1
|
Arjmand B, Bahrami-Vahdat E, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Namazi N, Larijani B. Human-Induced Pluripotent Stem Cell‒Derived Keratinocytes, as Therapeutic Option in Vitiligo. Methods Mol Biol 2024; 2849:185-202. [PMID: 38189899 DOI: 10.1007/7651_2023_510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Vitiligo is a skin condition affecting 1% of the global population, causing non-scaly, chalky-white macules on the skin and hair. It is caused by the pathologic destruction of melanocytes, which produce melanin. Research has focused on the abnormalities of melanocytes and their interaction with neighboring keratinocytes. Current treatments are mainly immunosuppressive drugs and UV radiation, which are scarce and ineffective. To treat vitiligo, regenerative medicine techniques, such as cell-based and cell-free methods, are recommended. Keratinocyte cell transplantation has shown promising results in treating vitiligo. Moreover, studies suggest individualized therapy for diseases can be provided by reprogramming somatic cells into induced pluripotent stem cells. On the other hand, differentiation into particular cell types is a key component of induced pluripotent stem cells-based treatment. In this chapter, the differentiation and validation of human induced pluripotent stem cells into a keratinocyte as a therapeutic option in vitiligo will be discussed.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
2
|
Figiel-Dabrowska A, Krześniak NE, Noszczyk BH, Domańska-Janik K, Sarnowska A. Efficiency assessment of irrigation as an alternative method for improving the regenerative potential of nonhealing wounds. Wound Repair Regen 2022; 30:303-316. [PMID: 35384136 PMCID: PMC9321893 DOI: 10.1111/wrr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine offers hope for the effective treatment of incurable or difficult‐to‐heal diseases. However, it requires the development of unified protocols for both safe and efficient cell acquisition and clinical usage. The therapeutic effect of fat grafts (containing stem cells) in non‐healing wounds has been discussed in previous studies, although the application requires local or general anaesthesia. The treatment of MSC derived from adipose tissue (ASC) could be a less invasive method, and efficient delivery could lead to more favourable outcomes, which should encourage clinicians to use such therapeutic approaches more frequently. Therefore, the aim of this study was to optimise the methods of ASC isolation, culture and administration while maintaining their high survival, proliferation and colonisation potential. The ASC were isolated by an enzymatic method and were characterised according to International Society for Cellular Therapy and International Federation for Adipose Therapeutics and Science guidelines. To assess the opportunity to obtain a sufficient number of cells for transplantation, long‐term cell cultures in two oxygen concentrations (5% vs. 21%) were conducted. For these cultures, the population doubling time, the cumulative time for cell population doublings and the rate of cell senescence were estimated. In a developed and pre‐defined protocol, ASC can be efficiently cultured at physiological oxygen concentrations (5%), which leads to faster proliferation and slower cell senescence. Subsequently, to select the optimal and minimally invasive methods of ASC transplantation, direct cell application with an irrigator or with skin dressings was analysed. Our results confirmed that both the presented methods of cell application allow for the safe delivery of isolated ASC into wounds without losing their vitality. Cells propagated in the described conditions and applied in non‐invasive cell application (with an irrigation system and dressings) to treat chronic wounds can be a potential alternative or supplement to more invasive clinical approaches.
Collapse
Affiliation(s)
| | - Natalia E Krześniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | - Bartłomiej H Noszczyk
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | | | - Anna Sarnowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Vogel JU, Schmidt S, Schmidt D, Rothweiler F, Koch B, Baer P, Rabenau H, Michel D, Stamminger T, Michaelis M, Cinatl J. The Thrombopoietin Receptor Agonist Eltrombopag Inhibits Human Cytomegalovirus Replication Via Iron Chelation. Cells 2019; 9:cells9010031. [PMID: 31861948 PMCID: PMC7017049 DOI: 10.3390/cells9010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The thrombopoietin receptor agonist eltrombopag was successfully used against human cytomegalovirus (HCMV)-associated thrombocytopenia refractory to immunomodulatory and antiviral drugs. These effects were ascribed to the effects of eltrombopag on megakaryocytes. Here, we tested whether eltrombopag may also exert direct antiviral effects. Therapeutic eltrombopag concentrations inhibited HCMV replication in human fibroblasts and adult mesenchymal stem cells infected with six different virus strains and drug-resistant clinical isolates. Eltrombopag also synergistically increased the anti-HCMV activity of the mainstay drug ganciclovir. Time-of-addition experiments suggested that eltrombopag interfered with HCMV replication after virus entry. Eltrombopag was effective in thrombopoietin receptor-negative cells, and the addition of Fe3+ prevented the anti-HCMV effects, indicating that it inhibits HCMV replication via iron chelation. This may be of particular interest for the treatment of cytopenias after hematopoietic stem cell transplantation, as HCMV reactivation is a major reason for transplantation failure. Since therapeutic eltrombopag concentrations are effective against drug-resistant viruses, and synergistically increase the effects of ganciclovir, eltrombopag is also a drug-repurposing candidate for the treatment of therapy-refractory HCMV disease.
Collapse
Affiliation(s)
- Jens-Uwe Vogel
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Sophie Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Daniel Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Benjamin Koch
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Patrick Baer
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Holger Rabenau
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Detlef Michel
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Thomas Stamminger
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Martin Michaelis
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| |
Collapse
|
4
|
Isolation, Characterization, Differentiation and Immunomodulatory Capacity of Mesenchymal Stromal/Stem Cells from Human Perirenal Adipose Tissue. Cells 2019; 8:cells8111346. [PMID: 31671899 PMCID: PMC6928994 DOI: 10.3390/cells8111346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are immature multipotent cells, which represent a rare population in the perivascular niche within nearly all tissues. The most abundant source to isolate MSCs is adipose tissue. Currently, perirenal adipose tissue is rarely described as the source of MSCs. MSCs were isolated from perirenal adipose tissue (prASCs) from patients undergoing tumor nephrectomies, cultured and characterized by flow cytometry and their differentiation potential into adipocytes, chondrocytes, osteoblasts and epithelial cells. Furthermore, prASCs were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA) or a mixture of cytokines (cytomix). In addition, prASC susceptibility to human cytomegalovirus (HCMV) was investigated. The expression of inflammatory readouts was estimated by qPCR and immunoassay. HCMV infection was analyzed by qPCR and immunostaining. Characterization of cultured prASCs shows the cells meet the criteria of MSCs and prASCs can undergo trilineage differentiation. Cultured prASCs can be induced to differentiate into epithelial cells, shown by cytokeratin 18 expression. Stimulation of prASCs with LPS or cytomix suggests the cells are capable of initiating an inflammation-like response upon stimulation with LPS or cytokines, whereas, LTA did not induce a significant effect on the readouts (ICAM-1, IL-6, TNFα, MCP-1 mRNA and IL-6 protein). HCMV broadly infects prASCs, showing a viral load dependent cytopathological effect (CPE). Our current study summarizes the isolation and culture of prASCs, clearly characterizes the cells, and demonstrates their immunomodulatory potential and high permissiveness for HCMV.
Collapse
|
5
|
Natesan S, Wrice NL, Christy RJ. Peroxisome proliferator‐activated receptor‐α agonist and all‐
trans
retinoic acid induce epithelial differentiation of subcutaneous adipose‐derived stem cells from debrided burn skin. J Cell Biochem 2018; 120:9213-9229. [DOI: 10.1002/jcb.28197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| | - Nicole L. Wrice
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| | - Robert J. Christy
- Combat Trauma and Burn Injury Research United States Army Institute of Surgical Research Fort Sam Houston Texas
| |
Collapse
|
6
|
Wang Z, Sun D. Adipose-Derived Mesenchymal Stem Cells: A New Tool for the Treatment of Renal Fibrosis. Stem Cells Dev 2018; 27:1406-1411. [PMID: 30032706 DOI: 10.1089/scd.2017.0304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As chronic kidney disease progresses, kidney tissue inevitably undergoes cell loss, accumulation of extracellular matrix, and kidney tissue fibrosis, eventually leading to end-stage renal disease. With the continuous innovation of cell therapy technology, mesenchymal stem cells are used in numerous fields, including cardiovascular diseases, diabetes, and kidney tissue injury repair. Adipose-derived mesenchymal stem cells (AMSCs), a type of pluripotent stem cells, have the potential for self-renewal and proliferation with low immunogenicity and significant anti-inflammatory properties. AMSCs can promote impaired cell regeneration and remodeling in renal lesions, thus avoiding further worsening of renal disease and even blocking or reversing the process of renal fibrosis. In this review, we discuss the mechanisms involved in the treatment of renal fibrosis with AMSCs and summarize the potential hazards that may exist in cell therapy.
Collapse
Affiliation(s)
- Zhuojun Wang
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, China
| | - Dong Sun
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, China .,2 Department of Internal Medicine and Diagnostics, Xuzhou Medical University , Xuzhou, China
| |
Collapse
|
7
|
Petry L, Kippenberger S, Meissner M, Kleemann J, Kaufmann R, Rieger UM, Wellenbrock S, Reichenbach G, Zöller N, Valesky E. Directing adipose-derived stem cells into keratinocyte-like cells: impact of medium composition and culture condition. J Eur Acad Dermatol Venereol 2018; 32:2010-2019. [PMID: 29705993 DOI: 10.1111/jdv.15010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASC) are known to transdifferentiate into a wide range of different cell species in vitro including along the epidermal lineage. This property makes them a promising tool for regenerative medicine to restore the epidermal barrier. OBJECTIVE This study is dedicated to identify in vitro conditions enabling transdifferentiation to a keratinocyte-like phenotype. In particular, the impact of different culture conditions (media compositions, 2D, 3D cultures) and extracellular matrix (ECM) molecules was evaluated. METHODS Adipose-derived stem cells derived from subcutaneous abdominal fat were characterized by stemness-associated markers and subjected to different media. Epithelial differentiation in 2D cultures was monitored by pan-cytokeratin expression using flow cytometry and immunocytochemistry. To evaluate the impact of different ECM molecules on epidermal stratification, 3D cultures were produced, lifted to the air-liquid interface (ALI) and examined by histological analysis and quantitative real-time RT-PCR. RESULTS We identified a medium composition containing retinoic acid, hydrocortisone, ascorbic acid and BMP-4 enabling maximum pan-cytokeratin expression in 2D cultures. Moreover, adhesion to type IV collagen further promotes the pan-cytokeratin expression. When cultures were lifted to the ALI, significant stratification was observed, particularly in supports coated with type IV collagen or fibronectin. Moreover, epidermal differentiation markers (involucrin, cytokeratin 1 and 14) become induced. CONCLUSION Conditions with hampered wound healing such as non-healing ulcers demand new treatment regimes. The here introduced optimized protocols for transdifferentiation of ASC into keratinocyte-like cells may help to establish more effective treatment procedures.
Collapse
Affiliation(s)
- L Petry
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - S Kippenberger
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - M Meissner
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - J Kleemann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - R Kaufmann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - U M Rieger
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - S Wellenbrock
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - G Reichenbach
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - N Zöller
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - E Valesky
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
8
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
9
|
New SEP, Ibrahim A, Guasti L, Zucchelli E, Birchall M, Bulstrode NW, Seifalian AM, Ferretti P. Towards reconstruction of epithelialized cartilages from autologous adipose tissue-derived stem cells. J Tissue Eng Regen Med 2016; 11:3078-3089. [PMID: 27804241 DOI: 10.1002/term.2211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
Deformities of the upper airways, including those of the nose and throat, are typically corrected by reconstructive surgery. The use of autologous somatic stem cells for repair of defects could improve quality and outcomes of such operations. The present study explored the ability of paediatric adipose-derived stem cells (pADSCs), a readily available source of autologous stem cells, to generate a cartilage construct with a functional epithelium. Paediatric ADSCs seeded on the biodegradable nanocomposite polymer, polyhedral oligomeric silsesquioxane poly(ϵ-caprolactone-urea) urethane (POSS-PCL), proliferated and differentiated towards mesenchymal lineages. The ADSCs infiltrated three-dimensional POSS-PCL nanoscaffold and chondroid matrix was observed throughout chondrogenically induced samples. In ovo chorioallantoic membrane-grafted ADSC-nanoscaffold composites were enwrapped by host vessels indicating good compatibility in an in vivo system. Furthermore, pADSCs could be induced to transdifferentiate towards barrier-forming epithelial-like cells. By combining differentiation protocols, it was possible to generate epithelial cell lined chondrogenic micromasses from the same pADSC line. This proof-of-concept study appears to be the first to demonstrate that individual pADSC lines can differentiate towards two different germ lines and be successfully co-cultured. This has important implications for bioengineering of paediatric airways and further confirms the plastic nature of ADSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sophie E P New
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Amel Ibrahim
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK.,UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, UCL, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - Eleonora Zucchelli
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Martin Birchall
- UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, UCL, London, UK
| | - Neil W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital NHS Trust, London, UK
| | - Alexander M Seifalian
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, UCL, London, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
10
|
Miyamoto Y, Ikeuchi M, Noguchi H, Yagi T, Hayashi S. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture. CELL MEDICINE 2016; 9:35-44. [PMID: 28174673 DOI: 10.3727/215517916x693096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; †Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masashi Ikeuchi
- †Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; ‡PRESTO, Japan Science and Technology (JST), Saitama, Japan
| | - Hirofumi Noguchi
- § Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Tohru Yagi
- ¶ School of Information Science and Engineering, Tokyo Institute of Technology , Tokyo , Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya , Japan
| |
Collapse
|
11
|
De Francesco F, Ricci G, D'Andrea F, Nicoletti GF, Ferraro GA. Human Adipose Stem Cells: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:572-84. [PMID: 25953464 DOI: 10.1089/ten.teb.2014.0608] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapies for repair and regeneration of different tissues are becoming more important in the treatment of several diseases. Adult stem cells currently symbolize the most available source of cell progenitors for tissue engineering and repair and can be harvested using minimally invasive procedures. Moreover, mesenchymal stem cells (MSCs), the most widely used stem cells in stem cell-based therapies, are multipotent progenitors, with capability to differentiate into cartilage, bone, connective, muscle, and adipose tissue. So far, bone marrow has been regarded as the main source of MSCs. To date, human adult adipose tissue may be the best suitable alternative source of MSCs. Adipose stem cells (ASCs) can be largely extracted from subcutaneous human adult adipose tissue. A large number of studies show that adipose tissue contains a biologically and clinically interesting heterogeneous cell population called stromal vascular fraction (SVF). The SVF may be employed directly or cultured for selection and expansion of an adherent population, so called adipose-derived stem cells (ASCs). In recent years, literature based on data related to SVF cells and ASCs has augmented considerably: These studies have demonstrated the efficacy and safety of SVF cells and ASCs in vivo in animal models. On the basis of these observations, in several countries, various clinical trials involving SVF cells and ASCs have been permitted. This review aims at summarizing data regarding either ASCs cellular biology or ASCs-based clinical trials and at discussing the possible future clinical translation of ASCs and their potentiality in cell-based tissue engineering.
Collapse
Affiliation(s)
- Francesco De Francesco
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giulia Ricci
- 2 Department of Experimental Medicine, Second University of Naples , Naples, Italy
| | - Francesco D'Andrea
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giovanni Francesco Nicoletti
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giuseppe Andrea Ferraro
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| |
Collapse
|
12
|
Cheng P, Sun X, Yin D, Xu F, Yang K, Qin L, Dong Y, Guo F, Chen A, Zhang W, Huang H. Nanog down-regulates the Wnt signaling pathway via β-catenin phosphorylation during epidermal stem cell proliferation and differentiation. Cell Biosci 2015; 5:5. [PMID: 25973172 PMCID: PMC4429823 DOI: 10.1186/2045-3701-5-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background Skin tissue homeostasis is maintained by a balance between the proliferation and differentiation of epidermal stem cells (EpSCs). EpSC proliferation and differentiation are complex processes regulated by many factors and signaling pathways. This study aimed to explore the connection between the Nanog and the Wnt/β-catenin pathway in the proliferation and differentiation of EpSCs. Results Our results demonstrated that during the study period, EpSC underwent differentiation when incubated in the presence neuropeptide substance P (SP), there was an opposing expression trend of Nanog and β-catenin after SP treatment, which could be antagonized by the Wnt antagonist, Dkk-1. The transduced EpSCs had a greater proliferative ability than the SP treatment group and they did not undergo differentiation upon SP treatment. More important, β-catenin expression was down-regulated but phosphorylated β-catenin expression and phosphorylated GSK-3β expression was up-regulated upon Nanog overexpression. Conclusions These results strongly suggest that Nanog plays an important role in maintaining the proliferation and differentiation homeostasis of EpSCs by promoting β-catenin phosphorylation via GSK-3β to inhibit the activity of the Wnt/β-catenin signaling pathway. This is important for precise regulation of proliferation and differentiation of EpSC in the application of tissue engineering.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China.,Biological engineering and regenerative medicine center,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Delong Yin
- Department of Orthopedics, The Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510150 P.R. China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Kaixiang Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Weikai Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 P.R. China
| |
Collapse
|
13
|
Cui SE, Li HM, Liu DL, Nan H, Xu KM, Zhao PR, Liang SW. Human breast adipose‑derived stem cells: characterization and differentiation into mammary gland‑like epithelial cells promoted by autologous activated platelet‑rich plasma. Mol Med Rep 2014; 10:605-14. [PMID: 24890669 DOI: 10.3892/mmr.2014.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Human adipose‑derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell‑based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland‑like epithelial cells (MGECs) was developed using activated autologous platelet‑rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.
Collapse
Affiliation(s)
- Shi-En Cui
- Department of Mammary Gland Surgery, Zhongshan Hospital of Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, Zhongshan Bo'ai Hospital of Southern Medical University, Zhongshan, Guangdong 528403, P.R. China
| | - Da-Lie Liu
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hua Nan
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Kun-Ming Xu
- Department of Plastic and Aesthetic Surgery, Zhongshan Bo'ai Hospital of Southern Medical University, Zhongshan, Guangdong 528403, P.R. China
| | - Pei-Ran Zhao
- Research Center for Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuang-Wu Liang
- Research Center for Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med 2013; 3:206-17. [PMID: 24361924 DOI: 10.5966/sctm.2013-0125] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.
Collapse
Affiliation(s)
- Valerio Russo
- Departments of Chemical Engineering and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Human Mobility Research Centre and Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Gimble JM, Bunnell BA, Frazier T, Rowan B, Shah F, Thomas-Porch C, Wu X. Adipose-derived stromal/stem cells: a primer. Organogenesis 2013; 9:3-10. [PMID: 23538753 DOI: 10.4161/org.24279] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Until recently, the complexity of adipose tissue and its physiological role was not well appreciated. This changed with the discovery of adipokines such as leptin. The cellular composition of adipose tissue is heterogeneous and changes as a function of diabetes and disease states such as diabetes. Tissue engineers view adipose tissue as a rich source of adult stromal/stem cells isolated by collagenase digestion. In vitro and in vivo studies have documented that adipose stromal/stem cells are multipotent, with the ability to differentiate along the adipocyte, chondrocyte, osteoblast and other lineage pathways. The adipose stromal/stem cells secrete a wide range of cytokines and growth factors with potential paracrine actions. Furthermore, adipose stromal/stem cells exert immunomodulatory functions when added to mixed lymphocyte reactions, suggesting that they can be transplanted allogeneically. This review article focuses on these mechanisms of adipose stromal/stem cell action and their potential utility as cellular therapeutics.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mas A, Cervelló I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, Simón C. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril 2012; 98:741-751.e6. [DOI: 10.1016/j.fertnstert.2012.04.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022]
|
17
|
Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012; 2012:812693. [PMID: 22577397 PMCID: PMC3345279 DOI: 10.1155/2012/812693] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/12/2012] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs) yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.
Collapse
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
18
|
Baer PC, Döring C, Hansmann ML, Schubert R, Geiger H. New insights into epithelial differentiation of human adipose-derived stem cells. J Tissue Eng Regen Med 2011; 7:271-8. [DOI: 10.1002/term.518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/08/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III; Goethe-University; 60590; Frankfurt am Main; Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology; Goethe-University; Frankfurt am Main; Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology; Goethe-University; Frankfurt am Main; Germany
| | - Ralf Schubert
- Department of Paediatrics; Goethe-University; 60590; Frankfurt am Main; Germany
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III; Goethe-University; 60590; Frankfurt am Main; Germany
| |
Collapse
|
19
|
Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells Dev 2011; 20:1805-16. [DOI: 10.1089/scd.2011.0086] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt/M, Germany
| |
Collapse
|
20
|
Cervelló I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PTK, Critchley HOD, Simón C. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One 2011; 6:e21221. [PMID: 21712999 PMCID: PMC3119688 DOI: 10.1371/journal.pone.0021221] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/23/2011] [Indexed: 12/23/2022] Open
Abstract
Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1-7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12-15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45⁻) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.
Collapse
Affiliation(s)
- Irene Cervelló
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - Aymara Mas
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - Claudia Gil-Sanchis
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - Laura Peris
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - Amparo Faus
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
| | - Philippa T. K. Saunders
- MRC/University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hilary O. D. Critchley
- MRC/University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Carlos Simón
- Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
- Valencian Node of the Spanish Stem Cell Bank, Prince Felipe Research Centre (CIPF), Unidad Mixta CIPF-UVEG, Valencia, Spain
- * E-mail:
| |
Collapse
|