1
|
Gallucci A, Giordano D, Facchiano A, Villano C, Carputo D, Aversano R. Transmembrane proteins in grape immunity: current knowledge and methodological advances. FRONTIERS IN PLANT SCIENCE 2024; 15:1515163. [PMID: 39759230 PMCID: PMC11695348 DOI: 10.3389/fpls.2024.1515163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants. This is particularly true for grapevine. This review aims to provide a comprehensive overview of TMP-encoding genes involved in grapevine immunity. These genes include Lysin Motif Receptor-Like Kinases (LysM-RLKs), which are involved in the recognition of pathogens at the apoplastic level, Plant Respiratory Burst Oxidase Homologs (Rbohs), which generate reactive oxygen species (ROS) for host defense, and Sugars Will Eventually be Exported Transporters (SWEETs), which play a role in nutrient allocation and stress responses. Furthermore, the review discusses the methodologies employed to study TMPs, including in vivo, in vitro and in silico approaches, highlighting their strengths and limitations. In vivo studies include the assessment of TMP function in whole plants or plant tissues, while in vitro experiments focus on isolating and characterizing either specific TMPs or their components. In silico analyses utilize computational tools to predict protein structure, function, and interactions. By identifying and characterizing genes encoding TMPs involved in grapevine immunity, researchers can develop strategies to enhance grapevine resilience and lead to more sustainable viticulture.
Collapse
Affiliation(s)
- Alessia Gallucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Deborah Giordano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Angelo Facchiano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native Mass Spectrometry of Membrane Protein-Lipid Interactions in Different Detergent Environments. Anal Chem 2024; 96:16768-16776. [PMID: 39394983 PMCID: PMC11503522 DOI: 10.1021/acs.analchem.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Native mass spectrometry (MS) reveals the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer. However, detergents commonly used for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility in characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable the opportunity to characterize lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find that protein-lipid interactions not only are protein-dependent but also can be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Iqbal T, Murugan S, Das D. A chimeric membrane enzyme and an engineered whole-cell biocatalyst for efficient 1-alkene production. SCIENCE ADVANCES 2024; 10:eadl2492. [PMID: 38924395 PMCID: PMC11204201 DOI: 10.1126/sciadv.adl2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Bioproduction of 1-alkenes from naturally abundant free fatty acids offers a promising avenue toward the next generation of hydrocarbon-based biofuels and green commodity chemicals. UndB is the only known membrane-bound 1-alkene-producing enzyme, with great potential for 1-alkene bioproduction, but the enzyme exhibits limited turnovers, thus restricting its widespread usage. Here, we explore the molecular basis of the limitation of UndB activity and substantially improve its catalytic power. We establish that the enzyme undergoes peroxide-mediated rapid inactivation during catalysis. To counteract this inactivation, we engineered a chimeric membrane enzyme by conjugating UndB with catalase that protected UndB against peroxide and enhanced its number of turnovers tremendously. Notably, our chimeric enzyme is the only example of a membrane enzyme successfully engineered with catalase. We subsequently constructed a whole-cell biocatalytic system and achieved remarkable efficiencies (up to 95%) in the biotransformation of a wide range of fatty acids (both aliphatic and aromatic) into corresponding 1-alkenes with numerous biotechnological applications.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | | |
Collapse
|
5
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native mass spectrometry of membrane protein-lipid interactions in different detergent environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601044. [PMID: 38979331 PMCID: PMC11230385 DOI: 10.1101/2024.06.27.601044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Native mass spectrometry (MS) is revealing the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer; however, commonly used detergents for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility for characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable characterization of lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find protein-lipid interactions are not only protein-dependent but can also be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery, as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Hoare BL, Tippett DN, Kaur A, Cullum SA, Miljuš T, Koers EJ, Harwood CR, Dijon N, Holliday ND, Sykes DA, Veprintsev DB. ThermoBRET: A Ligand-Engagement Nanoscale Thermostability Assay Applied to GPCRs. Chembiochem 2024; 25:e202300459. [PMID: 37872746 DOI: 10.1002/cbic.202300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Measurements of membrane protein thermostability reflect ligand binding. Current thermostability assays often require protein purification or rely on pre-existing radiolabelled or fluorescent ligands, limiting their application to established targets. Alternative methods, such as fluorescence-detection size exclusion chromatography thermal shift, detect protein aggregation but are not amenable to high-throughput screening. Here, we present a ThermoBRET method to quantify the relative thermostability of G protein coupled receptors (GPCRs), using cannabinoid receptors (CB1 and CB2 ) and the β2 -adrenoceptor (β2 AR) as model systems. ThermoBRET reports receptor unfolding, does not need labelled ligands and can be used with non-purified proteins. It uses Bioluminescence Resonance Energy Transfer (BRET) between Nanoluciferase (Nluc) and a thiol-reactive fluorescent dye that binds cysteines exposed by unfolding. We demonstrate that the melting point (Tm ) of Nluc-fused GPCRs can be determined in non-purified detergent solubilised membrane preparations or solubilised whole cells, revealing differences in thermostability for different solubilising conditions and in the presence of stabilising ligands. We extended the range of the assay by developing the thermostable tsNLuc by incorporating mutations from the fragments of split-Nluc (Tm of 87 °C versus 59 °C). ThermoBRET allows the determination of GPCR thermostability, which is useful for protein purification optimisation and drug discovery screening.
Collapse
Affiliation(s)
- Bradley L Hoare
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Current address, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David N Tippett
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Current address, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amandeep Kaur
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Sean A Cullum
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tamara Miljuš
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eline J Koers
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Clare R Harwood
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicola Dijon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicholas D Holliday
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Sykes
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
7
|
Helfinger L, Tate CG. Structures of Adrenoceptors. Handb Exp Pharmacol 2024; 285:13-26. [PMID: 37460660 DOI: 10.1007/164_2023_674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The first structure of an adrenoceptor (AR), the human β2-adrenoceptor (hβ2AR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three βARs (β1, β2 and β3) and four out of six αARs (α1B, α2A, α2B, α2C). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind. The structures have been used to define the molecular details of receptor activation and also the molecular determinants for transducer coupling. This chapter will give a brief overview of the structures, receptor activation, a comparison across the different subfamilies and commonalities of ligand-receptor interactions.
Collapse
|
8
|
Necelis M, McDermott C, Belcher Dufrisne M, Baryiames C, Columbus L. Solution NMR investigations of integral membrane proteins: Challenges and innovations. Curr Opin Struct Biol 2023; 82:102654. [PMID: 37542910 PMCID: PMC10529709 DOI: 10.1016/j.sbi.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/07/2023]
Abstract
Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.
Collapse
Affiliation(s)
- Matthew Necelis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Connor McDermott
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Formation of styrene maleic acid lipid nanoparticles (SMALPs) using SMA thin film on a substrate. Anal Biochem 2022; 647:114692. [DOI: 10.1016/j.ab.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
|
11
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
12
|
Higgins AJ, Flynn AJ, Marconnet A, Musgrove LJ, Postis VLG, Lippiat JD, Chung CW, Ceska T, Zoonens M, Sobott F, Muench SP. Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis. Commun Biol 2021; 4:1337. [PMID: 34824357 PMCID: PMC8617058 DOI: 10.1038/s42003-021-02834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Collapse
Affiliation(s)
- Anna J Higgins
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex J Flynn
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France
| | - Laura J Musgrove
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Vincent L G Postis
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chun-Wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France.
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
García-Nafría J, Tate CG. Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem Soc Trans 2021; 49:2345-2355. [PMID: 34581758 PMCID: PMC8589417 DOI: 10.1042/bst20210431] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest single family of cell surface receptors encoded by the human genome and they play pivotal roles in co-ordinating cellular systems throughout the human body, making them ideal drug targets. Structural biology has played a key role in defining how receptors are activated and signal through G proteins and β-arrestins. The application of structure-based drug design (SBDD) is now yielding novel compounds targeting GPCRs. There is thus significant interest from both academia and the pharmaceutical industry in the structural biology of GPCRs as currently only about one quarter of human non-odorant receptors have had their structure determined. Initially, all the structures were determined by X-ray crystallography, but recent advances in electron cryo-microscopy (cryo-EM) now make GPCRs tractable targets for single-particle cryo-EM with comparable resolution to X-ray crystallography. So far this year, 78% of the 99 GPCR structures deposited in the PDB (Jan-Jul 2021) were determined by cryo-EM. Cryo-EM has also opened up new possibilities in GPCR structural biology, such as determining structures of GPCRs embedded in a lipid nanodisc and multiple GPCR conformations from a single preparation. However, X-ray crystallography still has a number of advantages, particularly in the speed of determining many structures of the same receptor bound to different ligands, an essential prerequisite for effective SBDD. We will discuss the relative merits of cryo-EM and X-ray crystallography for the structure determination of GPCRs and the future potential of both techniques.
Collapse
Affiliation(s)
- Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | | |
Collapse
|
14
|
Bjørnestad V, Orwick-Rydmark M, Lund R. Understanding the Structural Pathways for Lipid Nanodisc Formation: How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6178-6188. [PMID: 33979520 PMCID: PMC8280715 DOI: 10.1021/acs.langmuir.1c00304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Lipid nanodiscs formed by mixtures of styrene maleic acid (SMA) copolymers and lipid membranes are important tools for studying membrane proteins in many biotechnological applications. However, molecular interactions leading up to their formation are not well understood. Here, we elucidate the nanodisc formation pathways for SMA/lipid vesicle mixtures using small-angle X-ray scattering (SAXS) that allows detailed in situ nanostructural information. SMA copolymer that is initially aggregated in solution inserts its styrene units into the lipid bilayer hydrocarbon region, leading to fractures in the membrane. The initial copolymer-lipid interactions observed in the vesicles are also present in the formed discs, with excess copolymer distributed along the normal of the bilayer. The size and SMA distribution in the resulting discs strongly depend on the temperature, lipid/copolymer ratio, and lipid type. We find that the solubilization limit increases for membranes above the melting point, suggesting that defects in gel-like lipid membranes play a significant role in membrane fracturing and nanodisc formation. These findings provide unique insights into the formation of nanodiscs as well as into the microscopic mechanism of solubilization, which plays an important role in many applications and products ranging from household goods to biotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Reidar Lund
- Department
of Chemistry, University of Oslo, Sem Sælandsvei 26, 0371 Oslo, Norway
| |
Collapse
|
15
|
Missel JW, Salustros N, Becares ER, Steffen JH, Laursen AG, Garcia AS, Garcia-Alai MM, Kolar Č, Gourdon P, Gotfryd K. Cyclohexyl-α maltoside as a highly efficient tool for membrane protein studies. Curr Res Struct Biol 2021; 3:85-94. [PMID: 34235488 PMCID: PMC8244287 DOI: 10.1016/j.crstbi.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.
Collapse
Affiliation(s)
- Julie Winkel Missel
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Nina Salustros
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Amalie Gerdt Laursen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Angelica Struve Garcia
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany.,Centre for Structural Systems Biology, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Čeněk Kolar
- Glycon Biochemicals GmbH, Im Biotechnologie Park TGZ 1, D-14943, Luckenwalde, Germany
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.,Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Kamil Gotfryd
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
16
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Abel S, Marchi M, Solier J, Finet S, Brillet K, Bonneté F. Structural insights into the membrane receptor ShuA in DDM micelles and in a model of gram-negative bacteria outer membrane as seen by SAXS and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183504. [PMID: 33157097 DOI: 10.1016/j.bbamem.2020.183504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Successful crystallization of membrane proteins in detergent micelles depends on key factors such as conformational stability of the protein in micellar assemblies, the protein-detergent complex (PDC) monodispersity and favorable protein crystal contacts by suitable shielding of the protein hydrophobic surface by the detergent belt. With the aim of studying the influence of amphiphilic environment on membrane protein structure, stability and crystallizability, we combine molecular dynamics (MD) simulations with SEC-MALLS and SEC-SAXS (Size Exclusion Chromatography in line with Multi Angle Laser Light Scattering or Small Angle X-ray Scattering) experiments to describe the protein-detergent interactions that could help to rationalize PDC crystallization. In this context, we compare the protein-detergent interactions of ShuA from Shigella dysenteriae in n-Dodecyl-β-D-Maltopyranoside (DDM) with ShuA inserted in a realistic model of gram-negative bacteria outer membrane (OM) containing a mixture of bacterial lipopolysaccharide and phospholipids. To evaluate the quality of the PDC models, we compute the corresponding SAXS curves from the MD trajectories and compare with the experimental ones. We show that computed SAXS curves obtained from the MD trajectories reproduce better the SAXS obtained from the SEC-SAXS experiments for ShuA surrounded by 268 DDM molecules. The MD results show that the DDM molecules form around ShuA a closed belt whose the hydrophobic thickness appears slightly smaller (~22 Å) than the hydrophobic transmembrane domain of the protein (24.6 Å) suggested by Orientations of Proteins in Membranes (OPM) database. The simulations also show that ShuA transmembrane domain is remarkably stable in all the systems except for the extracellular and periplasmic loops that exhibit larger movements due to specific molecular interactions with lipopolysaccharides (LPS). We finally point out that this detergent behavior may lead to the occlusion of the periplasmic hydrophilic surface and poor crystal contacts leading to difficulties in crystallization of ShuA in DDM.
Collapse
Affiliation(s)
- Stéphane Abel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Massimo Marchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Justine Solier
- Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces, UMR 5279 CNRS Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, INP, F38000 Grenoble, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique de Matériaux et de Cosmochimie, UMR 7590 CNRS-Sorbonne université, Bioinformatique et Biophysique, 4 Place Jussieu, F75005 Paris, France
| | - Karl Brillet
- Institut de Biologie Moléculaire et Cellulaire UPR 9002 CNRS, Architecture et Réactivité de l'ARN, 2 allée Konrad Roentgen, F67000 Strasbourg, France
| | - Françoise Bonneté
- Institut de Biologie Physico-Chimique (IBPC) UMR 7099 CNRS Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, 13 rue Pierre et Marie Curie, F75005 Paris, France.
| |
Collapse
|
18
|
Kim YK, Choi Y, Nam GH, Kim IS. Functionalized exosome harboring bioactive molecules for cancer therapy. Cancer Lett 2020; 489:155-162. [PMID: 32623071 DOI: 10.1016/j.canlet.2020.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized vesicles with a lipid membrane that are secreted by most cells and play a crucial role as intermediates of intercellular communication because they carry bioactive molecules. Exosomes are promising for drug delivery of chemicals, proteins, and nucleic acids owing to their inherent properties such as excellent biocompatibility, high tumor targetability, and prolonged circulation in vivo. In this review, we cover recent approaches and advances made in the field of exosome-mediated delivery of bioactive molecules for cancer therapy and factors that affect the clinical use of exosomes. This review can be used as a guideline for further study in expanding the utility of therapeutic exosomes.
Collapse
Affiliation(s)
- Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
19
|
Lee S, Ghosh S, Jana S, Robertson N, Tate CG, Vaidehi N. How Do Branched Detergents Stabilize GPCRs in Micelles? Biochemistry 2020; 59:2125-2134. [PMID: 32437610 PMCID: PMC7302508 DOI: 10.1021/acs.biochem.0c00183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/21/2020] [Indexed: 12/30/2022]
Abstract
The structural and functional properties of G protein-coupled receptors (GPCRs) are often studied in a detergent micellar environment, but many GPCRs tend to denature or aggregate in short alkyl chain detergents. In our previous work [Lee, S., et al. (2016) J. Am. Chem. Soc. 138, 15425-15433], we showed that GPCRs in alkyl glucosides were highly dynamic, resulting in the penetration of detergent molecules between transmembrane α-helices, which is the initial step in receptor denaturation. Although this was not observed for GPCRs in dodecyl maltoside (DDM, also known as lauryl maltoside), even this detergent is not mild enough to preserve the integrity of many GPCRs during purification. Lauryl maltose neopentylglycol (LMNG) detergents have been found to have significant advantages for purifying GPCRs in a native state as they impart more stability to the receptor than DDM. To gain insights into how they stabilize GPCRs, we used atomistic molecular dynamics simulations of wild type adenosine A2A receptor (WT-A2AR), thermostabilized A2AR (tA2AR), and wild type β2-adrenoceptor (β2AR) in a variety of detergents (LMNG, DMNG, OGNG, and DDM). Analysis of molecular dynamics simulations of tA2AR in LMNG, DMNG, and OGNG showed that this series of detergents exhibited behavior very similar to that of an analogous series of detergents DDM, DM, and OG in our previous study. However, there was a striking difference upon comparison of the behavior of LMNG to that of DDM. LMNG showed considerably less motion than DDM, which resulted in the enhanced density of the aliphatic chains around the hydrophobic regions of the receptor and considerably more hydrogen bond formation between the head groups. This contributed to enhanced interaction energies between both detergent molecules and between the receptor and detergent, explaining the enhanced stability of GPCRs purified in this detergent. Branched detergents occlude between transmembrane helices and reduce their flexibility. Our results provide a rational foundation to develop detergent variants for stabilizing membrane proteins.
Collapse
Affiliation(s)
- Sangbae Lee
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Soumadwip Ghosh
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Suvamay Jana
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Nathan Robertson
- Heptares
Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - Nagarajan Vaidehi
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| |
Collapse
|
20
|
Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R. Preparation of Recombinant Membrane Proteins from Pichia pastoris for Molecular Investigations. ACTA ACUST UNITED AC 2020; 100:e104. [PMID: 32289210 DOI: 10.1002/cpps.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.
Collapse
Affiliation(s)
- Lucile Guyot
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France.,NovAliX, Illkirch, France
| | - Lucie Hartmann
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Sarah Mohammed-Bouteben
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Lydia Caro
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| |
Collapse
|
21
|
Pamula F, Mühle J, Blanc A, Nehmé R, Edwards PC, Tate CG, Tsai CJ. Strategic Screening and Characterization of the Visual GPCR-mini-G Protein Signaling Complex for Successful Crystallization. J Vis Exp 2020. [PMID: 32225143 PMCID: PMC7250641 DOI: 10.3791/60747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The key to determining crystal structures of membrane protein complexes is the quality of the sample prior to crystallization. In particular, the choice of detergent is critical, because it affects both the stability and monodispersity of the complex. We recently determined the crystal structure of an active state of bovine rhodopsin coupled to an engineered G protein, mini-Go, at 3.1 Å resolution. Here, we detail the procedure for optimizing the preparation of the rhodopsin–mini-Go complex. Dark-state rhodopsin was prepared in classical and neopentyl glycol (NPG) detergents, followed by complex formation with mini-Go under light exposure. The stability of the rhodopsin was assessed by ultraviolet-visible (UV-VIS) spectroscopy, which monitors the reconstitution into rhodopsin of the light-sensitive ligand, 9-cis retinal. Automated size-exclusion chromatography (SEC) was used to characterize the monodispersity of rhodopsin and the rhodopsin–mini-Go complex. SDS-polyacrylamide electrophoresis (SDS-PAGE) confirmed the formation of the complex by identifying a 1:1 molar ratio between rhodopsin and mini-Go after staining the gel with Coomassie blue. After cross-validating all this analytical data, we eliminated unsuitable detergents and continued with the best candidate detergent for large-scale preparation and crystallization. An additional problem arose from the heterogeneity of N-glycosylation. Heterologously-expressed rhodopsin was observed on SDS-PAGE to have two different N-glycosylated populations, which would probably have hindered crystallogenesis. Therefore, different deglycosylation enzymes were tested, and endoglycosidase F1 (EndoF1) produced rhodopsin with a single species of N-glycosylation. With this strategic pipeline for characterizing protein quality, preparation of the rhodopsin–mini-Go complex was optimized to deliver the crystal structure. This was only the third crystal structure of a GPCR–G protein signaling complex. This approach can also be generalized for other membrane proteins and their complexes to facilitate sample preparation and structure determination.
Collapse
Affiliation(s)
- Filip Pamula
- Laboratory of Biomolecular Research, Paul Scherrer Institute; Department of Biology, ETH Zürich;
| | - Jonas Mühle
- Laboratory of Biomolecular Research, Paul Scherrer Institute
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute
| | - Rony Nehmé
- Laboratory of Molecular Biology, Medical Research Council
| | | | | | - Ching-Ju Tsai
- Laboratory of Biomolecular Research, Paul Scherrer Institute;
| |
Collapse
|
22
|
Burridge KM, Harding BD, Sahu ID, Kearns MM, Stowe RB, Dolan MT, Edelmann RE, Dabney-Smith C, Page RC, Konkolewicz D, Lorigan GA. Simple Derivatization of RAFT-Synthesized Styrene-Maleic Anhydride Copolymers for Lipid Disk Formulations. Biomacromolecules 2020; 21:1274-1284. [PMID: 31961664 DOI: 10.1021/acs.biomac.0c00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chemical diversity, with only phenyl and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species. These styrene-maleic anhydride copolymer derivatives (SMADs) can form styrene-maleic acid derivative lipid nanoparticles (SMADLPs) when they interact with lipid molecules. Polymers were synthesized, purified, characterized by Fourier-transform infrared spectroscopy, gel permeation chromatography, and nuclear magnetic resonance and then used to make disk-like SMADLPs, whose sizes were measured by dynamic light scattering (DLS). The SMADs form lipid nanoparticles, observable by DLS and transmission electron microscopy, and were used to reconstitute a spin-labeled transmembrane protein, KCNE1. The polymer method reported here is facile and scalable and results in functional and robust polymers capable of forming lipid nanodisks that are stable against a wide pH range and 100 mM magnesium.
Collapse
Affiliation(s)
- Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, KY 42718, United States
| | - Madison M Kearns
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Rebecca B Stowe
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Madison T Dolan
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Richard E Edelmann
- Center for Advanced Microscopy & Imaging, Miami University, Oxford, Ohio 45056, United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University of Oxford Ohio, Oxford, Ohio 45056, United States
| |
Collapse
|
23
|
García-Nafría J, Tate CG. Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development. Annu Rev Pharmacol Toxicol 2019; 60:51-71. [PMID: 31348870 DOI: 10.1146/annurev-pharmtox-010919-023545] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABAARs) and G protein-coupled receptors (GPCRs). GABAARs are pentameric ion channels, and cryo-EM structures of physiological heteromeric receptors in a lipid environment have uncovered the molecular basis of receptor modulation by drugs such as diazepam. The structures of ten GPCR-G protein complexes from three different classes of GPCRs have now been determined by cryo-EM. These structures give detailed insights into molecular interactions with drugs, GPCR-G protein selectivity, how accessory membrane proteins alter receptor-ligand pharmacology, and the mechanism by which HIV uses GPCRs to enter host cells.
Collapse
Affiliation(s)
- Javier García-Nafría
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; .,Current affiliation: Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopias Avanzadas, University of Zaragoza, 50018 Zaragoza, Spain;
| | | |
Collapse
|
24
|
García-Nafría J, Tate CG. Cryo-EM structures of GPCRs coupled to G s, G i and G o. Mol Cell Endocrinol 2019; 488:1-13. [PMID: 30930094 DOI: 10.1016/j.mce.2019.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/14/2023]
Abstract
Advances in electron cryo-microscopy (cryo-EM) now permit the structure determination of G protein-coupled receptors (GPCRs) coupled to heterotrimeric G proteins by single-particle imaging. A combination of G protein engineering and the development of antibodies that stabilise the heterotrimeric G protein facilitate the formation of stable GPCR-G protein complexes suitable for structural biology. Structures have been determined of GPCRs coupled to either heterotrimeric G proteins (Gs, Gi or Go) or mini-G proteins (mini-Gs or mini-Go) by single-particle cryo-EM and X-ray crystallography, respectively. This review describes the technical breakthroughs allowing their structure determination and compares the different techniques. In addition, we compare the structures of GPCRs coupled either to Gs, Gi or Go and analyse the contributions of amino acid residues to the GPCR-G protein interface. There is no unique set of interactions that specifies coupling either to Gs, Gi or Go. Instead, there is a common core of interactions between the C-terminal α-helix of the G protein α-subunit and helices H3, H5 and H6 of the receptor. In addition, there are varying degrees of interaction between all the other GPCR helices and intracellular loops to five regions of the α-subunit and four regions of the β-subunit. These data support the contention that there is not a simple linear barcode that defines the specificity of G protein coupling and thus how a G protein couples to a GPCR cannot currently be determined from simply analysing amino acid sequences. Although the overall architecture of GPCR-G protein complexes is conserved, there are significant differences in the molecular details. The number and type of molecular interactions between amino acid residues at the interfaces varies, resulting in subtly different orientation and position of the G protein with respect to the GPCR. This in turn affects the interface surface area that varies between 845 Å2 and 1490 Å2, which could impact upon the lifetime of signalling complexes in the cell.
Collapse
Affiliation(s)
- Javier García-Nafría
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
25
|
Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ, Deodhar BS, Pemberton JE, Prell JS, Marty MT. Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs. J Am Chem Soc 2019; 141:1054-1061. [PMID: 30586296 DOI: 10.1021/jacs.8b11529] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins play critical biochemical roles but remain challenging to study. Recently, native or nondenaturing mass spectrometry (MS) has made great strides in characterizing membrane protein interactions. However, conventional native MS relies on detergent micelles, which may disrupt natural interactions. Lipoprotein nanodiscs provide a platform to present membrane proteins for native MS within a lipid bilayer environment, but previous native MS of membrane proteins in nanodiscs has been limited by the intermediate stability of nanodiscs. It is difficult to eject membrane proteins from nanodiscs for native MS but also difficult to retain intact nanodisc complexes with membrane proteins inside. Here, we employed chemical reagents that modulate the charge acquired during electrospray ionization (ESI). By modulating ESI conditions, we could either eject the membrane protein complex with few bound lipids or capture the intact membrane protein nanodisc complex-allowing measurement of the membrane protein oligomeric state within an intact lipid bilayer environment. The dramatic differences in the stability of nanodiscs under different ESI conditions opens new applications for native MS of nanodiscs.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Dane Evan Zambrano
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Deseree J Reid
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
26
|
Ghosh S, Bierig T, Lee S, Jana S, Löhle A, Schnapp G, Tautermann CS, Vaidehi N. Engineering Salt Bridge Networks between Transmembrane Helices Confers Thermostability in G-Protein-Coupled Receptors. J Chem Theory Comput 2018; 14:6574-6585. [PMID: 30359017 DOI: 10.1021/acs.jctc.8b00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction of specific point mutations has been an effective strategy in enhancing the thermostability of G-protein-coupled receptors (GPCRs). Our previous work showed that a specific residue position on transmembrane helix 6 (TM6) in class A GPCRs consistently yields thermostable mutants. The crystal structure of human chemokine receptor CCR5 also showed increased thermostability upon mutation of two positions, A233D6.33 and K303E7.59. With the goal of testing the transferability of these two thermostabilizing mutations in other chemokine receptors, we tested the mutations A237D6.33 and R307E7.59 in human CCR3 for thermostability and aggregation properties in detergent solution. Interestingly, the double mutant exhibited a 6-10-fold decrease in the aggregation propensity of the wild-type protein. This is in stark contrast to the two single mutants whose aggregation properties resemble the wild type (WT). Moreover, unlike in CCR5, the two single mutants separately showed no increase in thermostability compared to the wild-type CCR3, while the double-mutant A237D6.33/R307E7.59 confers an increase of 2.6 °C in the melting temperature compared to the WT. Extensive all-atom molecular dynamics (MD) simulations in detergent micelles show that a salt bridge network between transmembrane helices TM3, TM6, and TM7 that is absent in the two single mutants confers stability in the double mutant. The free energy surface of the double mutant shows conformational homogeneity compared to the single mutants. An annular n-dodecyl maltoside detergent layer packs tighter to the hydrophobic surface of the double-mutant CCR3 compared to the single mutants providing additional stability. The purification of other C-C chemokine receptors lacking such stabilizing residues may benefit from the incorporation of these two point mutations.
Collapse
Affiliation(s)
- Soumadwip Ghosh
- Department of Molecular Imaging and Therapy , Beckman Research Institute of the City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Tobias Bierig
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | | | | | | | - Gisela Schnapp
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | - Christofer S Tautermann
- Department of Medicinal Chemistry , Boehringer Ingelheim Pharma GmbH & Company KG , Birkendorfer Strasse 65 , D-88397 Biberach an der Riss , Germany
| | - Nagarajan Vaidehi
- Department of Molecular Imaging and Therapy , Beckman Research Institute of the City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| |
Collapse
|
27
|
Membrane protein engineering to the rescue. Biochem Soc Trans 2018; 46:1541-1549. [PMID: 30381335 DOI: 10.1042/bst20180140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
The inherent hydrophobicity of membrane proteins is a major barrier to membrane protein research and understanding. Their low stability and solubility in aqueous environments coupled with poor expression levels make them a challenging area of research. For many years, the only way of working with membrane proteins was to optimise the environment to suit the protein, through the use of different detergents, solubilising additives, and other adaptations. However, with innovative protein engineering methodologies, the membrane proteins themselves are now being adapted to suit the environment. This mini-review looks at the types of adaptations which are applied to membrane proteins from a variety of different fields, including water solubilising fusion tags, thermostabilising mutation screening, scaffold proteins, stabilising protein chimeras, and isolating water-soluble domains.
Collapse
|
28
|
Cirri E, Brier S, Assal R, Canul-Tec JC, Chamot-Rooke J, Reyes N. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 2018; 7:40110. [PMID: 30334738 PMCID: PMC6209432 DOI: 10.7554/elife.40110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Collapse
Affiliation(s)
- Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brier
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Juan Carlos Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Ehsan M, Das M, Stern V, Du Y, Mortensen JS, Hariharan P, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Steroid-Based Amphiphiles for Membrane Protein Study: The Importance of Alkyl Spacers for Protein Stability. Chembiochem 2018; 19:1433-1443. [PMID: 29660780 PMCID: PMC7238963 DOI: 10.1002/cbic.201800106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 01/04/2023]
Abstract
Membrane proteins allow effective communication between cells and organelles and their external environments. Maintaining membrane protein stability in a non-native environment is the major bottleneck to their structural study. Detergents are widely used to extract membrane proteins from the membrane and to keep the extracted protein in a stable state for downstream characterisation. In this study, three sets of steroid-based amphiphiles-glyco-diosgenin analogues (GDNs) and steroid-based pentasaccharides either lacking a linker (SPSs) or containing a linker (SPS-Ls)-have been developed as new chemical tools for membrane protein research. These detergents were tested with three membrane proteins in order to characterise their ability to extract membrane proteins from the membrane and to stabilise membrane proteins long-term. Some of the detergents, particularly the SPS-Ls, displayed favourable behaviour with the tested membrane proteins. This result indicates the potential utility of these detergents as chemical tools for membrane protein structural study and a critical role of the simple alkyl spacer in determining detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Valerie Stern
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| |
Collapse
|
30
|
Mhurchú NN, Zoubak L, McGauran G, Linse S, Yeliseev A, O’Connell DJ. Simplifying G Protein-Coupled Receptor Isolation with a Calcium-Dependent Fragment Complementation Affinity System. Biochemistry 2018; 57:4383-4390. [DOI: 10.1021/acs.biochem.8b00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niamh Ní Mhurchú
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Lioudmila Zoubak
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892, United States
| | - Gavin McGauran
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Box 118, Lund 221 00, Sweden
| | - Alexei Yeliseev
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892, United States
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
31
|
Birch J, Axford D, Foadi J, Meyer A, Eckhardt A, Thielmann Y, Moraes I. The fine art of integral membrane protein crystallisation. Methods 2018; 147:150-162. [PMID: 29778646 DOI: 10.1016/j.ymeth.2018.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Arne Meyer
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Annette Eckhardt
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Yvonne Thielmann
- Max Planck Institute of Biophysics, Molecular Membrane Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK; National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
32
|
García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG. Cryo-EM structure of the adenosine A 2A receptor coupled to an engineered heterotrimeric G protein. eLife 2018; 7:35946. [PMID: 29726815 PMCID: PMC5962338 DOI: 10.7554/elife.35946] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
The adenosine A2A receptor (A2AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein GS. Here, we determine the structure by electron cryo-microscopy (cryo-EM) of A2AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-GS, the βγ subunits and nanobody Nb35. Most regions of the complex have a resolution of ~3.8 Å or better. Comparison with the 3.4 Å resolution crystal structure shows that the receptor and mini-GS are virtually identical and that the density of the side chains and ligand are of comparable quality. However, the cryo-EM density map also indicates regions that are flexible in comparison to the crystal structures, which unexpectedly includes regions in the ligand binding pocket. In addition, an interaction between intracellular loop 1 of the receptor and the β subunit of the G protein was observed.
Collapse
Affiliation(s)
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Xiaochen Bai
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Nasrallah C, Rottier K, Marcellin R, Compan V, Font J, Llebaria A, Pin JP, Banères JL, Lebon G. Direct coupling of detergent purified human mGlu 5 receptor to the heterotrimeric G proteins Gq and Gs. Sci Rep 2018. [PMID: 29535347 PMCID: PMC5849714 DOI: 10.1038/s41598-018-22729-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The metabotropic glutamate (mGlu) receptors are class C G protein-coupled receptors (GPCRs) that modulate synaptic activity and plasticity throughout the mammalian brain. Signal transduction is initiated by glutamate binding to the venus flytrap domains (VFT), which initiates a conformational change that is transmitted to the conserved heptahelical domains (7TM) and results ultimately in the activation of intracellular G proteins. While both mGlu1 and mGlu5 activate Gαq G-proteins, they also increase intracellular cAMP concentration through an unknown mechanism. To study directly the G protein coupling properties of the human mGlu5 receptor homodimer, we purified the full-length receptor, which required careful optimisation of the expression, N-glycosylation and purification. We successfully purified functional mGlu5 that activated the heterotrimeric G protein Gq. The high-affinity agonist-PAM VU0424465 also activated the purified receptor in the absence of an orthosteric agonist. In addition, it was found that purified mGlu5 was capable of activating the G protein Gs either upon stimulation with VU0424465 or glutamate, although the later induced a much weaker response. Our findings provide important mechanistic insights into mGlu5 G protein-dependent activity and selectivity.
Collapse
Affiliation(s)
- Chady Nasrallah
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France
| | - Karine Rottier
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France
| | - Romain Marcellin
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France
| | - Joan Font
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Montpellier, F-34000, Montpellier, France.
| |
Collapse
|
34
|
Yang Y, Hong Y, Cho E, Kim GB, Kim IS. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles 2018; 7:1440131. [PMID: 29535849 PMCID: PMC5844050 DOI: 10.1080/20013078.2018.1440131] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/07/2018] [Indexed: 02/08/2023] Open
Abstract
Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Eunji Cho
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Condic-Jurkic K, Subramanian N, Mark AE, O’Mara ML. The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. PLoS One 2018; 13:e0191882. [PMID: 29370310 PMCID: PMC5785007 DOI: 10.1371/journal.pone.0191882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain.
Collapse
Affiliation(s)
- Karmen Condic-Jurkic
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Nandhitha Subramanian
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, ACT 4072, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
36
|
Veith K, Martinez Molledo M, Almeida Hernandez Y, Josts I, Nitsche J, Löw C, Tidow H. Lipid-like Peptides can Stabilize Integral Membrane Proteins for Biophysical and Structural Studies. Chembiochem 2017; 18:1735-1742. [PMID: 28603929 PMCID: PMC5601290 DOI: 10.1002/cbic.201700235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Indexed: 12/30/2022]
Abstract
A crucial bottleneck in membrane protein structural biology is the difficulty in identifying a detergent that can maintain the stability and functionality of integral membrane proteins (IMPs). Detergents are poor membrane mimics, and their common use in membrane protein crystallography may be one reason for the challenges in obtaining high-resolution crystal structures of many IMP families. Lipid-like peptides (LLPs) have detergent-like properties and have been proposed as alternatives for the solubilization of G protein-coupled receptors and other membrane proteins. Here, we systematically analyzed the stabilizing effect of LLPs on integral membrane proteins of different families. We found that LLPs could significantly stabilize detergent-solubilized IMPs in vitro. This stabilizing effect depended on the chemical nature of the LLP and the intrinsic stability of a particular IMP in the detergent. Our results suggest that screening a subset of LLPs is sufficient to stabilize a particular IMP, which can have a substantial impact on the crystallization and quality of the crystal.
Collapse
Affiliation(s)
- Katharina Veith
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Yasser Almeida Hernandez
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetScheeles väg 217177StockholmSweden
| | - Henning Tidow
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| |
Collapse
|
37
|
Mizrachi D, Robinson MP, Ren G, Ke N, Berkmen M, DeLisa MP. A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo. Nat Chem Biol 2017; 13:1022-1028. [PMID: 28628094 PMCID: PMC5562517 DOI: 10.1038/nchembio.2409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
Escherichia coli DsbB is a transmembrane enzyme that catalyzes the reoxidation of the periplasmic oxidase DsbA by ubiquinone. Here, we sought to convert membrane-bound DsbB into a water-soluble biocatalyst by leveraging a previously described method for in vivo solubilization of integral membrane proteins (IMPs). When solubilized DsbB variants were coexpressed with an export-defective copy of DsbA in the cytoplasm of wild-type E. coli cells, artificial oxidation pathways were created that efficiently catalyzed de novo disulfide-bond formation in a range of substrate proteins, in a manner dependent on both DsbA and quinone. Hence, DsbB solubilization was achieved with preservation of both catalytic activity and substrate specificity. Moreover, given the generality of the solubilization technique, the results presented here should pave the way to unlocking the biocatalytic potential of other membrane-bound enzymes whose utility has been limited by poor stability of IMPs outside of their native lipid-bilayer context.
Collapse
Affiliation(s)
- Dario Mizrachi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Michael-Paul Robinson
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Guoping Ren
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Na Ke
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Rd, Ipswich, MA, 01938, USA
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
38
|
Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH. Application of Solution NMR to Structural Studies on α-Helical Integral Membrane Proteins. Molecules 2017; 22:molecules22081347. [PMID: 28809779 PMCID: PMC6152068 DOI: 10.3390/molecules22081347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023] Open
Abstract
A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37204, USA.
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Seu-Na Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Min-Duk Seo
- Department of Molecular Science and Technology & College of Pharmacy, Ajou University, Suwon 16499, Korea.
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Korea.
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
39
|
Strege A, Carpenter B, Edwards PC, Tate CG. Strategy for the Thermostabilization of an Agonist-Bound GPCR Coupled to a G Protein. Methods Enzymol 2017; 594:243-264. [PMID: 28779842 DOI: 10.1016/bs.mie.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structure determination of G protein-coupled receptors (GPCRs) in the inactive state bound to high-affinity antagonists has been very successful through the implementation of a number of protein engineering and crystallization strategies. However, the structure determination of GPCRs in their fully active state coupled to a G protein is still very challenging. Recently, mini-G proteins were developed, which recapitulate the coupling of a full heterotrimeric G protein to a GPCR despite being less than one-third of the size. This allowed the structure determination of the agonist-bound adenosine A2A receptor (A2AR) coupled to mini-Gs. Although this is extremely encouraging, A2AR is very stable compared with many other GPCRs, particularly when an agonist is bound. In contrast, the agonist-bound conformation of the human corticotropin-releasing factor receptor is considerably less stable, impeding the formation of good quality crystals for structure determination. We have therefore developed a novel strategy for the thermostabilization of a GPCR-mini-G protein complex. In this chapter, we will describe the theoretical and practical principles of the thermostability assay for stabilizing this complex, discuss its strengths and weaknesses, and show some typical results from the thermostabilization process.
Collapse
Affiliation(s)
- Annette Strege
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
40
|
Abstract
Membrane proteins play crucial roles in cellular processes and are often important pharmacological drug targets. The hydrophobic properties of these proteins make full structural and functional characterization challenging because of the need to use detergents or other solubilizing agents when extracting them from their native lipid membranes. To aid membrane protein research, new methodologies are required to allow these proteins to be expressed and purified cheaply, easily, in high yield and to provide water soluble proteins for subsequent study. This mini review focuses on the relatively new area of water soluble membrane proteins and in particular two innovative approaches: the redesign of membrane proteins to yield water soluble variants and how adding solubilizing fusion proteins can help to overcome these challenges. This review also looks at naturally occurring membrane proteins, which are able to exist as stable, functional, water soluble assemblies with no alteration to their native sequence.
Collapse
|
41
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
42
|
Nehmé R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R, Tate CG. Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS One 2017; 12:e0175642. [PMID: 28426733 PMCID: PMC5398546 DOI: 10.1371/journal.pone.0175642] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state. The first mini-G protein developed was mini-Gs. Here we extend the family of mini-G proteins to include mini-Golf, mini-Gi1, mini-Go1 and the chimeras mini-Gs/q and mini-Gs/i. The mini-G proteins were shown to couple to relevant GPCRs and to form stable complexes with purified receptors that could be purified by size exclusion chromatography. Agonist-bound GPCRs coupled to a mini-G protein showed higher thermal stability compared to the agonist-bound receptor alone. Fusion of GFP at the N-terminus of mini-G proteins allowed receptor coupling to be monitored by fluorescence-detection size exclusion chromatography (FSEC) and, in a separate assay, the affinity of mini-G protein binding to detergent-solubilised receptors was determined. This work provides the foundation for the development of any mini-G protein and, ultimately, for the structure determination of GPCRs in a fully active state.
Collapse
Affiliation(s)
- Rony Nehmé
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Courtney F. White
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Haijuan Du
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | | |
Collapse
|
43
|
Quistgaard EM, Martinez Molledo M, Löw C. Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121. PLoS One 2017; 12:e0173126. [PMID: 28264013 PMCID: PMC5338821 DOI: 10.1371/journal.pone.0173126] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 12/03/2022] Open
Abstract
Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins.
Collapse
Affiliation(s)
- Esben M. Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
44
|
Bonneté F, Loll PJ. Characterization of New Detergents and Detergent Mimetics by Scattering Techniques for Membrane Protein Crystallization. Methods Mol Biol 2017; 1635:169-193. [PMID: 28755369 DOI: 10.1007/978-1-4939-7151-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Membrane proteins are difficult to manipulate and stabilize once they have been removed from their native membranes. However, despite these difficulties, successes in membrane-protein structure determination have continued to accumulate for over two decades, thanks to advances in chemistry and technology. Many of these advances have resulted from efforts focused on protein engineering, high-throughput expression, and development of detergent screens, all with the aim of enhancing protein stability for biochemistry and biophysical studies. In contrast, considerably less work has been done to decipher the basic mechanisms that underlie the structure of protein-detergent complexes and to describe the influence of detergent structure on stabilization and crystallization. These questions can be addressed using scattering techniques (employing light, X-rays, and/or neutrons), which are suitable to describe the structure and conformation of macromolecules in solution, as well as to assess weak interactions between particles, both of which are clearly germane to crystallization. These techniques can be used either in batch modes or coupled to size-exclusion chromatography, and offer the potential to describe the conformation of a detergent-solubilized membrane protein and to quantify and model detergent bound to the protein in order to optimize crystal packing. We will describe relevant techniques and present examples of scattering experiments, which allow one to explore interactions between micelles and between membrane protein complexes, and relate these interactions to membrane protein crystallization.
Collapse
Affiliation(s)
- Françoise Bonneté
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM-ENSCM, Chimie BioOrganique et Systèmes Amphiphiles, Université d'Avignon, 301, rue Baruch de Spinoza, F84000, Avignon, France.
| | - Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
45
|
Lee S, Mao A, Bhattacharya S, Robertson N, Grisshammer R, Tate CG, Vaidehi N. How Do Short Chain Nonionic Detergents Destabilize G-Protein-Coupled Receptors? J Am Chem Soc 2016; 138:15425-15433. [PMID: 27792324 PMCID: PMC5148649 DOI: 10.1021/jacs.6b08742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stability of detergent-solubilized G-protein-coupled receptors (GPCRs) is crucial for their purification in a biologically relevant state, and it is well-known that short chain detergents such as octylglucoside are more denaturing than long chain detergents such as dodecylmaltoside. However, the molecular basis for this phenomenon is poorly understood. To gain insights into the mechanism of detergent destabilization of GPCRs, we used atomistic molecular dynamics simulations of thermostabilized adenosine receptor (A2AR) mutants embedded in either a lipid bilayer or detergent micelles of alkylmaltosides and alkylglucosides. A2AR mutants in dodecylmaltoside or phospholipid showed low flexibility and good interhelical packing. In contrast, A2AR mutants in either octylglucoside or nonylglucoside showed decreased α-helicity in transmembrane regions, decreased α-helical packing, and the interpenetration of detergent molecules between transmembrane α-helices. This was not observed in octylglucoside containing phospholipid. Cholesteryl hemisuccinate in dodecylmaltoside increased the energetic stability of the receptor by wedging into crevices on the hydrophobic surface of A2AR, increasing packing interactions within the receptor and stiffening the detergent micelle. The data suggest a three-stage process for the initial events in the destabilization of GPCRs by octylglucoside: (i) highly mobile detergent molecules form small micelles around the receptor; (ii) loss of α-helicity and decreased interhelical packing interactions in transmembrane regions are promoted by increased receptor thermal motion; (iii) transient separation of transmembrane helices allowed penetration of detergent molecules into the core of the receptor. The relative hydration of the headgroup and alkyl chain correlates with detergent harshness and suggests new avenues to develop milder versions of octylglucoside for receptor crystallization.
Collapse
Affiliation(s)
- Sangbae Lee
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Allen Mao
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Supriyo Bhattacharya
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Nathan Robertson
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, UK
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, USA
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nagarajan Vaidehi
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| |
Collapse
|
46
|
Grewal Y, Shiddiky MJA, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30649-30664. [PMID: 27762541 PMCID: PMC5114700 DOI: 10.1021/acsami.6b09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 05/06/2023]
Abstract
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and "panning" of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats.
Collapse
Affiliation(s)
- Yadveer
S. Grewal
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen M. Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology
(AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard A. Cangelosi
- School
of Public Health, University of Washington, Seattle, Washington 98195, United States
| | - Matt Trau
- Centre
for Personalised Nanomedicine, Australian Institute for Bioengineering
and Nanotechnology (AIBN), University of
Queensland, Brisbane, Queensland 4072, Australia
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
47
|
Craig AF, Clark EE, Sahu ID, Zhang R, Frantz ND, Al-Abdul-Wahid MS, Dabney-Smith C, Konkolewicz D, Lorigan GA. Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2931-2939. [PMID: 27539205 DOI: 10.1016/j.bbamem.2016.08.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/15/2016] [Accepted: 08/07/2016] [Indexed: 11/29/2022]
Abstract
Characterization of membrane proteins is challenging due to the difficulty in mimicking the native lipid bilayer with properly folded and functional membrane proteins. Recently, styrene-maleic acid (StMA) copolymers have been shown to facilitate the formation of disc-like lipid bilayer mimetics that maintain the structural and dynamic integrity of membrane proteins. Here we report the controlled synthesis and characterization of StMA containing block copolymers. StMA polymers with different compositions and molecular weights were synthesized and characterized by size exclusion chromatography (SEC). These polymers act as macromolecular surfactants for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol (POPG) lipids, forming disc like structures of the lipids with the polymer wrapping around the hydrophobic lipid edge. A combination of dynamic light scattering (DLS), solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and transmission electron microscopy (TEM) was used to characterize the size of the nanoparticles created using these StMA polymers. At a weight ratio of 1.25:1 StMA to lipid, the nanoparticle size created is 28+1nm for a 2:1 ratio, 10+1nm for a 3:1 StMA ratio and 32+1nm for a 4:1 StMA ratio independent of the molecular weight of the polymer. Due to the polymer acting as a surfactant that forms disc like nanoparticles, we term these StMA based block copolymers "RAFT SMALPs". RAFT SMALPs show promise as a new membrane mimetic with different nanoscale sizes, which can be used for a wide variety of biophysical studies of membrane proteins.
Collapse
Affiliation(s)
- Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Emily E Clark
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Nick D Frantz
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - M Sameer Al-Abdul-Wahid
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, United States.
| |
Collapse
|
48
|
Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 2016; 11:1554-71. [PMID: 27466713 PMCID: PMC5268090 DOI: 10.1038/nprot.2016.088] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes ∼6-12 months to thermostabilize a G-protein-coupled receptor (GPCR) containing 300 amino acid (aa) residues. The resulting thermostabilized MPs are more easily crystallized and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs because it is possible to determine multiple structures of the thermostabilized receptors bound to low-affinity ligands. Protocols and advice are given on how to develop thermostability assays for MPs and how to combine mutations to make an optimally stable mutant suitable for structural studies. The steps in the procedure include the generation of ∼300 site-directed mutants by Ala/Leu scanning mutagenesis, the expression of each mutant in mammalian cells by transient transfection and the identification of thermostable mutants using a thermostability assay that is based on binding of an (125)I-labeled radioligand to the unpurified, detergent-solubilized MP. Individual thermostabilizing point mutations are then combined to make an optimally stable MP that is suitable for structural biology and other biophysical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A. Thomas
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
49
|
Shah MB, Jang HH, Wilderman PR, Lee D, Li S, Zhang Q, Stout CD, Halpert JR. Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Biophys Chem 2016; 216:1-8. [PMID: 27280734 DOI: 10.1016/j.bpc.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022]
Abstract
Multiple crystal structures of CYP2B4 have demonstrated the binding of the detergent 5-cyclohexyl-1-pentyl-β-D-maltoside (CYMAL-5) in a peripheral pocket located adjacent to the active site. To explore the consequences of detergent binding, X-ray crystal structures of the peripheral pocket mutant CYP2B4 F202W were solved in the presence of hexaethylene glycol monooctyl ether (C8E6) and CYMAL-5. The structure in the presence of CYMAL-5 illustrated a closed conformation indistinguishable from the previously solved wild-type. In contrast, the F202W structure in the presence of C8E6 revealed a detergent molecule that coordinated the heme-iron and extended to the protein surface through the substrate access channel 2f. Despite the overall structural similarity of these detergent complexes, remarkable differences were observed in the A, A', and H helices, the F-G cassette, the C-D and β4 loop region. Hydrogen-deuterium exchange mass spectrometry (DXMS) was employed to probe these differences and to test the effect of detergents in solution. The presence of either detergent increased the H/D exchange rate across the plastic regions, and the results obtained by DXMS in solution were consistent in general with the relevant structural snapshots. The study provides insight into effect of detergent binding and the interpretation of associated conformational dynamics of CYP2B4.
Collapse
Affiliation(s)
- Manish B Shah
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States.
| | - Hyun-Hee Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - P Ross Wilderman
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| | - David Lee
- The Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sheng Li
- The Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Qinghai Zhang
- The Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - C David Stout
- The Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
50
|
Frauenfeld J, Löving R, Armache JP, Sonnen AFP, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JAG, Garoff H, Löw C, Cheng Y, Nordlund P. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 2016; 13:345-51. [PMID: 26950744 PMCID: PMC4894539 DOI: 10.1038/nmeth.3801] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state.
Collapse
Affiliation(s)
- Jens Frauenfeld
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robin Löving
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jean-Paul Armache
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Andreas F-P Sonnen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Fatma Guettou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Moberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lin Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | | | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Henrik Garoff
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,EMBL Hamburg, Hamburg, Germany
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, USA
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|