1
|
Fan M, Mehra M, Yang K, Chadha RS, Anber S, Kovarik ML. Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity. ACS MEASUREMENT SCIENCE AU 2024; 4:546-555. [PMID: 39430960 PMCID: PMC11487760 DOI: 10.1021/acsmeasuresciau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored. In this study, we evaluated three peptide substrate reporters for protein kinase B (PKB) in two eukaryotic microbes, Dictyostelium discoideum and Tetrahymena thermophila, which are evolutionarily distant from mammals and from each other yet express PKB homologues. All three peptide substrate reporters were phosphorylated in lysates from both organisms but with varying phosphorylation kinetics and stability. To demonstrate reporter utility, we used one to screen for and identify the previously unknown stimulus needed to activate PHK5, the PKB homologue in T. thermophila. In D. discoideum, we employed the highly quantitative nature of these assays using CE-LIF to make precise measurements of PKB activity in response to transient stimulation, drug treatment, and genetic mutation. These results underscore the broad applicability of peptide substrate reporters across diverse species while highlighting the need for further research to determine effective peptide stabilization strategies across different biological contexts.
Collapse
Affiliation(s)
| | | | | | | | - Sababa Anber
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| | - Michelle L. Kovarik
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| |
Collapse
|
2
|
Chao X, Yang Y, Gong W, Zou S, Tu H, Li D, Feng W, Cai H. Leep2A and Leep2B function as a RasGAP complex to regulate macropinosome formation. J Cell Biol 2024; 223:e202401110. [PMID: 38888895 PMCID: PMC11187982 DOI: 10.1083/jcb.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.
Collapse
Affiliation(s)
- Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kashyap A, Wang W, Camley BA. Trade-offs in concentration sensing in dynamic environments. Biophys J 2024; 123:1184-1194. [PMID: 38532627 PMCID: PMC11140415 DOI: 10.1016/j.bpj.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
When cells measure concentrations of chemical signals, they may average multiple measurements over time in order to reduce noise in their measurements. However, when cells are in an environment that changes over time, past measurements may not reflect current conditions-creating a new source of error that trades off against noise in chemical sensing. What statistics in the cell's environment control this trade-off? What properties of the environment make it variable enough that this trade-off is relevant? We model a single eukaryotic cell sensing a chemical secreted from bacteria (e.g., folic acid). In this case, the environment changes because the bacteria swim-leading to changes in the true concentration at the cell. We develop analytical calculations and stochastic simulations of sensing in this environment. We find that cells can have a huge variety of optimal sensing strategies ranging from not time averaging at all to averaging over an arbitrarily long time or having a finite optimal averaging time. The factors that primarily control the ideal averaging are the ratio of sensing noise to environmental variation and the ratio of timescales of sensing to the timescale of environmental variation. Sensing noise depends on the receptor-ligand kinetics, while environmental variation depends on the density of bacteria and the degradation and diffusion properties of the secreted chemoattractant. Our results suggest that fluctuating environmental concentrations may be a relevant source of noise even in a relatively static environment.
Collapse
Affiliation(s)
- Aparajita Kashyap
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Wei Wang
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
4
|
Hao Y, Yang Y, Tu H, Guo Z, Chen P, Chao X, Yuan Y, Wang Z, Miao X, Zou S, Li D, Yang Y, Wu C, Li B, Li L, Cai H. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell 2024; 59:645-660.e8. [PMID: 38325371 DOI: 10.1016/j.devcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Yazhou Hao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Tu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pengcheng Chen
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Yuan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimeng Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilin Miao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Congying Wu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Senoo H, Murata D, Wai M, Arai K, Iwata W, Sesaki H, Iijima M. KARATE: PKA-induced KRAS4B-RHOA-mTORC2 supercomplex phosphorylates AKT in insulin signaling and glucose homeostasis. Mol Cell 2021; 81:4622-4634.e8. [PMID: 34551282 DOI: 10.1016/j.molcel.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - May Wai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wakiko Iwata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Li M, Quan C, Chen S, Wang HY. The 14-3-3 protein is an essential component of cyclic AMP signaling for regulation of chemotaxis and development in Dictyostelium. Cell Signal 2020; 75:109739. [PMID: 32818671 DOI: 10.1016/j.cellsig.2020.109739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
The evolutionarily-conserved 14-3-3 proteins regulate many cellular processes through binding to various phosphorylated targets in eukaryotes. It first appears in Dictyostelium, however its role in this organism is poorly understood. Here we show that down-regulation of the 14-3-3 impairs chemotaxis and causes multiple-tip formation in Dictyostelium. Mechanistically, the 14-3-3 is a critical component of cyclic AMP (cAMP) signaling and binds to nearly a hundred of proteins in Dictyostelium, including a number of evolutionarily-conserved proteins. 14-3-3 - interaction with its targets is up-regulated in response to developmental cues/regulators including starvation, osmotic stress and cAMP. cAMP stimulates 14-3-3 - binding to phospho-Ser431 on a guanine nucleotide exchange factor Gef-Q. Interestingly, overexpression of Gef-QSer431Ala mutant but not wild-type Gef-Q protein causes a multiple-tip phenotype in Dictyostelium, which partially resembles phenotypes of the 14-3-3 - deficient mutant. Collectively, these data demonstrate that the 14-3-3 plays an important role in Dictyostelium and may help to deepen our understanding of the evolution of 14-3-3 - interactomes in eukaryotes.
Collapse
Affiliation(s)
- Min Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Chao Quan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China; Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Hong Yu Wang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China.
| |
Collapse
|
8
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
9
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
10
|
Affiliation(s)
- Krishna Kanti Dey
- Discipline of Physics; Indian Institute of Technology Gandhinagar; Gandhinagar Gujarat 382355 Indien
| |
Collapse
|
11
|
Integrating chemical and mechanical signals through dynamic coupling between cellular protrusions and pulsed ERK activation. Nat Commun 2018; 9:4673. [PMID: 30405112 PMCID: PMC6220176 DOI: 10.1038/s41467-018-07150-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
The Ras-ERK signaling pathway regulates diverse cellular processes in response to environmental stimuli and contains important therapeutic targets for cancer. Recent single cell studies revealed stochastic pulses of ERK activation, the frequency of which determines functional outcomes such as cell proliferation. Here we show that ERK pulses are initiated by localized protrusive activities. Chemically and optogenetically induced protrusions trigger ERK activation through various entry points into the feedback loop involving Ras, PI3K, the cytoskeleton, and cellular adhesion. The excitability of the protrusive signaling network drives stochastic ERK activation in unstimulated cells and oscillations upon growth factor stimulation. Importantly, protrusions allow cells to sense combined signals from substrate stiffness and the growth factor. Thus, by uncovering the basis of ERK pulse generation we demonstrate how signals involved in cell growth and differentiation are regulated by dynamic protrusions that integrate chemical and mechanical inputs from the environment. Cellular ERK activation occurs as discrete pulses but their relationship to upstream Ras signaling is still under debate. Here, the authors show that Ras signaling associated with cellular protrusions triggers pulsed ERK activation, thereby enabling cells to integrate chemical and mechanical stimuli.
Collapse
|
12
|
Chadha R, Kalminskii G, Tierney AJ, Knopf JD, Lazo de la Vega L, McElrath B, Kovarik ML. Effect of Loading Method on a Peptide Substrate Reporter in Intact Cells. Anal Chem 2018; 90:11344-11350. [PMID: 30175919 DOI: 10.1021/acs.analchem.8b02111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies of live cells often require loading of exogenous molecules through the cell membrane; however, effects of loading method on experimental results are poorly understood. Therefore, in this work, we compared three methods for loading a fluorescently labeled peptide into cells of the model organism Dictyostelium discoideum. We optimized loading by pinocytosis, electroporation, and myristoylation to maximize cell viability and characterized loading efficiency, localization, and uniformity. We also determined how the loading method affected measurements of enzyme activity on the peptide substrate reporter using capillary electrophoresis. Loading method had a strong effect on the stability and phosphorylation of the peptide. The half-life of the intact peptide in cells was 19 ± 2, 53 ± 15, and 12 ± 1 min, for pinocytosis, electroporation, and myristoylation, respectively. The peptide was phosphorylated only in cells loaded by electroporation. Fluorescence microscopy suggested that the differences between methods were likely due to differences in peptide localization.
Collapse
Affiliation(s)
- Rahuljeet Chadha
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Grigorii Kalminskii
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Allison J Tierney
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Joshua D Knopf
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Lorena Lazo de la Vega
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Berjana McElrath
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| | - Michelle L Kovarik
- Department of Chemistry , Trinity College , 300 Summit Street , Hartford , Connecticut 06106 , United States
| |
Collapse
|
13
|
Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018; 104:359-374. [PMID: 29873835 PMCID: PMC6099250 DOI: 10.1002/jlb.1mr0218-044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.
Collapse
Affiliation(s)
- Monica A. Thomas
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew B. Kleist
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Brian F. Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
14
|
Artemenko Y, Devreotes PN. Assessment of Dictyostelium discoideum Response to Acute Mechanical Stimulation. J Vis Exp 2017. [PMID: 29155792 DOI: 10.3791/56411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotaxis, or migration up a gradient of a chemoattractant, is the best understood mode of directed migration. Studies using social amoeba Dictyostelium discoideum revealed that a complex signal transduction network of parallel pathways amplifies the response to chemoattractants, and leads to biased actin polymerization and protrusion of a pseudopod in the direction of a gradient. In contrast, molecular mechanisms driving other types of directed migration, for example, due to exposure to shear flow or electric fields, are not known. Many regulators of chemotaxis exhibit localization at the leading or lagging edge of a migrating cell, as well as show transient changes in localization or activation following global stimulation with a chemoattractant. To understand the molecular mechanisms of other types of directed migration we developed a method that allows examination of cellular response to acute mechanical stimulation based on brief (2 - 5 s) exposure to shear flow. This stimulation can be delivered in a channel while imaging cells expressing fluorescently-labeled biosensors to examine individual cell behavior. Additionally, cell population can be stimulated in a plate, lysed, and immunoblotted using antibodies that recognize active versions of proteins of interest. By combining both assays, one can examine a wide array of molecules activated by changes in subcellular localization and/or phosphorylation. Using this method we determined that acute mechanical stimulation triggers activation of the chemotactic signal transduction and actin cytoskeleton networks. The ability to examine cellular responses to acute mechanical stimulation is important for understanding the initiating events necessary for shear flow-induced motility. This approach also provides a tool for studying the chemotactic signal transduction network without the confounding influence of the chemoattractant receptor.
Collapse
Affiliation(s)
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine
| |
Collapse
|
15
|
Affiliation(s)
- Krishna Kanti Dey
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ayusman Sen
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Senoo H, Cai H, Wang Y, Sesaki H, Iijima M. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells. Mol Biol Cell 2016; 27:1596-605. [PMID: 27009206 PMCID: PMC4865317 DOI: 10.1091/mbc.e15-11-0796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
A novel protein, GflB, is found to control both Ras and Rho to optimize the reorganization of actin cytoskeletons for directed cell migration. GflB is subjected to feedback regulation from actin cytoskeletons, allowing cells to detect and control the size of actin-rich pseudopods and navigate their movements with extremely high precision. Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Huaqing Cai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
17
|
Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YakA signaling and GST enzyme function. Biochem Biophys Res Commun 2015; 467:275-81. [PMID: 26449461 DOI: 10.1016/j.bbrc.2015.09.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstA gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.
Collapse
|
18
|
Nguyen HN, Yang JM, Rahdar M, Keniry M, Swaney KF, Parsons R, Park BH, Sesaki H, Devreotes PN, Iijima M. A new class of cancer-associated PTEN mutations defined by membrane translocation defects. Oncogene 2015; 34:3737-43. [PMID: 25263454 PMCID: PMC4377315 DOI: 10.1038/onc.2014.293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022]
Abstract
Phosphatase and tensin homolog (PTEN), which negatively regulates tumorigenic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) signaling, is a commonly mutated tumor suppressor. The majority of cancer-associated PTEN mutations block its essential PIP3 phosphatase activity. However, there is a group of clinically identified PTEN mutations that maintain enzymatic activity, and it is unknown how these mutations contribute to tumor pathogenesis. Here, we show that these enzymatically competent PTEN mutants fail to translocate to the plasma membrane where PTEN converts PIP3 to PI(4,5)P2. Artificial membrane tethering of the PTEN mutants effectively restores tumor suppressor activity and represses excess PIP3 signaling in cells. Thus, our findings reveal a novel mechanism of tumorigenic PTEN deficiency.
Collapse
Affiliation(s)
- Hoai-Nghia Nguyen
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Jr-Ming Yang
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Meghdad Rahdar
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Megan Keniry
- Department of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY
| | - Kristen F. Swaney
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Peter N. Devreotes
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| | - Miho Iijima
- Department of Cell Biology, The Johns Hopkins University
School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Yang JM, Nguyen HN, Sesaki H, Devreotes PN, Iijima M. Engineering PTEN function: membrane association and activity. Methods 2015; 77-78:119-24. [PMID: 25448479 PMCID: PMC4388803 DOI: 10.1016/j.ymeth.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 02/01/2023] Open
Abstract
Many tumors are associated with deficiency of the tumor suppressor, PTEN, a PIP3 phosphatase that turns off PIP3 signaling. The major site of PTEN action is the plasma membrane, where PIP3 is produced by PI3 kinases. However, the mechanism and functional importance of PTEN membrane recruitment are poorly defined. Using the heterologous expression system in which human PTEN is expressed in Dictyostelium discoideum, we defined the molecular mechanisms that regulate the membrane-binding site through inhibitory interactions with the phosphorylated C-terminal tail. In addition, we potentiated mechanisms that mediate PTEN membrane association and engineered an enhanced PTEN with increased tumor suppressor functions. Moreover, we identified a new class of cancer-associated PTEN mutations that are specifically defective in membrane association. In this review, we summarize recent advances in PTEN-membrane interactions and methods useful in addressing PTEN function.
Collapse
Affiliation(s)
- Jr-Ming Yang
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hoai-Nghia Nguyen
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miho Iijima
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
20
|
Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat Commun 2014; 5:5175. [PMID: 25346418 PMCID: PMC4211273 DOI: 10.1038/ncomms6175] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2014] [Indexed: 01/22/2023] Open
Abstract
Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.
Collapse
|
21
|
Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proc Natl Acad Sci U S A 2014; 111:E2684-93. [PMID: 24979808 DOI: 10.1073/pnas.1409433111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signaling lipid phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is a key regulator of cell proliferation, survival, and migration and the enzyme that dephosphorylates it, phosphatase and tensin homolog (PTEN), is an important tumor suppressor. As excess PIP3 signaling is a hallmark of many cancers, its suppression through activation of PTEN is a potential cancer intervention. Using a heterologous expression system in which human PTEN-GFP is expressed in Dictyostelium cells, we identified mutations in the membrane-binding regulatory interface that increase the recruitment of PTEN to the plasma membrane due to enhanced association with PI(4,5)P2. We engineered these into an enhanced PTEN (ePTEN) with approximately eightfold increased ability to suppress PIP3 signaling. Upon expression in human cells, ePTEN decreases PIP3 levels in the plasma membrane; phosphorylation of AKT, a major downstream event in PIP3 signaling; and cell proliferation and migration. Thus, the activation of PTEN can readjust PIP3 signaling and may serve as a feasible target for anticancer therapies.
Collapse
|
22
|
Cai H, Katoh-Kurasawa M, Muramoto T, Santhanam B, Long Y, Li L, Ueda M, Iglesias PA, Shaulsky G, Devreotes PN. Nucleocytoplasmic shuttling of a GATA transcription factor functions as a development timer. Science 2014; 343:1249531. [PMID: 24653039 DOI: 10.1126/science.1249531] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological oscillations are observed at many levels of cellular organization. In the social amoeba Dictyostelium discoideum, starvation-triggered multicellular development is organized by periodic cyclic adenosine 3',5'-monophosphate (cAMP) waves, which provide both chemoattractant gradients and developmental signals. We report that GtaC, a GATA transcription factor, exhibits rapid nucleocytoplasmic shuttling in response to cAMP waves. This behavior requires coordinated action of a nuclear localization signal and reversible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor-mediated phosphorylation. Although both are required for developmental gene expression, receptor occupancy promotes nuclear exit of GtaC, which leads to a transient burst of transcription at each cAMP cycle. We demonstrate that this biological circuit filters out high-frequency signals and counts those admitted, thereby enabling cells to modulate gene expression according to the dynamic pattern of the external stimuli.
Collapse
Affiliation(s)
- Huaqing Cai
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium. Oncogene 2013; 33:5688-96. [PMID: 24292679 PMCID: PMC4041858 DOI: 10.1038/onc.2013.507] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is one of the most frequently mutated tumor suppressor genes in cancers. PTEN plays a central role in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) signaling and converts PIP3 to phosphatidylinositol (4,5)-bisphosphate (PIP2) at the plasma membrane. Despite its importance, the mechanism that mediates membrane localization of PTEN is poorly understood. Here, we generated a library that contains GFP fused to randomly mutated human PTEN and expressed the library in Dictyostelium cells. Using live cell imaging, we identified mutations that enhance the association of PTEN with the plasma membrane. These mutations were located in four separate regions, including the phosphatase catalytic site, the calcium-binding region 3 (CBR3) loop, the Cα2 loop and the C-terminal tail phosphorylation site. The phosphatase catalytic site, the CBR3 loop and the Cα2 loop formed the membrane-binding regulatory interface and interacted with the inhibitory phosphorylated C-terminal tail. Furthermore, we showed that membrane recruitment of PTEN is required for PTEN function in cells. Thus, heterologous expression system in Dictyostelium cells provides mechanistic and functional insight into membrane localization of PTEN.
Collapse
|
24
|
Abstract
During chemotaxis, cells sense extracellular chemical gradients and position Ras GTPase activation and phosphatidylinositol (3,4,5)-triphosphate (PIP3) production toward chemoattractants. These two major signaling events are visualized by biosensors in a crescent-like zone at the plasma membrane. Here, we show that a Dictyostelium Rho GTPase, RacE, and a guanine nucleotide exchange factor, GxcT, stabilize the orientation of Ras activation and PIP3 production in response to chemoattractant gradients, and this regulation occurred independently of the actin cytoskeleton and cell polarity. Cells lacking RacE or GxcT fail to persistently direct Ras activation and PIP3 production toward chemoattractants, leading to lateral pseudopod extension and impaired chemotaxis. Constitutively active forms of RacE and human RhoA are located on the portion of the plasma membrane that faces lower concentrations of chemoattractants, opposite of PIP3 production. Mechanisms that control the localization of the constitutively active form of RacE require its effector domain, but not PIP3. Our findings reveal a critical role for Rho GTPases in positioning Ras activation and thereby establishing the accuracy of directional sensing.
Collapse
|
25
|
Srinivasan K, Subramanian T, Spielmann HP, Janetopoulos C. Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach. Mol Cell Biochem 2013; 387:177-86. [PMID: 24194124 DOI: 10.1007/s11010-013-1883-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1% of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the translocation of RBD Raf1 -GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems.
Collapse
|
26
|
McLennan R, Dyson L, Prather KW, Morrison JA, Baker RE, Maini PK, Kulesa PM. Multiscale mechanisms of cell migration during development: theory and experiment. Development 2012; 139:2935-44. [PMID: 22764050 DOI: 10.1242/dev.081471] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 East 50th St, Kansas City, MO 64110, USA
| | | | | | | | | | | | | |
Collapse
|