation and mediated by the opposing actions of protein tyrosine kinases and phosphatases. Protein tyrosine phosphatases are emerging as drug targets, but poor cell permeability of inhibitors has limited the development of drugs targeting these enzymes [Tautz L, et al. (2006) Expert Opin Ther Targets 10:157-177]. Here we developed a method to monitor tyrosine phosphatase activity at the single-cell level and applied it to the identification of cell-permeable inhibitors. The method takes advantage of the fluorogenic properties of phosphorylated coumaryl amino propionic acid (pCAP), an analog of phosphotyrosine, which can be incorporated into peptides. Once delivered into cells, pCAP peptides were dephosphorylated by protein tyrosine phosphatases, and the resulting cell fluorescence could be monitored by flow cytometry and high-content imaging. The robustness and sensitivity of the assay was validated using peptides preferentially dephosphorylated by CD45 and T-cell tyrosine phosphatase and available inhibitors of these two enzymes. The assay was applied to high-throughput screening for inhibitors of CD45, an important target for autoimmunity and infectious diseases [Hermiston ML, et al. (2003) Annu Rev Immunol 21:107-137]. We identified four CD45 inhibitors that showed activity in T cells and macrophages. These results indicate that our assay can be applied to primary screening for inhibitors of CD45 and of other protein tyrosine phosphatases to increase the yield of biologically active inhibitors.
Collapse
|
13
|
Planelles V, Wolschendorf F, Kutsch O. Facts and fiction: cellular models for high throughput screening for HIV-1 reactivating drugs. Curr HIV Res 2012; 9:568-78. [PMID: 22211661 DOI: 10.2174/157016211798998826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 01/18/2023]
Abstract
A curative therapy for HIV-1 infection will have to include measures to eliminate the reservoir of latently HIV- 1 infected cells that allow the virus to persist despite otherwise successful therapy. To date, all efforts to deplete the latent reservoir by triggering viral reactivation have used preexisting drugs that are believed to potentially target molecular mechanisms controlling HIV-1 infection. These therapeutic attempts were not clinically successful. Only in the last few years have cellular models of latent HIV-1 infection suitable for high throughput screening been developed and concerted drug discovery efforts were initiated to discover new HIV-1 reactivating drugs. We here provide a historic overview about the development of cell models with latent HIV-1 infection that lend themselves to drug discovery. We provide an overview from the first reported latently infected cell lines to current in vitro models of latent HIV-1 infection in primary T cells, and compare their potential to be used in future large-scale drug screening efforts.
Collapse
|
14
|
Edwards BS, Zhu J, Chen J, Carter MB, Thal DM, Tesmer JJG, Graves SW, Sklar LA. Cluster cytometry for high-capacity bioanalysis. Cytometry A 2012; 81:419-29. [PMID: 22438314 PMCID: PMC3331957 DOI: 10.1002/cyto.a.22039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/07/2012] [Accepted: 02/19/2012] [Indexed: 12/21/2022]
Abstract
Flow cytometry specializes in high-content measurements of cells and particles in suspension. Having long excelled in analytical throughput of single cells and particles, only recently with the advent of HyperCyt sampling technology, flow cytometry's multiexperiment throughput has begun to approach the point of practicality for efficiently analyzing hundreds-of-thousands of samples, the realm of high-throughput screening (HTS). To extend performance and automation compatibility, we built a HyperCyt-linked Cluster Cytometer platform, a network of flow cytometers for analyzing samples displayed in high-density, 1,536-well plate format. To assess the performance, we used cell- and microsphere-based HTS assays that had been well characterized in the previous studies. Experiments addressed important technical issues: challenges of small wells (assay volumes 10 μL or less, reagent mixing, cell and particle suspension), detecting and correcting for differences in performance of individual flow cytometers, and the ability to reanalyze a plate in the event of problems encountered during the primary analysis. Boosting sample throughput an additional fourfold, this platform is uniquely positioned to synergize with expanding suspension array and cell barcoding technologies in which as many as 100 experiments are performed in a single well or sample. As high-performance flow cytometers shrink in cost and size, cluster cytometry promises to become a practical, productive approach for HTS, and other large-scale investigations of biological complexity.
Collapse
Affiliation(s)
- Bruce S Edwards
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen J, Young SM, Allen C, Seeber A, Péli-Gulli MP, Panchaud N, Waller A, Ursu O, Yao T, Golden JE, Strouse JJ, Carter MB, Kang H, Bologa CG, Foutz TD, Edwards BS, Peterson BR, Aubé J, Werner-Washburne M, Loewith RJ, De Virgilio C, Sklar LA. Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry. ACS Chem Biol 2012; 7:715-22. [PMID: 22260433 DOI: 10.1021/cb200452r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Marie-Pierre Péli-Gulli
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Nicolas Panchaud
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | - Tuanli Yao
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
| | - Jennifer E. Golden
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | - Blake R. Peterson
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United
States
| | - Jeffrey Aubé
- University of Kansas Specialized
Chemistry Center, University of Kansas,
Lawrence, Kansas 66047, United States
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United
States
| | | | | | - Claudio De Virgilio
- Department of Biology, Division
of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
16
|
The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 2011; 56:1508-15. [PMID: 22203607 DOI: 10.1128/aac.05706-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains.
Collapse
|
17
|
Abstract
Despite recent progress in the treatment of acute myeloid leukemia (AML), the prognosis of this rather heterogeneous disease remains poor and novel chemotherapeutics that specifically target leukemic cells must be developed. To address this need at the preclinical level, we implemented a high content imaging-based screen for the identification of small agents that induce AML cell death in vitro. Among a panel of 1040 Food and Drug Administration-approved agents, we identified pyrithione zinc (PZ) and ouabain (OUA) as potential antileukemic compounds. Both PZ and OUA efficiently induced cell death associated with apoptotic chromatin condensation and inhibition of nuclear factor-κB survival signaling, leading to reduced expression of antiapoptotic proteins, in several AML cell lines. PZ- and OUA-induced cell death was associated with the permeabilization of the outer mitochondrial membrane and led to the release of cytochrome c followed by caspase activation. Both PZ and OUA exerted significant anticancer effects in vivo, on human AML cells xenografts as well as ex vivo, on CD34(+) (but not CD34(-)) malignant myeloblasts from AML patients. Altogether, our results suggest that PZ and OUA may exhibit antileukemic effects by inducing the apoptotic demise of AML cells.
Collapse
|
18
|
Arterburn JB, Oprea TI, Prossnitz ER, Edwards BS, Sklar LA. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30. Curr Top Med Chem 2010; 9:1227-36. [PMID: 19807662 DOI: 10.2174/156802609789753608] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 01/04/2023]
Abstract
Recent technological advances in flow cytometry provide a versatile platform for high throughput screening of compound libraries coupled with high-content biological testing and drug discovery. The G protein-coupled receptors (GPCRs) constitute the largest class of signaling molecules in the human genome with frequent roles in disease pathogenesis, yet many examples of orphan receptors with unknown ligands remain. The complex biology and potential for drug discovery within this class provide strong incentives for chemical biology approaches seeking to develop small molecule probes to facilitate elucidation of mechanistic pathways and enable specific manipulation of the activity of individual receptors. We have initiated small molecule probe development projects targeting two distinct families of GPCRs: the formylpeptide receptors (FPR/FPRL1) and G protein-coupled estrogen receptor (GPR30). In each case the assay for compound screening involved the development of an appropriate small molecule fluorescent probe, and the flow cytometry platform provided inherently biological rich assays that enhanced the process of identification and optimization of novel antagonists. The contributions of cheminformatics analysis tools, virtual screening, and synthetic chemistry in synergy with the biomolecular screening program have yielded valuable new chemical probes with high binding affinity, selectivity for the targeted receptor, and potent antagonist activity. This review describes the discovery of novel small molecule antagonists of FPR and FPRL1, and GPR30, and the associated characterization process involving secondary assays, cell based and in vivo studies to define the selectivity and activity of the resulting chemical probes.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | |
Collapse
|
19
|
Cappella P, Giorgini ML, Ernestina Re C, Ubezio P, Ciomei M, Moll J. Miniaturizing bromodeoxyuridine incorporation enables the usage of flow cytometry for cell cycle analysis of adherent tissue culture cells for high throughput screening. Cytometry A 2010; 77:953-61. [DOI: 10.1002/cyto.a.20962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/05/2022]
|
20
|
Abstract
IMPORTANCE OF THE FIELD Flow cytometry is considered today as a mature technology. Recently, it has become an accurate tool for screening applications. Yet, not many studies have been published emphasizing flow cytometry as a tool of choice for drug screening except multiplex bead assay. AREAS COVERED IN THIS REVIEW Scanning the literature for technology breakouts in screening by flow is not an easy task. When a private industry has an accurate and fast screening technology on hands, why should they make public a tool precious for their screening applications? On the European academic side, there are regrettably few grants to help develop and publish screening methodologies. So, a less scientific way to find out is a close market survey seeking new instruments and associated kits or new methods. From here, can one expect flow cytometry to be a tool with new potential for drug discovery? WHAT THE READER WILL GAIN As the machines are getting simpler to use, a need for plug-and-analyze software has emerged. New analysis tools remain an important step as they will permit to analyze and compare several parameters in a multi-well format simultaneously and this for several cell types for cytomics: a multiparametric, dynamic approach to cell research as cytomics has a practical role to play in drug discovery within the immediate limitations of cell-based analyses. TAKE HOME MESSAGE Developing new software with multi-well comparison capabilities and most importantly real-time interaction on cytograms can easily circumvent the lack of fluorescent channels on small bench top machines.
Collapse
Affiliation(s)
- Jean Peluso
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Université de Strasbourg, UMR CNRS 7200, 74, Route du Rhin, B.P. 24, 67401 Illkirch, Cedex, France +33 3 68 85 42 71 ; +33 3 68 85 43 10 ;
| | | |
Collapse
|
21
|
Abstract
Cell-based assays represent approximately half of all high-throughput screens currently performed. Here, we review in brief the history and status of high-throughput screening (HTS), and summarize some of the challenges and benefits associated with the use of cell-based assays in HTS. Approaches for successful experimental design and execution of cell-based screens are introduced, including strategies for assay development, implementation of primary and secondary screens, and target identification. In doing so, we hope to provide a comprehensive review of the cell-based HTS process and an introduction to the methodologies and techniques used.
Collapse
Affiliation(s)
- W Frank An
- Chemical Biology Platform, The Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
22
|
Fisher GW, Adler SA, Fuhrman MH, Waggoner AS, Bruchez MP, Jarvik JW. Detection and quantification of beta2AR internalization in living cells using FAP-based biosensor technology. ACTA ACUST UNITED AC 2010; 15:703-9. [PMID: 20488980 DOI: 10.1177/1087057110370892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ligand-dependent receptor internalization is a feature of numerous signaling systems. In this article, the authors describe a new kind of live-cell biosensor of receptor internalization that takes advantage of fluorogen-activating protein (FAP) technology. Recombinant genes that express the human beta2 adrenergic receptor (beta2AR) with FAP domains at their extracellular N-termini were transduced into mammalian cells. Exposure of the cells to membrane-impermeant fluorogens led to a strong fluorescent signal from the cell surface. Agonist-dependent translocation of the receptor from the surface to the cell interior was readily observed and quantified by fluorescence microscopy or flow cytometry in a homogeneous format without wash or separation steps. The approach described here is generalizable to other receptors and cell surface proteins and is adaptable to a variety of fluorescence-based high-throughput screening platforms.
Collapse
Affiliation(s)
- Gregory W Fisher
- Technology Center for Networks and Pathways, Molecular Biosensor and Imaging Center, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
23
|
Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:81-119. [DOI: 10.1016/s1877-1173(10)91004-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Schaerli Y, Hollfelder F. The potential of microfluidic water-in-oil droplets in experimental biology. MOLECULAR BIOSYSTEMS 2009; 5:1392-404. [DOI: 10.1039/b907578j] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|