1
|
Hung SC, Hou T, Jiang W, Wang N, Qiao SW, Chow IT, Liu X, van der Burg SH, Koelle DM, Kwok WW, Sollid LM, Mellins ED. Epitope Selection for HLA-DQ2 Presentation: Implications for Celiac Disease and Viral Defense. THE JOURNAL OF IMMUNOLOGY 2019; 202:2558-2569. [PMID: 30926644 DOI: 10.4049/jimmunol.1801454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 01/28/2023]
Abstract
We have reported that the major histocompatibility molecule HLA-DQ2 (DQA1*05:01/DQB1*02:01) (DQ2) is relatively resistant to HLA-DM (DM), a peptide exchange catalyst for MHC class II. In this study, we analyzed the role of DQ2/DM interaction in the generation of DQ2-restricted gliadin epitopes, relevant to celiac disease, or DQ2-restricted viral epitopes, relevant to host defense. We used paired human APC, differing in DM expression (DMnull versus DMhigh) or differing by expression of wild-type DQ2, versus a DM-susceptible, DQ2 point mutant DQ2α+53G. The APC pairs were compared for their ability to stimulate human CD4+ T cell clones. Despite higher DQ2 levels, DMhigh APC attenuated T cell responses compared with DMnull APC after intracellular generation of four tested gliadin epitopes. DMhigh APC expressing the DQ2α+53G mutant further suppressed these gliadin-mediated responses. The gliadin epitopes were found to have moderate affinity for DQ2, and even lower affinity for the DQ2 mutant, consistent with DM suppression of their presentation. In contrast, DMhigh APC significantly promoted the presentation of DQ2-restricted epitopes derived intracellularly from inactivated HSV type 2, influenza hemagglutinin, and human papillomavirus E7 protein. When extracellular peptide epitopes were used as Ag, the DQ2 surface levels and peptide affinity were the major regulators of T cell responses. The differential effect of DM on stimulation of the two groups of T cell clones implies differences in DQ2 presentation pathways associated with nonpathogen- and pathogen-derived Ags in vivo.
Collapse
Affiliation(s)
- Shu-Chen Hung
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Tieying Hou
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Wei Jiang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Nan Wang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Xiaodan Liu
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - Elizabeth D Mellins
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305; .,Program in Immunology, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Willmann W, Dringen R. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells. Neurochem Res 2018; 43:2055-2071. [PMID: 30196349 DOI: 10.1007/s11064-018-2627-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented. The uptake of bound IONPs and the intracellular trafficking was started by increasing the temperature to 37 °C (chase period). While hardly any cellular fluorescence nor any iron staining was detectable directly after the nanoparticle pulse, dotted cellular fluorescence and iron patterns appeared already within a few minutes after start of the chase incubation and became intensified in the perinuclear region during further incubation for up to 90 min. Longer chase incubations resulted in separation of the fluorescent coat from the core of the internalized IONPs. Disruption of actin filaments in C6 cells strongly impaired the internalization of IONPs, whereas destabilization of microtubules traped IONP-containing vesicles to the plasma membrane. In conclusion, nanoparticle pulse-chase experiments allowed to synchronize the cellular uptake of fluorescent IONPs and to identify for C6 cells an actin-dependent early and a microtubule-dependent later process in the intracellular trafficking of fluorescent IONPs.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Geng J, Xia L, Li W, Zhao C, Dou F. Cycloheximide Treatment Causes a ZVAD-Sensitive Protease-Dependent Cleavage of Human Tau in Drosophila Cells. J Alzheimers Dis 2016; 49:1161-8. [PMID: 26599052 PMCID: PMC4927919 DOI: 10.3233/jad-150423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurofibrillary tangles are the main pathological feature of Alzheimer’s disease. Insoluble tau protein is the major component of neurofibrillary tangles. Defects in the tau protein degradation pathway in neurons can lead to the accumulation of tau and its subsequent aggregation. Currently, contradictory results on the tau degradation pathway have been reported by different groups. This discrepancy is most likely due to different cell lines and methods used in those studies. In this study, we found that cycloheximide treatment induced mild activation of a ZVAD-sensitive protease in Drosophila Kc cells, resulting in cleavage of tau at its C-terminus; this cleavage could generate misleading tau protein degradation pattern results depending on the antibodies used in the assay. Because cycloheximide is a broadly used chemical reagent for the study of protein degradation, the unexpected artificial effect we observed here indicates that cycloheximide is not suitable for the study of tau degradation. Other methods, such as inducible expression systems and pulse-chase assays, may be more appropriate for studying tau degradation under physiological conditions.
Collapse
Affiliation(s)
- Junhua Geng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Lu Xia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Changqi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Prevosto C, Usmani MF, McDonald S, Gumienny AM, Key T, Goodman RS, Gaston JSH, Deery MJ, Busch R. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules. PLoS One 2016; 11:e0161011. [PMID: 27529174 PMCID: PMC4987023 DOI: 10.1371/journal.pone.0161011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles.
Collapse
Affiliation(s)
- Claudia Prevosto
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Farooq Usmani
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah McDonald
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Tim Key
- Tissue Typing Laboratory, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Reyna S. Goodman
- Tissue Typing Laboratory, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - J. S. Hill Gaston
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
5
|
Fritzsche S, Springer S. Pulse-chase analysis for studying protein synthesis and maturation. ACTA ACUST UNITED AC 2014; 78:30.3.1-30.3.23. [PMID: 25367008 DOI: 10.1002/0471140864.ps3003s78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulse-chase analysis is a well-established and highly adaptable tool for studying the life cycle of endogenous proteins, including their synthesis, folding, subunit assembly, intracellular transport, post-translational processing, and degradation. This unit describes the performance and analysis of a radiolabel pulse-chase experiment for following the folding and cell surface trafficking of a trimeric murine MHC class I glycoprotein. In particular, the unit focuses on the precise timing of pulse-chase experiments to evaluate early/short-time events in protein maturation in both suspended and strictly adherent cell lines. The advantages and limitations of radiolabel pulse-chase experiments are discussed, and a comprehensive section for troubleshooting is provided. Further, ways to quantitatively represent pulse-chase results are described, and feasible interpretations on protein maturation are suggested. The protocols can be adapted to investigate a variety of proteins that may mature in very different ways.
Collapse
Affiliation(s)
- Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
6
|
De Riva A, Busch R. MHC Class II Protein Turnover In vivo and Its Relevance for Autoimmunity in Non-Obese Diabetic Mice. Front Immunol 2013; 4:399. [PMID: 24324466 PMCID: PMC3839011 DOI: 10.3389/fimmu.2013.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) proteins are loaded with endosomal peptides and reside at the surface of antigen-presenting cells (APCs) for a time before being degraded. In vitro, MHCII protein levels and turnover are affected by peptide loading and by rates of ubiquitin-dependent internalization from the cell surface, which is in turn affected by APC type and activation state. Prior work suggested that fast turnover of disease-associated MHCII alleles may contribute to autoimmunity. We recently developed novel stable isotope tracer techniques to test this hypothesis in vivo. In non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D), MHCII turnover was affected by APC type, but unaffected by disease-associated structural polymorphism. Differences in MHCII turnover were observed between NOD colonies with high and low T1D incidence, but fast turnover was dispensable for autoimmunity. Moreover, NOD mice with gene knockouts of peptide loading cofactors do not develop T1D. Thus, fast turnover does not appear pathogenic, and conventional antigen presentation is critical for autoimmunity in NOD mice. However, shared environmental factors may underpin colony differences in MHCII protein turnover, immune regulation, and pathogenesis.
Collapse
Affiliation(s)
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
De Riva A, Varley MC, Bluck LJ, Cooke A, Deery MJ, Busch R. Accelerated turnover of MHC class II molecules in nonobese diabetic mice is developmentally and environmentally regulated in vivo and dispensable for autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5961-71. [PMID: 23677470 PMCID: PMC3785126 DOI: 10.4049/jimmunol.1300551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H2-A(g7) (A(g7)) MHC class II (MHCII) allele is required for type 1 diabetes (T1D) in NOD mice. A(g7) not only has a unique peptide-binding profile, it was reported to exhibit biochemical defects, including accelerated protein turnover. Such defects were proposed to impair Ag presentation and, thus, self-tolerance. Here, we report measurements of MHCII protein synthesis and turnover in vivo. NOD mice and BALB/c controls were labeled continuously with heavy water, and splenic B cells and dendritic cells were isolated. MHCII molecules were immunoprecipitated and digested with trypsin. Digests were analyzed by liquid chromatography/mass spectrometry to quantify the fraction of newly synthesized MHCII molecules and, thus, turnover. MHCII turnover was faster in dendritic cells than in B cells, varying slightly between mouse strains. Some A(g7) molecules exhibited accelerated turnover in B cells from young, but not older, prediabetic female NOD mice. This acceleration was not detected in a second NOD colony with a high incidence of T1D. Turnover rates of A(g7) and H2-A(d) were indistinguishable in (NOD × BALB/c) F1 mice. In conclusion, accelerated MHCII turnover may occur in NOD mice, but it reflects environmental and developmental regulation, rather than a structural deficit of the A(g7) allele. Moreover, this phenotype wanes before the onset of overt T1D and is dispensable for the development of autoimmune diabetes. Our observations highlight the importance of in vivo studies in understanding the role of protein turnover in genotype/phenotype relationships and offer a novel approach for addressing this fundamental research challenge.
Collapse
Affiliation(s)
| | - Mark C. Varley
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Leslie J. Bluck
- Elsie Widdowson Laboratories, Medical Research Council Human Nutrition Research, Fulbourn, Cambridge, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Michael J. Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|