1
|
Gür HE, Balcıoğlu E, Patat D, Uçar S, Gür FM, Yalçın B, Nisari M. Investigation of the potential teratogenic effects of fructose on the embryo using the rat whole embryo culture model. Food Chem Toxicol 2024; 193:114985. [PMID: 39271047 DOI: 10.1016/j.fct.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/24/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Excessive consumption of fructose-sweetened foods and beverages is a growing concern worldwide. Studies have demonstrated that fructose consumption before and during pregnancy can result in adverse outcomes such as decreased decidualization, increased fetal losses, and low birth weight. The study investigated the teratogenic effects of fructose on rat embryos during organogenesis using whole embryo culture. Within the scope of the study, 4 groups were formed as control, low, medium, and high-dose fructose (HDF) with 10 embryos in each group. The 9.5-day-old rat embryos were cultured with different concentrations of fructose (1, 5 and 10 mM) for 48 h and the possible effects of fructose were examined using morphological scoring, histochemistry, immunofluorescence, and TUNEL methods. According to the analyses, protein synthesis and proliferation were decreased, vascular formation was suppressed, and apoptosis was increased in embryos exposed to fructose, especially at concentrations of 5 mM and above. According to the morphological scoring results, it was determined that heart, hind limb, and somite development were retarded in all experimental groups compared to the control group, developmental retardation increased in direct proportion to fructose concentration, and also significant malformations were observed in all parameters examined in the HDF group. In addition, analysis of yolk sac diameter, head length, crown rump length and somite numbers showed that these parameters were significantly decreased in all experimental groups. End of the study, it was concluded that fructose at concentrations of 1 mM and above may induce embryonic development retardation and other anomalies by decreasing protein synthesis and cell proliferation, suppressing vascular formation, and increasing apoptosis in embryonic tissues.
Collapse
Affiliation(s)
- Hatice Emel Gür
- Department of Histology & Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Esra Balcıoğlu
- Department of Histology & Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Dilara Patat
- Department of Anatomy, Faculty of Medicine, Medipol University, Ankara, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Mehmet Gür
- Department of Histology & Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Turkey
| | - Betül Yalçın
- Department of Histology & Embryology, Faculty of Medicine, Adiyaman University, Turkey
| | - Mehtap Nisari
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Gramlich M, Pane LS, Zhou Q, Chen Z, Murgia M, Schötterl S, Goedel A, Metzger K, Brade T, Parrotta E, Schaller M, Gerull B, Thierfelder L, Aartsma-Rus A, Labeit S, Atherton JJ, McGaughran J, Harvey RP, Sinnecker D, Mann M, Laugwitz KL, Gawaz MP, Moretti A. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med 2016; 7:562-76. [PMID: 25759365 PMCID: PMC4492817 DOI: 10.15252/emmm.201505047] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM.
Collapse
Affiliation(s)
- Michael Gramlich
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Luna Simona Pane
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Qifeng Zhou
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Zhifen Chen
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Sonja Schötterl
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Alexander Goedel
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Katja Metzger
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Thomas Brade
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Elvira Parrotta
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Brenda Gerull
- Libin Cardiovascular Institute of Alberta and University of Calgary, Calgary, AB, Canada
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Universitätsmedizin Mannheim, Mannheim, Germany
| | - John J Atherton
- Department of Cardiology, Royal Brisbane and Women's Hospital and University of Queensland School of Medicine, Brisbane, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Qld, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia St Vincent's Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Daniel Sinnecker
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl-Ludwig Laugwitz
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Alessandra Moretti
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Wang Y, Wu B, Chamberlain AA, Lui W, Koirala P, Susztak K, Klein D, Taylor V, Zhou B. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development. PLoS One 2013; 8:e60244. [PMID: 23560082 PMCID: PMC3613384 DOI: 10.1371/journal.pone.0060244] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/24/2013] [Indexed: 02/05/2023] Open
Abstract
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.
Collapse
Affiliation(s)
- Yidong Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alyssa A. Chamberlain
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wendy Lui
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Pratistha Koirala
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Katalin Susztak
- Renal, Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diana Klein
- Institute of Anatomy, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Departments of Pediatrics and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|