1
|
Carling RS, Witek K, Emmett EC, Gallagher C, Moat SJ. Urine organic acid metabolomic profiling by gas chromatography mass spectrometry: Assessment of solvent extract evaporation parameters on the recovery of key diagnostic metabolites. Clin Chim Acta 2024; 565:120015. [PMID: 39447825 DOI: 10.1016/j.cca.2024.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Analysis of urinary organic acids (UOAs) by gas chromatography mass-spectrometry (GC-MS) is widely used in metabolomic studies. It is a complex test with many limitations and pitfalls yet there is limited evidence in the literature to support best practice. This study investigated the impact of drying down time and temperature on the recovery of 16 key analytes from solvent extracts. METHODS Pooled urine specimens were enriched with organic acids. Urine aliquots (n = 3) were acidified and extracted into diethyl ether and ethyl acetate. Extracts were dried under nitrogen at ambient temperature (25 °C); 40 °C; 60 °C then left for 0; +5; +15 min. Dried extracts were derivatised with N,O,-bis-(trimethylsilyl)trifluoroacetamide prior to analysis by GC-MS. Urine specimens from individuals with biotinidase deficiency, maple syrup urine disease (MSUD) and ketotic hypoglycemia were analysed to demonstrate the potential clinical impact. RESULTS Recovery of shorter chain hydroxycarboxylic acids decreased significantly when extracts were dried above 25 °C (mean recovery 89 % at 60 °C, p < 0.01) or left under nitrogen post-drying (mean recovery at ambient + 15 min, 40 °C + 15mins and 60 °C + 15mins was 56 %, 12 % and 2 %, respectively, p < 0.01). Whilst dicarboxylic acids/medium chain fatty acids were unaffected by temperature (mean recovery 100 %), prolonged drying reduced recovery (mean recovery 85 % at 60 °C + 15mins, p < 0.01). CONCLUSIONS Evaporation of solvent extracts with heat and/or prolonged drying under nitrogen results in significant losses of the shorter chain hydroxycarboxylic acids. The evaporation protocol must be carefully controlled to ensure accurate and reproducible results, preventing misdiagnoses and/or misinterpretation of results.
Collapse
Affiliation(s)
- Rachel S Carling
- GKT School Medical Education, Kings College London, Strand, London WC2R 2LS, UK; Biochemical Sciences, Synnovis, Guys & St Thomas' NHSFT, London, UK.
| | - Karolina Witek
- Biochemical Sciences, Synnovis, Guys & St Thomas' NHSFT, London, UK
| | - Erin C Emmett
- Biochemical Sciences, Synnovis, Guys & St Thomas' NHSFT, London, UK
| | - Claire Gallagher
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff CF14 4XW, UK
| | - Stuart J Moat
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff CF14 4XW, UK; School of Medicine, Cardiff University, University Hospital Wales, Cardiff CF14 4XN, UK
| |
Collapse
|
2
|
Jasinge E, Fernando M, Indika NLR, Ratnayake PD, Gamaathige N, Ratnaranjith R, Schroeder S, Jones P, Volha S, Jayasena S, Gunaratna AV, Bandara Ekanayake AN, Rolfs A. Clinical, biochemical, and molecular profiles of three Sri Lankan neonates with pyruvate carboxylase deficiency. ADVANCES IN LABORATORY MEDICINE 2024; 5:205-212. [PMID: 38939194 PMCID: PMC11206181 DOI: 10.1515/almed-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 06/29/2024]
Abstract
Objectives Pyruvate carboxylase, a mitochondrial enzyme, catalyses the conversion of glycolytic end-product pyruvate to tricarboxylic acid cycle intermediate, oxaloacetate. Rare pyruvate carboxylase deficiency manifests in three clinical and biochemical phenotypes: neonatal onset type A, infantile onset type B and a benign C type. The objective of this case series is to expand the knowledge of overlapping clinical and biochemical phenotypes of pyruvate carboxylase deficiency. Case presentation We report three Sri Lankan neonates including two siblings, of two unrelated families with pyruvate carboxylase deficiency. All three developed respiratory distress within the first few hours of birth. Two siblings displayed typical biochemical findings reported in type B. The other proband with normal citrulline, lysine, moderate lactate, paraventricular cystic lesions, bony deformities, and a novel missense, homozygous variant c.2746G>C [p.(Asp916His)] in the PC gene, biochemically favoured type A. Conclusions Our findings indicate the necessity of prompt laboratory investigations in a tachypneic neonate with coexisting metabolic acidosis, as early recognition is essential for patient management and family counselling. Further case studies are required to identify overlapping symptoms and biochemical findings in different types of pyruvate carboxylase deficiency phenotypes.
Collapse
Affiliation(s)
- Eresha Jasinge
- Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Mihika Fernando
- Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Neluwa-Liyanage Ruwan Indika
- Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Nalin Gamaathige
- Neonatal Intensive Care Unit, De Soysa Hospital for Women, Colombo 8, Sri Lanka
| | | | | | - Patricia Jones
- Children’s Medical Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Subhashinie Jayasena
- Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | | | | | | |
Collapse
|
3
|
Jasinge E, Fernando M, Indika NLR, Ratnayake PD, Gamaathige N, Ratnaranjith R, Schroeder S, Jones P, Volha S, Jayasena S, Gunaratna AV, Ekanayake ANB, Rolfs A. Perfiles clínicos, bioquímicos y moleculares de tres neonatos de Sri Lanka con déficit de piruvato carboxilasa. ADVANCES IN LABORATORY MEDICINE 2024; 5:213-220. [PMID: 38939210 PMCID: PMC11206187 DOI: 10.1515/almed-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 06/29/2024]
Abstract
Objetivos La piruvato carboxilasa (PC), una enzima mitocondrial, cataliza la conversión de piruvato, producto final de la glucólisis, en oxaloacetato, un intermediario del ciclo del ácido tricarboxílico. El déficit de piruvato carboxilasa, un trastorno raro, se manifiesta en tres fenotipos clínicos y bioquímicos: tipo de inicio neonatal (tipo A), tipo de inicio infantil (tipo B) y un tipo benigno (tipo C). Caso clínico Presentamos el caso de tres neonatos de Sri Lanka, incluidos dos hermanos, de dos familias no emparentadas, con déficit de piruvato carboxilasa (DPC). Los tres desarrollaron dificultad respiratoria en las primeras horas de vida. Los dos hermanos presentaron las alteraciones bioquímicas típicas del tipo B. El tercer neonato presentaba niveles normales de citrulina y lisina, niveles moderados de lactato, lesiones quísticas paraventriculares, deformidades óseas y una nueva variante homocigótica sin sentido c.2746G>C [p.(Asp916His)] en el gen PC , indicativos bioquímicos de DPC tipo A. Conclusiones Nuestros hallazgos indican la urgencia de realizar estudios analíticos en los neonatos que presenten taquipnea con acidosis metabólica concomitante, dado que la identificación temprana es crucial para el manejo del paciente y la prestación de consejo genético a la familia. Son necesarios más estudios para identificar los síntomas y alteraciones bioquímicas concurrentes en los diferentes fenotipos de déficit de piruvato carboxilasa.
Collapse
Affiliation(s)
- Eresha Jasinge
- Departamento de Patología Química, Hospital Pediátrico Lady Ridgeway, Colombo 8, Sri Lanka
| | - Mihika Fernando
- Departamento de Patología Química, Hospital Pediátrico Lady Ridgeway, Colombo 8, Sri Lanka
| | - Neluwa-Liyanage Ruwan Indika
- Departamento de Patología Química, Hospital Pediátrico Lady Ridgeway, Colombo 8, Sri Lanka
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Nalin Gamaathige
- Unidad de Cuidados Intesivos Neonatales, Hospital Maternal De Soysa Hospital, Colombo 8, Sri Lanka
| | | | | | - Patricia Jones
- Centro médico infantil, Centro médico Southwestern de la Universidad de Texas, Dallas, TX, EEUU
| | | | - Subhashinie Jayasena
- Departamento de Patología Química, Hospital Pediátrico Lady Ridgeway, Colombo 8, Sri Lanka
| | | | | | | |
Collapse
|
4
|
Baker PR. Recognizing and Managing a Metabolic Crisis. Pediatr Clin North Am 2023; 70:979-993. [PMID: 37704355 DOI: 10.1016/j.pcl.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In some relatively common inborn errors of metabolism there can be the accumulation of toxic compounds including ammonia and organic acids such as lactate and ketoacids, as well as energy deficits at the cellular level. The clinical presentation is often referred to as a metabolic emergency or crisis. Fasting and illness can result in encephalopathy within hours, and without appropriate recognition and intervention, the outcome may be permanent disability or death. This review outlines easy and readily available means of recognizing and diagnosing a metabolic emergency as well as general guidelines for management. Disease-specific interventions focus on parenteral nutrition to reverse catabolism, toxin removal strategies, and vitamin/nutrition supplementation.
Collapse
Affiliation(s)
- Peter R Baker
- University of Colorado, Children's Hospital Colorado, 13123 East 16th Avenue, Box 300, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Wongkittichote P, Cuddapah SR, Master SR, Grange DK, Dietzen D, Roper SM, Ganetzky RD. Biochemical characterization of patients with dihydrolipoamide dehydrogenase deficiency. JIMD Rep 2023; 64:367-374. [PMID: 37701333 PMCID: PMC10494496 DOI: 10.1002/jmd2.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 μmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Sanmati R. Cuddapah
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Stephen R. Master
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dorothy K. Grange
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Dennis Dietzen
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Stephen M. Roper
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Rebecca D. Ganetzky
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Wongkittichote P, Pantano C, Bogush E, Alves CAP, Hong X, He M, Demczko MM, Ganetzky RD, Goldstein A. Clinical, radiological, biochemical and molecular characterization of a new case with multiple mitochondrial dysfunction syndrome due to IBA57: Lysine and tryptophan metabolites as potential biomarkers. Mol Genet Metab 2023; 140:107710. [PMID: 37903659 DOI: 10.1016/j.ymgme.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Iron‑sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Cassandra Pantano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Bogush
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cesar Augusto P Alves
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xinying Hong
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Miao He
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew M Demczko
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Phiri MM, Davoren E, Vorster BC. Miniaturization and Automation Protocol of a Urinary Organic Acid Liquid-Liquid Extraction Method on GC-MS. Molecules 2023; 28:5927. [PMID: 37570898 PMCID: PMC10420839 DOI: 10.3390/molecules28155927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to improve the extraction method for urinary organic acids by miniaturizing and automating the process. Currently, manual extraction methods are commonly used, which can be time-consuming and lead to variations in test results. To address these issues, we reassessed and miniaturized the in-house extraction method, reducing the number of steps and the sample-to-solvent volumes required. The evaluated miniaturized method was translated into an automated extraction procedure on a MicroLab (ML) Star (Hamilton Technologies) liquid handler. This was then validated using samples obtained from the ERNDIM External Quality Assurance program. The organic acid extraction method was successfully miniaturized and automated using the Autosampler robot. The linear range for most of the thirteen standard analytes fell between 0 to 300 mg/L in spiked synthetic urine, with low (50 mg/L), medium (100 mg/L), and high (500 mg/L) levels. The correlation coefficient (r) for most analytes was >0.99, indicating a strong relationship between the measured values. Furthermore, the automated extraction method demonstrated acceptable precision, as most organic acids had coefficients of variation (CVs) below 20%. In conclusion, the automated extraction method provided comparable or even superior results compared to the current in-house method. It has the potential to reduce solvent volumes used during extraction, increase sample throughput, and minimize variability and random errors in routine diagnostic settings.
Collapse
Affiliation(s)
- Masauso Moses Phiri
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka 10101, Zambia
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | - Elmarie Davoren
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa
| | | |
Collapse
|
8
|
Zhao B, Chen P, She X, Chen X, Ni Z, Zhou D, Yu Z, Liu C, Huang X. China nationwide landscape of 16 types inherited metabolic disorders: a retrospective analysis on 372,255 clinical cases. Orphanet J Rare Dis 2023; 18:228. [PMID: 37537594 PMCID: PMC10398906 DOI: 10.1186/s13023-023-02834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Inherited metabolic disorders (IMDs) usually occurs at young age and hence it severely threatening the health and life of young people. While so far there lacks a comprehensive study which can reveals China's nationwide landscape of IMDs. This study aimed to evaluate IMDs incidence and regional distributions in China at a national and province level to guide clinicians and policy makers. METHODS The retrospective study conducted from January 2012 to March 2021, we analyzed and characterized 372255 cases' clinical test information and diagnostic data from KingMed Diagnostics Laboratory. The samples were from 32 provincial regions of China, the urine organic acids were detected by gas chromatography-mass spectrometry (GC-MS), amino acids and acylcarnitines in dried blood spots were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We did a statistical analysis of the distribution of the 16 most common IMDs in amino acid disorders and organic acidemias, and then paid special attention to analyze the age and regional distributions of different IMDs. The statistical analyses and visualization analysis were performed with the programming language R (version 4.2.1). RESULTS There were 4911 positive cases diagnosed, which was 1.32% of the total sample during the ten-year study period. Most diseases tended to occur at ages younger than 18 year-old. The Ornithine Transcarbamylase Deficiency tended to progress on male infants who were less than 28 days old. While the peak of the positive case number of Citrin Deficiency disease (CD) was at 1-6 months. Different IMDs' had different distribution patterns in China's provinces. Methylmalonic Acidemias and Hyperphenylalaninemia had an imbalanced distribution pattern in China and its positive rate was significantly higher in North China than South China. Conversely, the positive rate of CD was significantly higher in South China than North China. CONCLUSIONS Results of this work, such as the differences in distribution pattern of different diseases in terms of age, region, etc. provide important insights and references for clinicians, researchers and healthcare policy makers. The policy makers could optimize the better health screening programs for covering children and infants in specific ages and regions based on our findings.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Genetic Disease Diagnositc, Guangzhou International Bioisand, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Peichun Chen
- Shenzhen Guangming Maternity and Child Healthcare Hospital, University of Chinese Academy of Science, No.39 of Huaxia Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Xuhui She
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Xiuru Chen
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Zhou Ni
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
| | - Zinan Yu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China
| | - Chang Liu
- Clinical Mass Spectrometry Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou International Bioisland, No.10 Luoxuan Third Road, Guangzhou City, 510005, Guangdong Province, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bisheng Road, Hangzhou City, 310052, Zhejiang Province, China.
| |
Collapse
|
9
|
Quantification of Gut Microbiota Dysbiosis-Related Organic Acids in Human Urine Using LC-MS/MS. Molecules 2022; 27:molecules27175363. [PMID: 36080134 PMCID: PMC9457824 DOI: 10.3390/molecules27175363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Urine organic acid contains water-soluble metabolites and/or metabolites—derived from sugars, amino acids, lipids, vitamins, and drugs—which can reveal a human’s physiological condition. These urine organic acids—hippuric acid, benzoic acid, phenylacetic acid, phenylpropionic acid, 4-hydroxybenzoic acid, 4-hydroxyphenyl acetic acid, 3-hydroxyphenylpropionic acid, 3,4-dihydroxyphenyl propionic acid, and 3-indoleacetic acid—were the eligible candidates for the dysbiosis of gut microbiota. The aim of this proposal was to develop and to validate a liquid chromatography−tandem mass spectrometry (LC-MS/MS) bioanalysis method for the nine organic acids in human urine. Stable-labeled isotope standard (creatinine-d3) and acetonitrile were added to the urine sample. The supernatant was diluted with deionized water and injected into LC-MS/MS. This method was validated with high selectivity for the urine sample, a low limit of quantification (10−40 ng/mL), good linearity (r > 0.995), high accuracy (85.8−109.7%), and high precision (1.4−13.3%). This method simultaneously analyzed creatinine in urine, which calibrates metabolic rate between different individuals. Validation has been completed for this method; as such, it could possibly be applied to the study of gut microbiota clinically.
Collapse
|
10
|
Khan ZUN, Chand P, Majid H, Ahmed S, Khan AH, Jamil A, Ejaz S, Wasim A, Khan KA, Jafri L. Urinary metabolomics using gas chromatography-mass spectrometry: potential biomarkers for autism spectrum disorder. BMC Neurol 2022; 22:101. [PMID: 35300604 PMCID: PMC8932302 DOI: 10.1186/s12883-022-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Diagnosis of autism spectrum disorder (ASD) is generally made phenotypically and the hunt for ASD-biomarkers continues. The purpose of this study was to compare urine organic acids profiles of ASD versus typically developing (TD) children to identify potential biomarkers for diagnosis and exploration of ASD etiology. METHODS This case control study was performed in the Department of Pathology and Laboratory Medicine in collaboration with the Department of Pediatrics and Child Health, Aga Khan University, Pakistan. Midstream urine was collected in the first half of the day time before noon from the children with ASD diagnosed by a pediatric neurologist based on DSM-5 criteria and TD healthy controls from August 2019 to June 2021. The urine organic acids were analyzed by Gas Chromatography-Mass Spectrometry. To identify potential biomarkers for ASD canonical linear discriminant analysis was carried out for the organic acids, quantified in comparison to an internal standard. RESULTS A total of 85 subjects were enrolled in the current study. The mean age of the ASD (n = 65) and TD groups (n = 20) was 4.5 ± 2.3 and 6.4 ± 2.2 years respectively with 72.3% males in the ASD group and 50% males in the TD group. Parental consanguinity was 47.7 and 30% in ASD and TD groups, respectively. The common clinical signs noted in children with ASD were developmental delay (70.8%), delayed language skills (66.2%), and inability to articulate sentences (56.9%). Discriminant analysis showed that 3-hydroxyisovalericc, homovanillic acid, adipic acid, suberic acid, and indole acetic were significantly different between ASD and TD groups. The biochemical classification results reveal that 88.2% of cases were classified correctly into ASD& TD groups based on the urine organic acid profiles. CONCLUSION 3-hydroxy isovaleric acid, homovanillic acid, adipic acid, suberic acid, and indole acetic were good discriminators between the two groups. The discovered potential biomarkers could be valuable for future research in children with ASD.
Collapse
Affiliation(s)
- Zaib Un Nisa Khan
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Prem Chand
- Department of Pediatrics & Child Health AKU, Karachi, Pakistan
| | - Hafsa Majid
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Sibtain Ahmed
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Aysha Habib Khan
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Azeema Jamil
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Saba Ejaz
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| | - Ambreen Wasim
- Department of Pathology and Laboratory Medicine AKU, Karachi, Pakistan
| | | | - Lena Jafri
- Department of Pathology and Laboratory Medicine AKU, Section of Chemical Pathology, Karachi, Pakistan
| |
Collapse
|
11
|
Fang H, Xie A, Du M, Li X, Yang K, Fu Y, Yuan X, Fan R, Yu W, Zhou Z, Sang T, Nie K, Li J, Zhao Q, Chen Z, Yang Y, Hong C, Lyu J. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med 2022; 14:eabl6992. [PMID: 35235340 DOI: 10.1126/scitranslmed.abl6992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Anran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Miaomiao Du
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Xueyun Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318000, China
| | - Kaiqiang Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinxu Fu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangshu Yuan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Runxiao Fan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weidong Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuohua Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiantian Sang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Chaoyang Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
12
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann Lab Med 2022; 42:121-140. [PMID: 34635606 PMCID: PMC8548246 DOI: 10.3343/alm.2022.42.2.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
The process of method development for a diagnostic assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and specialties. Additionally, method development details are typically not disclosed in journal publications. Method developers may need to search widely for pertinent information on their assay(s). This review summarizes the current practices and procedures in method development. Additionally, it probes aspects of method development that are generally not discussed, such as how exactly to calibrate an assay or where to place quality controls, using examples from the literature. This review intends to provide a comprehensive resource and induce critical thinking around the experiments for and execution of developing a clinically meaningful LC-MS/MS assay.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
13
|
The Investigation of Metabonomic Pathways of Serum of Iranian Women with Recurrent Miscarriage Using 1H NMR. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3422138. [PMID: 34778450 PMCID: PMC8580660 DOI: 10.1155/2021/3422138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022]
Abstract
Purpose Recurrent miscarriage applies to pregnancy loss expulsion of the fetus within the first 24 weeks of pregnancy. This study is aimed at comparatively investigating the sera of women with RM with those who have no record of miscarriages to identify if there were any metabolite and metabolic pathway differences using 1H NMR spectroscopy. Methods Serum samples were collected from women with RM (n = 30) and those who had no records of RM (n = 30) to obtain metabolomics information. 1H NMR spectroscopy was carried out on the samples using Carr Purcell Meiboom Gill spin echo; also, Partial Least Squares Discriminant Analysis was performed in MATLAB software using the ProMetab program to obtain the classifying chemical shifts; the metabolites were identified by using the Human Metabolome Database (HMDB) in both the experimental and control groups. The pathway analysis option of the Metaboanalyst.ca website was used to identify the changed metabolic pathways. Results The results of the study revealed that 14 metabolites were different in the patients with RM. Moreover, the pathway analysis showed that taurine and hypotaurine metabolism along with phenylalanine, tyrosine, and tryptophan biosynthesis was significantly different in patients with RM. Conclusion The present study proposes that any alteration in the above metabolic pathways might lead to metabolic dysfunctions which may result in a higher probability of RM.
Collapse
|
14
|
Zuo L, Chen Z, Chen L, Kang J, Shi Y, Liu L, Zhang S, Jia Q, Huang Y, Sun Z. Integrative Analysis of Metabolomics and Transcriptomics Data Identifies Prognostic Biomarkers Associated With Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:750794. [PMID: 34692531 PMCID: PMC8529182 DOI: 10.3389/fonc.2021.750794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most malignant neoplasm in oral cancer. There is growing evidence that its progression involves altered metabolism. The current method of evaluating prognosis is very limited, and metabolomics may provide a new approach for quantitative evaluation. The aim of the study is to evaluate the use of metabolomics as prognostic markers for patients with OSCC. Methods An analytical platform, Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS), was used to acquire the serum fingerprinting profiles from a total of 103 patients of OSCC before and after the operation. In total, 103 OSCC patients were assigned to either a training set (n = 73) or a test set (n = 30). The potential biomarkers and the changes of serum metabolites were profiled and correlated with the clinicopathological parameters and survival of the patients by statistical analysis. To further verify our results, we linked them to gene expression using data from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Results In total, 14 differential metabolites and five disturbed pathways were identified between the preoperative group and postoperative group. Succinic acid change-low, hypoxanthine change-high tumor grade, and tumor stage indicated a trend towards improved recurrence-free survival (RFS), whether in a training set or a test set. In addition, succinic acid change-low, hypoxanthine change-high, and tumor grade provided the highest predictive accuracy of the patients with OSCC. KEGG enrichment analysis showed that the imbalance in the amino acid and purine metabolic pathway may affect the prognosis of OSCC. Conclusions The changes of metabolites before and after operation may be related to the prognosis of OSCC patients. UHPLC-Q-Orbitrap HRMS serum metabolomics analysis could be used to further stratify the prognosis of patients with OSCC. These results can better understand the mechanisms related to early recurrence and help develop more effective therapeutic targets.
Collapse
Affiliation(s)
- Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihuang Chen
- School and Hospital of Stomatology, Weifang Medical University, Weifang, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuhua Zhang
- Clinical Laboratory, Chongqing Southeast Hospital, Chongqing, China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Huang
- Research and Development Department, Chongqing Huangjia Biotechnology Limited Company, Chongqing, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lotz-Havla AS, Weiß KJ, Schiergens KA, Brunet T, Kohlhase J, Regenauer-Vandewiele S, Maier EM. Subcutaneous vitamin B12 administration using a portable infusion pump in cobalamin-related remethylation disorders: a gentle and easy to use alternative to intramuscular injections. Orphanet J Rare Dis 2021; 16:215. [PMID: 33980297 PMCID: PMC8114704 DOI: 10.1186/s13023-021-01847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Cobalamin (cbl)-related remethylation disorders are a heterogeneous group of inherited disorders comprising the remethylation of homocysteine to methionine and affecting multiple organ systems, most prominently the nervous system and the bone marrow. To date, the parenteral, generally intramuscular, lifelong administration of hydroxycobalamin (OHCbl) is the mainstay of therapy in these disorders. The dosage and frequency of OHCbl is titrated in each patient to the minimum effective dose in order to account for the painful injections. This may result in undertreatment, a possible risk factor for disease progression and disease-related complications. Results We describe parenteral administration of OHCbl using a subcutaneous catheter together with a portable infusion pump in a home therapy setting in four pediatric patients with remethylation disorders, two patients with cblC, one patient with cblG, and one patient with cblE deficiency, in whom intramuscular injections were not or no longer feasible. The placement of the subcutaneous catheters and handling of the infusion pump were readily accomplished and well accepted by the patients and their families. No adverse events occurred. The use of a small, portable syringe driver pump allowed for a most flexible administration of OHCbl in everyday life. The concentrations of total homocysteine levels were determined at regular patient visits and remained within the therapeutic target range. This approach allowed for the continuation of OHCbl therapy or the adjustment of therapy required to improve metabolic control in our patients. Conclusions Subcutaneous infusion using a subcutaneous catheter system and a portable pump for OHCbl administration in combined and isolated remethylation disorders is safe, acceptable, and effective. It decreases disease burden in preventing frequent single injections and providing patient independence. Thus, it may promote long-term adherence to therapy in patients and parents.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina J Weiß
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina A Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, 81675, Munich, Germany
| | - Jürgen Kohlhase
- SYNLAB Center for Human Genetics, Heinrich-von-Stephan-Str. 5, 79100, Freiburg, Germany
| | - Stephanie Regenauer-Vandewiele
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
16
|
Statistical Optimization of Urinary Organic Acids Analysis by a Multi-Factorial Design of Experiment. ANALYTICA 2020. [DOI: 10.3390/analytica1010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The analysis of urinary organic acids is useful for patients suspected to have inborn errors of metabolism known as organic acidurias. These diseases cause an accumulation of organic acids in body fluids and their abnormal excretion in urines. By means of chemometrics tools, such as principal component analysis and multiple linear regression, it was concluded that the conditions used in our laboratory are really the most suitable to achieve high yields of analytes.
Collapse
|
17
|
Katz ML, Buckley RM, Biegen V, O'Brien DP, Johnson GC, Warren WC, Lyons LA. Neuronal Ceroid Lipofuscinosis in a Domestic Cat Associated with a DNA Sequence Variant That Creates a Premature Stop Codon in CLN6. G3 (BETHESDA, MD.) 2020; 10:2741-2751. [PMID: 32518081 PMCID: PMC7407459 DOI: 10.1534/g3.120.401407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory and Department of Ophthalmology,
| | | | | | | | | | - Wesley C Warren
- Life Sciences Center, University of Missouri, Columbia, MO and
| | | |
Collapse
|
18
|
Messina M, Arena A, Fiumara A, Iacobacci R, Meli C, Raudino F. Neonatal Screening on Tandem Mass Spectrometry as a Powerful Tool for the Reassessment of the Prevalence of Underestimated Diseases in Newborns and Their Family Members: A Focus on Short Chain Acyl-CoA Dehydrogenase Deficiency. Int J Neonatal Screen 2020; 6:ijns6030058. [PMID: 33239584 PMCID: PMC7569892 DOI: 10.3390/ijns6030058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
Early detection of disabling diseases, prior to clinical manifestations, is the primary goal of newborn screening (NS). Indeed, the required number of core and secondary conditions selected for screening panels is increasing in many countries. Furthermore, newborn screening can lead to diagnosis of maternal diseases such as vitamin B12 deficiency or 3-MethylcrotonylCoA-carboxylase deficiency (3MCC). NS became mandatory in Sicily in December 2017. Here we report NS data collected between December 2017 and April 2020. Our results show that tandem mass spectrometry is a powerful tool for discovery of underestimated disease in newborns and their family members. Our panel included short chain acyl-CoA dehydrogenase deficiency (SCADD). Here, we report that results of our investigation led to reassessment of SCADD prevalence in our population. The infant and adult patients diagnosed in our study had previously not shown overt symptoms.
Collapse
|
19
|
Sarandi E, Thanasoula M, Anamaterou C, Papakonstantinou E, Geraci F, Papamichael MM, Itsiopoulos C, Tsoukalas D. Metabolic profiling of organic and fatty acids in chronic and autoimmune diseases. Adv Clin Chem 2020; 101:169-229. [PMID: 33706889 DOI: 10.1016/bs.acc.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a powerful tool of omics that permits the simultaneous identification of metabolic perturbations in several autoimmune and chronic diseases. Several parameters can affect a metabolic profile, from the population characteristics to the selection of the analytical method. In the current chapter, we summarize the main analytical methods and results of the metabolic profiling of fatty and organic acids performed in human metabolomic studies for asthma, COPD, psoriasis and Hashimoto's thyroiditis. We discuss the most significant metabolic alterations associated with these diseases, after comparison of either a single patient's group with healthy controls or several patient's subgroups of different disease severity and phenotype with healthy controls or of a patient's group before and after treatment. Finally, we present critical metabolic patterns that are associated with each disease and their potency for the unraveling of disease pathogenesis, prediction, diagnosis, patient stratification and treatment selection.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Metabolomic Medicine Clinic, Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | | | | | - Francesco Geraci
- European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | - Maria Michelle Papamichael
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy.
| |
Collapse
|
20
|
Caterino M, Ruoppolo M, Villani GRD, Marchese E, Costanzo M, Sotgiu G, Dore S, Franconi F, Campesi I. Influence of Sex on Urinary Organic Acids: A Cross-Sectional Study in Children. Int J Mol Sci 2020; 21:ijms21020582. [PMID: 31963255 PMCID: PMC7013514 DOI: 10.3390/ijms21020582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of urinary metabolome, which provides a fingerprint for each individual, is an important step to reach personalized medicine. It is influenced by exogenous and endogenous factors; among them, we investigated sex influences on 72 organic acids measured through GC-MS analysis in the urine of 291 children (152 males; 139 females) aging 1–36 months and stratified in four groups of age. Among the 72 urinary metabolites, in all age groups, 4-hydroxy-butirate and homogentisate are found only in males, whereas 3-hydroxy-dodecanoate, methylcitrate, and phenylacetate are found only in females. Sex differences are still present after age stratification being more numerous during the first 6 months of life. The most relevant sex differences involve the mitochondria homeostasis. In females, citrate cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate, glutamate, and butanoate metabolism had the highest impact. In males, urinary organic acids were involved in phenylalanine metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, butanoate metabolism, and glyoxylate and dicarboxylate metabolism. In addition, age specifically affected metabolic pathways, the phenylalanine metabolism pathway being affected by age only in males. Relevantly, the age-influenced ranking of metabolic pathways varied in the two sexes. In conclusion, sex deeply influences both quantitatively and qualitatively urinary organic acids levels, the effect of sex being age dependent. Importantly, the sex effects depend on the single organic acid; thus, in some cases the urinary organic acid reference values should be stratified according the sex and age.
Collapse
Affiliation(s)
- Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
- Correspondence: (M.R.); (I.C.); Tel.: +39-08-1373-7850 (M.R.); +39-0-7922-8518 (I.C.)
| | - Guglielmo Rosario Domenico Villani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Emanuela Marchese
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
- Department of Mental and Physical Health, Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.S.); (S.D.)
| | - Simone Dore
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.S.); (S.D.)
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.R.); (I.C.); Tel.: +39-08-1373-7850 (M.R.); +39-0-7922-8518 (I.C.)
| |
Collapse
|
21
|
Rendu J, Van Noolen L, Garrel C, Brocard J, Marty I, Corne C, Fauré J, Besson G. Familial deep cavitating state with a glutathione metabolism defect. Ann Clin Transl Neurol 2019; 6:2573-2578. [PMID: 31705625 PMCID: PMC6917305 DOI: 10.1002/acn3.50933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/07/2022] Open
Abstract
Adult genetic disorders causing brain lesions have been mostly described as white matter vanishing diseases. We present here the investigations realized in patients referred for psychiatric disorder with magnetic resonance imaging showing atypical basal ganglia lesions. Genetic explorations of this family revealed a new hereditary disease linked to glutathione metabolism.
Collapse
Affiliation(s)
- John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | | | | | - Julie Brocard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - Isabelle Marty
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | | | - Julien Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Gérard Besson
- Department of Neurology, CHU, Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
22
|
Phipps WS, Jones PM, Patel K. Amino and organic acid analysis: Essential tools in the diagnosis of inborn errors of metabolism. Adv Clin Chem 2019; 92:59-103. [PMID: 31472756 DOI: 10.1016/bs.acc.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inborn errors of metabolism (IEMs) are a large class of genetic disorders that result from defects in enzymes involved in energy production and metabolism of nutrients. For every metabolic pathway, there are defects that can occur and potentially result in an IEM. While some defects can go undetected in one's lifetime, some have moderate to severe clinical consequences. In the latter case, the biochemical defect leads to accumulation of metabolites and byproducts that are toxic or interfere with normal biological function. Disorders of amino acid metabolism, organic acid metabolism and the urea cycle comprise a large portion of IEMs. Two essential tools required for the diagnosis of these categories of disorders are amino acid and organic acid profiling. Most all clinical laboratories offering metabolic testing perform amino acid analysis, while organic acid profiling is restricted to more specialized pediatric hospitals and reference laboratories. In this chapter, we will provide an overview of various methodologies employed for amino acid and organic acid profiling as well as specific examples to demonstrate how these techniques are applied in clinical laboratories for the diagnosis of IEMs.
Collapse
Affiliation(s)
- William S Phipps
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Patti M Jones
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Khushbu Patel
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
23
|
Mathew EM, Lewis L, Rao P, Nalini K, Kamath A, Moorkoth S. Novel HILIC-ESI-MS method for urinary profiling of MSUD and methylmalonic aciduria biomarkers. J Chromatogr Sci 2019; 57:715-723. [PMID: 31251316 DOI: 10.1093/chromsci/bmz045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/01/2018] [Accepted: 05/17/2019] [Indexed: 11/15/2022]
Abstract
Methyl malonic acid and branched-chain keto acids are important biomarkers for the diagnosis of cobalamin deficiencies and maple syrup urine disease. We report the development and validation of a HILIC-ESI-MS2 method for the quantification of these organic acids from neonatal urine. The samples were 100 times diluted and analyzed on a ZIC-HILIC column with 25-mM formic acid in water: 25-mM formic acid in acetonitrile (45:55) at a flow rate of 0.8 mL/min with a runtime of only 6 minutes. The method demonstrated a lower limit of detection of 10 ng/mL, Limit of Quantification (LOQ) of 50 ng/mL, linearity of r2 ≥ 0.990 and recoveries of 87-105% for all analytes. The intraday and interday precision CV's were <10% and 12%, respectively. Extensive stability studies demonstrated the analytes to be stable in stock and in matrix with a percent change within ±15%. The Bland-Altman analysis of the developed method with the gold standard GCMS method demonstrated a bias of 0.44, 0.11, 0.009 and -0.19 for methyl malonic acid, 3-methyl-2-oxovaleric acid, 2-hydroxy-3methylbutyric acid and 4-methyl-2-oxovaleric acid, respectively, proving the methods are comparable. The newly developed method involves no derivatization and has a simple sample preparation and a low runtime, enabling it to be easily automated with a high sample throughput in a cost-effective manner.
Collapse
Affiliation(s)
- Elizabeth Mary Mathew
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Leslie Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Nalini
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Asha Kamath
- Department of Statistics, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
24
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Dhokade P, Mathew EM, Nalini K, Rao P, Lewis L, Moorkoth S. Development and Validation of GC-MS Bioanalytical Method to Detect Organic Acidemia in Neonatal/Pediatric Urine Samples. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1863-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Radha Rama Devi A, Naushad SM. SLC25A13 c.1610_1612delinsAT mutation in an Indian patient and literature review of 79 cases of citrin deficiency for genotype-phenotype associations. Gene 2018; 668:190-195. [PMID: 29787821 DOI: 10.1016/j.gene.2018.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023]
|
27
|
Lotz-Havla AS, Röschinger W, Schiergens K, Singer K, Karall D, Konstantopoulou V, Wortmann SB, Maier EM. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Orphanet J Rare Dis 2018; 13:122. [PMID: 30029694 PMCID: PMC6053800 DOI: 10.1186/s13023-018-0875-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency are long-chain fatty acid oxidation disorders with particularly high morbidity and mortality. Outcome can be favorable if diagnosed in time, prompting the implementation in newborn screening programs. Sporadic cases missed by the initial screening sample have been reported. However, little is known on pitfalls during confirmatory testing resulting in fatal misconception of the diagnosis. Results We report a series of three patients with MTP and LCHAD deficiency, in whom diagnosis was missed by newborn screening, resulting in life-threatening metabolic decompensations within the first half year of life. Two of the patients showed elevated concentrations of primary markers C16-OH and C18:1-OH but were missed by confirmatory testing performed by the maternity clinic. A metabolic center was not consulted. Confirmatory testing consisted of analyses of acylcarnitines in blood and organic acids in urine, the finding of normal excretion of organic acids led to rejection and underestimation of the diagnosis, respectively. The third patient, a preterm infant, was not identified in the initial screening sample due to only moderate elevations of C16-OH and C18:1-OH and normal secondary markers and analyte ratios. Conclusion Our observations highlight limitations of newborn screening for MTP/LCHAD deficiency. They confirm that analyses of acylcarnitines in blood and organic acids in urine alone are not suitable for confirmatory testing and molecular or functional analysis is crucial in diagnosing MTP/LCHAD deficiency. Mild elevations of primary biomarkers in premature infants need to trigger confirmatory testing. Our report underscores the essential role of specialized centers in confirming or ruling out diagnoses in suspicious screening results.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Wulf Röschinger
- Becker and colleagues laboratory, Fuehrichstr. 70, 81671, Munich, Germany
| | - Katharina Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina Singer
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Saskia B Wortmann
- Department of Pediatrics, Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
28
|
Furusawa H, Ichimura Y, Harada S, Uematsu M, Xue S, Nagamine K, Tokito S. Electric Charge Detection of Sparse Organic Acid Molecules Using an Organic Field-Effect Transistor (OFET)-Based Sensor. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hiroyuki Furusawa
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shuhei Harada
- Yonezawa Kojokan High School, 1101 Sasano, Yonezawa, Yamagata 992-1443, Japan
| | - Mayu Uematsu
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shenyao Xue
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kuniaki Nagamine
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
29
|
Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018. [DOI: 10.1038/gim.2018.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
30
|
Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017; 63:1812-1820. [PMID: 29038145 DOI: 10.1373/clinchem.2016.267666] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric clinical laboratories commonly measure tricarboxylic acid cycle intermediates for screening, diagnosis, and monitoring of specific inborn errors of metabolism, such as organic acidurias. In the past decade, the same tricarboxylic acid cycle metabolites have been implicated and studied in cancer. The accumulation of these metabolites in certain cancers not only serves as a biomarker but also directly contributes to cellular transformation, therefore earning them the designation of oncometabolites. CONTENT D-2-hydroxyglutarate, L-2-hydroxyglutarate, succinate, and fumarate are the currently recognized oncometabolites. They are structurally similar and share metabolic proximity in the tricarboxylic acid cycle. As a result, they promote tumorigenesis in cancer cells through similar mechanisms. This review summarizes the currently understood common and distinct biological features of these compounds. In addition, we will review the current laboratory methodologies that can be used to quantify these metabolites and their downstream targets. SUMMARY Oncometabolites play an important role in cancer biology. The metabolic pathways that lead to the production of oncometabolites and the downstream signaling pathways that are activated by oncometabolites represent potential therapeutic targets. Clinical laboratories have a critical role to play in the management of oncometabolite-associated cancers through development and validation of sensitive and specific assays that measure oncometabolites and their downstream effectors. These assays can be used as screening tools and for follow-up to measure response to treatment, as well as to detect minimal residual disease and recurrence.
Collapse
Affiliation(s)
- Rebecca R J Collins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - Khushbu Patel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - William C Putnam
- Office of Clinical and Translational Research, Texas Tech University Health Sciences Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
31
|
Tsoukalas D, Alegakis A, Fragkiadaki P, Papakonstantinou E, Nikitovic D, Karataraki A, Nosyrev AE, Papadakis EG, Spandidos DA, Drakoulis N, Tsatsakis AM. Application of metabolomics: Focus on the quantification of organic acids in healthy adults. Int J Mol Med 2017; 40:112-120. [PMID: 28498405 PMCID: PMC5466383 DOI: 10.3892/ijmm.2017.2983] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolomics, a 'budding' discipline, may accurately reflect a specific phenotype which is sensitive to genetic and epigenetic interactions. This rapidly evolving field in science has been proposed as a tool for the evaluation of the effects of epigenetic factors, such as nutrition, environment, drug and lifestyle on phenotype. Urine, being sterile, is easy to obtain and as it contains metabolized or non-metabolized products, is a favored study material in the field of metabolomics. Urine organic acids (OAs) reflect the activity of main metabolic pathways and have been used to assess health status, nutritional status, vitamin deficiencies and response to xenobiotics. To date, a limited number of studies have been performed which actually define reference OA values in a healthy population and as reference range for epigenetic influences, and not as a reference to congenital metabolic diseases. The aim of the present study was thus the determination of reference values (RVs) for urine OA in a healthy adult population. Targeted metabolomics analysis of 22 OAs in the urine of 122 healthy adults by gas chromatography-mass spectrometry, was conducted. Percentile distributions of the OA concentrations in urine, as a base for determining the RVs in the respective population sample, were used. No significant differences were detected between female and male individuals. These findings can facilitate the more sensitive determination of OAs in pathological conditions. Therefore, the findings of this study may contribute or add to the information already available on urine metabolite databases, and may thus promote the use of targeted metabolomics for the evaluation of OAs in a clinical setting and for pathophysiological evaluation. However, further studies with well-defined patients groups exhibiting specific symptoms or diseases are warranted in order to discern between normal and pathological values.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Athanasios Alegakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | | | - Dragana Nikitovic
- Laboratory of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | | | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15772, Greece
| | - Aristides M Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
32
|
Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li H, Bushman FD, Lewis JD. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016; 65:63-72. [PMID: 25431456 PMCID: PMC4583329 DOI: 10.1136/gutjnl-2014-308209] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/29/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. DESIGN AND RESULTS Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. CONCLUSIONS Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites.
Collapse
Affiliation(s)
- Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlene Compher
- School of Nursing, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Z Chen
- Departments of Biostatistics & Epidemiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah A Smith
- Division of Gastroenterology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachana D Shah
- Divisions of Endocrinolgy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christel Chehoud
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lindsey G Albenberg
- Department of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa Nessel
- Departments of Biostatistics & Epidemiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin Gilroy
- Departments of Biostatistics & Epidemiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Star
- Division of Gastroenterology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aalim M Weljie
- Department of Pharmacology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - David C Metz
- Division of Gastroenterology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Bennett
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hongzhe Li
- Departments of Biostatistics & Epidemiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James D Lewis
- Division of Gastroenterology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA,Departments of Biostatistics & Epidemiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Biegen VR, McCue JP, Donovan TA, Shelton GD. Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog. Front Vet Sci 2015; 2:64. [PMID: 26664991 PMCID: PMC4672276 DOI: 10.3389/fvets.2015.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
Abstract
A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurological examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful, and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurological signs have been described in humans with this group of diseases, descriptions of advanced imaging, and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis, and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.
Collapse
Affiliation(s)
| | | | | | - G Diane Shelton
- The Department of Pathology, School of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
34
|
Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis 2014; 5:3009-21. [PMID: 24320127 DOI: 10.4155/bio.13.269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Intracellular metabolites such as CoA thioesters are modulated in a number of clinical settings. Their accurate measurement from surrogate tissues such as platelets may provide additional information to current serum and urinary biomarkers. METHODS Freshly isolated platelets from healthy volunteers were treated with rotenone, propionate or isotopically labeled metabolic tracers. Using a recently developed LC-MS-based methodology, absolute changes in short-chain acyl-CoA thioesters were monitored, as well as relative metabolic labeling using isotopomer distribution analysis. RESULTS Consistent with in vitro experiments, isolated platelets treated with rotenone showed decreased intracellular succinyl-CoA and increased β-hydroxybutyryl-CoA, while propionate treatment resulted in increased propionyl-CoA. In addition, isotopomers of the CoAs were readily detected in platelets treated with the [(13)C]- or [(13)C(15)N]-labeled metabolic precursors. CONCLUSION Here, we show that human platelets can provide a powerful ex vivo challenge platform with potential clinical diagnostic and biomarker discovery applications.
Collapse
|
35
|
Ostermann KM, Dieplinger R, Lutsch NM, Strupat K, Metz TF, Mechtler TP, Kasper DC. Matrix-assisted laser desorption/ionization for simultaneous quantitation of (acyl-)carnitines and organic acids in dried blood spots. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1497-1504. [PMID: 23722684 DOI: 10.1002/rcm.6597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Screening for inborn errors of metabolism using mass spectrometry is part of nationwide newborn screening programs and involves the detection of disease relevant (acyl-)carnitines and organic acids from dried blood spots. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a well-established tool for proteomics approaches. In recent years, this technique has become more and more integrated in analysis and identification of small metabolites and disease biomarkers in daily clinical laboratories. METHODS We used a combination of both MALDI and high-resolution accurate mass (HR/AM) mass spectrometry using a linear ion trap-Orbitrap for the identification of small molecules from dried blood spots that serve as biomarkers for inborn errors of metabolism. The levels of detected metabolite species were compared between healthy newborns and affected patients with various inborn errors of metabolism using isotopically labeled internal standards and new bioinformatics software, respectively. RESULTS (Acyl-)carnitine levels from normal and affected patients could be quantified and differentiated. Additionally, using the high resolving power of full scan Orbitrap mass spectrometry and novel software tools we demonstrated the identification and quantification of disease-specific organic acids. CONCLUSIONS MALDI-HR/AM and full scan spectra to obtain information for the metabolic status of patients is a promising complementary approach to electrospray ionization mass spectrometry by simplified sample preparation, facilitating the screening of hundreds of metabolites from small sample volumes.
Collapse
Affiliation(s)
- Katharina M Ostermann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Amorini AM, Giorlandino C, Longo S, D’Urso S, Mesoraca A, Santoro ML, Picardi M, Gullotta S, Cignini P, Lazzarino D, Lazzarino G, Tavazzi B. Metabolic profile of amniotic fluid as a biochemical tool to screen for inborn errors of metabolism and fetal anomalies. Mol Cell Biochem 2011; 359:205-16. [DOI: 10.1007/s11010-011-1015-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/27/2011] [Indexed: 01/28/2023]
|