1
|
Fikadu A, Amankwah S, Alemu B, Alemu Y, Naga A, Tekle E, Kassa T. Isolation and Phenotypic Characterization of Virulent Bacteriophages Against Multidrug-Resistant Escherichia coli and Its Phage-Resistant Variant from Sewage Sources. Infect Drug Resist 2024; 17:293-303. [PMID: 38293311 PMCID: PMC10825468 DOI: 10.2147/idr.s441085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose The use of lytic bacteriophages for the control or elimination of pathogenic multidrug-resistant (MDR) bacteria is the promising alternative. However, the emergence of resistant bacterial variants after phage application may challenge its therapeutic benefit. In this study, we aimed to isolate candidate phages from sewage samples against two MDR Escherichia coli as well as their phage-resistant variant. Methods MDR E. coli isolates (n = 10) obtained from Jimma Medical Center that had been properly identified and stored were used to isolate bacteriophages. Two lytic coliphages were isolated from hospital sewage samples following standard protocols. Upon single phage infection, phage-resistant variant quickly evolved serving as a new host for the isolation of a third lytic phage. This virulent phage's lytic activity against both its host and the wild host was investigated. The host infectivity of the various cocktails was assessed, and each phage's biological properties were studied. Results Out of the first round of phage isolation process, two lytic phages were identified as VBO-E. coli 4307 and VBW-E. coli 4194. When exposed to VBO-E. coli 4307, the wild-type E. coli 4307 developed resistant variants. A third phage (VBA-E. coli 4307R) was isolated specific to this resistant variant (E. coli 4307R) under optimum condition. For VBO-E. coli 4307, VBW-E. coli 4194, and VBA-E. coli 4307R, the plaque assays generated under comparable conditions were 2.13 × 1010 PFU mL-1, 9.17 × 1012 PFU mL-1, and 3.3 × 1010 PFU mL-1, respectively. These phages have nearly identical stability and lytic ability but differ greatly in their host ranges for VBA-E. coli 4307R. Conclusion While the wild-type MDR pathogen could easily evolve resistance when exposed to a single phage infection by VBO-E. coli 4307, it is still possible to isolate a novel bacteriophage from environmental samples that is effective against the phage-resistant variants. This indicates that it is possible to manage the effects of phage resistance pathogens even if they are MDR.
Collapse
Affiliation(s)
- Ashetu Fikadu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - Stephen Amankwah
- Department of Medical Laboratory, Accra Medical Centre, Accra, Ghana
| | - Bikila Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Medical Microbiology Laboratory Unit, Jimma Medical Center, Jimma, Ethiopia
| | - Yared Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Adisu Naga
- Department of Public Health Emergency Management, Kelem Wollega Zone Health Office, Dambi Dollo, Ethiopia
| | - Esayas Tekle
- Department of Medical Laboratory, Wollega University, Nekemte, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
3
|
Radonjić T, Dukić M, Jovanović I, Zdravković M, Mandić O, Popadić V, Popović M, Nikolić N, Klašnja S, Divac A, Todorović Z, Branković M. Aging of Liver in Its Different Diseases. Int J Mol Sci 2022; 23:13085. [PMID: 36361873 PMCID: PMC9656219 DOI: 10.3390/ijms232113085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 09/05/2023] Open
Abstract
The proportion of elderly people in the world population is constantly increasing. With age, the risk of numerous chronic diseases and their complications also rises. Research on the subject of cellular senescence date back to the middle of the last century, and today we know that senescent cells have different morphology, metabolism, phenotypes and many other characteristics. Their main feature is the development of senescence-associated secretory phenotype (SASP), whose pro-inflammatory components affect tissues and organs, and increases the possibility of age-related diseases. The liver is the main metabolic organ of our body, and the results of previous research indicate that its regenerative capacity is greater and that it ages more slowly compared to other organs. With age, liver cells change under the influence of various stressors and the risk of developing chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH) and hepatocellular carcinoma (HCC) increases. It has been proven that these diseases progress faster in the elderly population and in some cases lead to end-stage liver disease that requires transplantation. The treatment of elderly people with chronic liver diseases is a challenge and requires an individual approach as well as new research that will reveal other safe and effective therapeutic modalities.
Collapse
Affiliation(s)
- Tijana Radonjić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Igor Jovanović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olga Mandić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Maja Popović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Slobodan Klašnja
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Anica Divac
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Heckenbach I, Mkrtchyan GV, Ezra MB, Bakula D, Madsen JS, Nielsen MH, Oró D, Osborne B, Covarrubias AJ, Idda ML, Gorospe M, Mortensen L, Verdin E, Westendorp R, Scheibye-Knudsen M. Nuclear morphology is a deep learning biomarker of cellular senescence. NATURE AGING 2022; 2:742-755. [PMID: 37118134 PMCID: PMC10154217 DOI: 10.1038/s43587-022-00263-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/01/2022] [Indexed: 04/30/2023]
Abstract
Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.
Collapse
Affiliation(s)
- Indra Heckenbach
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Buck Institute for Research on Aging, Novato, CA, USA
- Tracked.bio, Copenhagen, Denmark
| | - Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ben Ezra
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Sture Madsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Sassari, Italy
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Laust Mortensen
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Rudi Westendorp
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Tracked.bio, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 682] [Impact Index Per Article: 227.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
6
|
Islam W, Noman A, Naveed H, Huang Z, Chen HYH. Role of environmental factors in shaping the soil microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41225-41247. [PMID: 32829437 DOI: 10.1007/s11356-020-10471-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 05/09/2023]
Abstract
The soil microbiome comprises one of the most important and complex components of all terrestrial ecosystems as it harbors millions of microbes including bacteria, fungi, archaea, viruses, and protozoa. Together, these microbes and environmental factors contribute to shaping the soil microbiome, both spatially and temporally. Recent advances in genomic and metagenomic analyses have enabled a more comprehensive elucidation of the soil microbiome. However, most studies have described major modulators such as fungi and bacteria while overlooking other soil microbes. This review encompasses all known microbes that may exist in a particular soil microbiome by describing their occurrence, abundance, diversity, distribution, communication, and functions. Finally, we examined the role of several abiotic factors involved in the shaping of the soil microbiome.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, 614004, Sichuan, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
7
|
Zhang Q, Nettleship I, Schmelzer E, Gerlach J, Zhang X, Wang J, Liu C. Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:64-78. [DOI: 10.1089/ten.teb.2019.0215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qinghao Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ian Nettleship
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jorg Gerlach
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xuewei Zhang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jing Wang
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Changsheng Liu
- Department of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|
8
|
Whitehead J, Zhang J, Harvestine JN, Kothambawala A, Liu GY, Leach JK. Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids. Stem Cells 2020; 38:80-89. [PMID: 31298767 PMCID: PMC6954984 DOI: 10.1002/stem.3056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Abstract
The therapeutic potential of mesenchymal stem/stromal cells (MSCs) is limited by acquired senescence following prolonged culture expansion and high-passage numbers. However, the degree of cell senescence is dynamic, and cell-cell communication is critical to promote cell survival. MSC spheroids exhibit improved viability compared with monodispersed cells, and actin-rich tunneling nanotubes (TNTs) may mediate cell survival and other functions through the exchange of cytoplasmic components. Building upon our previous demonstration of TNTs bridging MSCs within these cell aggregates, we hypothesized that TNTs would influence the expression of senescence markers in MSC spheroids. We confirmed the existence of functional TNTs in MSC spheroids formed from low-passage, high-passage, and mixtures of low- and high-passage cells using scanning electron microscopy, confocal microscopy, and flow cytometry. The contribution of TNTs toward the expression of senescence markers was investigated by blocking TNT formation with cytochalasin D (CytoD), an inhibitor of actin polymerization. CytoD-treated spheroids exhibited decreases in cytosol transfer. Compared with spheroids formed solely of high-passage MSCs, the addition of low-passage MSCs reduced p16 expression, a known genetic marker of senescence. We observed a significant increase in p16 expression in high-passage cells when TNT formation was inhibited, establishing the importance of TNTs in MSC spheroids. These data confirm the restorative role of TNTs within MSC spheroids formed with low- and high-passage cells and represent an exciting approach to use higher-passage cells in cell-based therapies.
Collapse
Affiliation(s)
- Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Jiali Zhang
- Department of Chemistry, University of California, Davis, CA 95616
| | - Jenna N. Harvestine
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Alefia Kothambawala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
9
|
Giovos G, Yavropoulou MP, Yovos JG. The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions. Hormones (Athens) 2019; 18:339-351. [PMID: 31701490 DOI: 10.1007/s42000-019-00132-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The improving effectiveness of health care leads inevitably to a rapid increase in the elderly population worldwide. At advanced ages, however, people experience chronic disabilities, which significantly increase the social and economic burden while curtailing survival, independence, and quality of life of the aging population. As aging is a multifactorial process, apart from genetic predisposition, other environmental factors, such as chronic sterile inflammation and cellular senescence, contribute as crucial participants and have been targeted to reverse their deleterious effects on tissue homeostasis and functional integrity. Cellular senescence refers to the essentially irreversible inhibition of cellular proliferation when cells are subjected to extrinsic or endogenous stress. Although the process of cellular senescence has long been known, recent evidence demonstrated that it characterizes many aging phenotypes and that elimination of senescent cells at the tissue level can improve age-related tissue dysfunction. These observations have renewed scientific interest in possible therapeutic interventions. Two major chronic diseases associated with aging that impose an enormous burden on global health systems are type 2 diabetes and osteoporosis. This review presents current data on (i) the underlying molecular mechanisms of cellular senescence, (ii) its relationship to these two endocrine diseases that are today prevalent worldwide, and (iii) future prospects of targeted intervention with the aim of simultaneously improving the progression and prognosis of these serious problems of aging.
Collapse
Affiliation(s)
- Georgios Giovos
- Clinical Research Fellow in Endocrinology, Wisdem Centre, University Hospitals Coventry & Warwickshire, Coventry, UK
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, UOA, LAIKO General Hospital, 17 Agiou Thoma Str., 11527, Athens, Greece.
| | - John G Yovos
- Professor Emeritus in Internal Medicine and Endocrinology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Martinenaite E, Ahmad SM, Bendtsen SK, Jørgensen MA, Weis-Banke SE, Svane IM, Andersen MH. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunol Immunother 2019; 68:1901-1907. [PMID: 31690955 DOI: 10.1007/s00262-019-02425-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
L-arginine depletion by regulatory cells and cancer cells expressing arginase-1 (Arg-1) is a vital contributor to the immunosuppressive tumor microenvironment in patients with cancer. We have recently described the existence of pro-inflammatory effector T cells that recognize Arg-1. Hence, Arg-1-specific self-reactive T cells are a naturally occurring part of the memory T-cell repertoire of the human immune system. Here, we further characterize a highly immunogenic epitope from Arg-1. We describe frequent T-cell-based immune responses against this epitope in patients with cancer, as well as in healthy donors. Furthermore, we show that Arg-1-specific T cells expand in response to the TH2 cytokine interleukin (IL)-4 without any specific stimulation. Arg-1-specific memory TH1 cells that respond to increased IL-4 concentration may, therefore, drive the immune response back into the TH1 pathway. Arg-1-specific T cells thus appear to have an important function in immune regulation. Because Arg-1 plays an important role in the immunosuppressive microenvironment in most cancers, an immune modulatory vaccination approach can readily be employed to tilt the balance away from immune suppression in these settings.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
- IO Biotech ApS, 2200, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark.
- IO Biotech ApS, 2200, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Sirtuin 2 expression suppresses oxidative stress and senescence of nucleus pulposus cells through inhibition of the p53/p21 pathway. Biochem Biophys Res Commun 2019; 513:616-622. [PMID: 30981502 DOI: 10.1016/j.bbrc.2019.03.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Intervertebral disc degeneration (IDD) is a kind of disease associated with nucleus pulposus (NP) cell senescence. Previous studies have shown that the sirtuin family plays an extremely important role in the progress of cell aging. However, whether sirtuin2 (Sirt2) protects against IDD remains unknown. The aim of this study was to determine whether Sirt2 protected NP from degradation in IDD. The expression of Sirt2 in different degree of degenerate disc tissues was determined by reverse transcription-polymerase chain reaction. Interleukin 1 beta (IL-1β) was used to stimulate the degeneration of NP cells. Subsequently, lentivirus transfection was performed to increase Sirt2 expression in vitro. Meanwhile, the function of Sirt2 overexpression in the progress of NP cell degeneration was evaluated. Our study showed that the expression of Sirt2 markedly decreased in severe degenerated disc tissues. IL-1β significantly promoted the progress of IDD. Meanwhile, overexpression of Sirt2 could reverse the effects of IL-1β. The data also revealed that Sirt2 overexpression obviously increased the production of antioxidant SOD1/2 and suppressed oxidative stress in the disc. Moreover, p53 and p21 could be significantly suppressed by Sirt2 overexpression. These results suggested that Sirt2 prevented NP degradation via restraining oxidative stress and cell senescence through inhibition of the p53/p21 pathway. Furthermore, Sirt2 might become a novel target for IDD therapy in the future.
Collapse
|
12
|
Koul A, Deo S, Booy EP, Orriss GL, Genung M, McKenna SA. Impact of double-stranded RNA characteristics on the activation of human 2'-5'-oligoadenylate synthetase 2 (OAS2). Biochem Cell Biol 2019; 98:70-82. [PMID: 30965010 DOI: 10.1139/bcb-2019-0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human 2'-5' oligoadenylate synthetases (OAS) are a family of interferon-inducible proteins that, upon activation by double-stranded RNA, polymerize ATP into 2'-5' linked oligoadenylates. In this study, we probed the RNA cofactor specificity of the two smallest isozymes, OAS1 and OAS2. First, we developed a strategy for the expression and purification of recombinant human OAS2 from eukaryotic cells and quantified the activity of the enzyme relative to OAS1 in vitro. We then confirmed that both OAS2 domains, as opposed to only the domain containing the canonical catalytic aspartic acid triad, are required for enzymatic activity. Enzyme kinetics of both OAS1 and OAS2 in the presence of a variety of RNA binding partners enabled characterization of the maximum reaction velocity and apparent RNA-protein affinity of activating RNAs. While in this study OAS1 can be catalytically activated by dsRNA of any length greater than 19 bp, OAS2 showed a marked increase in activity with increasing dsRNA length with a minimum requirement of 35 bp. Interestingly, activation of OAS2 was also more efficient when the dsRNA contained 3'-overhangs, despite no significant impact on binding affinity. Highly structured viral RNAs that are established OAS1 activators were not able to activate OAS2 enzymatic activity based on the lack of extended stretches of dsRNA of greater than 35 bp. Together these results may highlight distinct subsets of biological RNAs to which different human OAS isozymes respond.
Collapse
Affiliation(s)
- Amit Koul
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Soumya Deo
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George L Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Matthew Genung
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Abstract
Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.
Collapse
|
14
|
Yang SL, Wang JJ, Chen M, Xu L, Li N, Luo YL, Bu L, Zhang MN, Li H, Su BL. Pioglitazone Use and Risk of Bladder Cancer: an In Vitro Study. Int J Med Sci 2018; 15:228-237. [PMID: 29483814 PMCID: PMC5820852 DOI: 10.7150/ijms.22408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Aims: Whether pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma agonist, increases the risk of developing bladder cancer has been debated for several years. The aim of this study was to investigate the in vitro effects of PIO on normal urothelial transitional epithelium (NUTE) cells and bladder cancer (J82) cells to further evaluate the risk. Methods: NUTE cells were obtained from Sprague-Dawley rats. NUTE and J82 cells were treated with different concentrations of PIO for various time periods. Cell proliferation was tested by the MTT assay. Cell apoptosis was evaluated by flow cytometry. The expressions of p53, cyclin D1, Bcl-2, and Bax were determined by qRT-PCR and western blots. Results: After 24 hours, the treatment of NUTE cells with 10 μmol/L PIO led to morphological changes, without changes in J82 cells. Moreover, PIO inhibited the proliferation and induced apoptosis of NUTE cells, but not J82 cells, in a time- and dose-dependent manner. However, PIO did not alter the growth of cells from other tissues. In addition, treatment with PIO for up to 72 hours did not result in changes in the expressions of p53, cyclin D1, Bcl-2, and Bax in NUTE cells and J82 cells. Interestingly, PIO significantly downregulated the protein levels of p53 and cyclin D1 in J82 cells, but not NUTE cells after more than 192 hours of treatment. Conclusions: PIO did not promote malignant alterations of NUTE cells or stimulate proliferation of J82 cells. PIO decreased the expression of p53 and cyclin D1 in J82 cells after long-term culture, which suggested that PIO may be helpful for diabetic patients with bladder cancer.
Collapse
Affiliation(s)
- Shao-Ling Yang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Soochow University School of Medicine, Suzhou, 215000, China
| | - Ji-Jiao Wang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Ming Chen
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, 210000, China
| | - Lu Xu
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Nan Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi-Li Luo
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Le Bu
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Man-Na Zhang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hong Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ben-Li Su
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
15
|
Kavyasudha C, Macrin D, ArulJothi KN, Joseph JP, Harishankar MK, Devi A. Clinical Applications of Induced Pluripotent Stem Cells - Stato Attuale. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1079:127-149. [PMID: 29480445 DOI: 10.1007/5584_2018_173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an adult human body, somatic stem cells are present in small amounts in almost all organs with the function of general maintenance and prevention of premature aging. But, these stem cells are not pluripotent and are unable to regenerate large cellular loss caused by infarctions or fractures especially in cells with limited replicative ability such as neurons and cardiomyocytes. These limitations gave rise to the idea of inducing pluripotency to adult somatic cells and thereby restoring their regeneration, replication and plasticity. Though many trials and research were focused on inducing pluripotency, a solid breakthrough was achieved by Yamanaka in 2006. Yamanaka's research identified 4 genes (OCT-4, SOX-2, KLF-4 and c-MYC) as the key requisite for inducing pluripotency in any somatic cells (iPSCs). Our study, reviews the major methods used for inducing pluripotency, differentiation into specific cell types and their application in both cell regeneration and disease modelling. We have also highlighted the current status of iPSCs in clinical applications by analysing the registered clinical trials. We believe that this review will assist the researchers to decide the parameters such as induction method and focus their efforts towards clinical application of iPSCs.
Collapse
Affiliation(s)
- Chavali Kavyasudha
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Dannie Macrin
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - M K Harishankar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India.
| |
Collapse
|
16
|
Phosphorylation of gH2AX as a novel prognostic biomarker for laryngoesophageal dysfunction-free survival. Oncotarget 2017; 7:31723-37. [PMID: 27166270 PMCID: PMC5077972 DOI: 10.18632/oncotarget.9172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/22/2016] [Indexed: 01/13/2023] Open
Abstract
Current larynx preservation treatments have achieved an improvement of laryngoesophageal dysfunction-free survival (LDS) but lead to significant toxicities and recurrences. At present, there is no evidence to select the group of patients that may benefit from preservation approaches instead of surgery. Therefore, laryngeal biomarkers could facilitate pretreatment identification of patients who could respond to chemoradiation-based therapy. In this study, we evaluated retrospectively 53 patients with larynx cancer to determine whether gH2AX phosphorylation (pH2AX) alone or in combination with the membrane protein MAP17 (PDZK1IP1) could be used as prognostic biomarkers. We also evaluated whether the completion of cisplatin treatment and radiotherapy could predict survival in combination with pH2AX. We found that the dose of cisplatin received but not the length of the radiotherapy influenced LDS. High-pH2AX expression was associated with prolonged LDS (HR 0.26, p = 0.02) while MAP17 correlated with overall survival (OS) (HR 0.98, p = 0.05). High-MAP17 and high-pH2AX combined analysis showed improved LDS (with 61.35 months vs 32.2 months, p = 0.05) and OS (with 66.6 months vs 39.8 months, p = 0.01). Furthermore, the subgroup of high-pH2AX and optimal dose of cisplatin was also associated with OS (72 months vs 38.6 months, p = 0.03) and LDS (66.9 months vs 27 months, p = 0.017). These findings suggest that pH2AX alone or better in combination with MAP17 may become a novel and valuable prognostic biomarker for patients with laryngeal carcinoma treated with preservation approaches.
Collapse
|
17
|
Head BM, Trajtman A, Rueda ZV, Vélez L, Keynan Y. Atypical bacterial pneumonia in the HIV-infected population. Pneumonia (Nathan) 2017; 9:12. [PMID: 28856082 PMCID: PMC5571654 DOI: 10.1186/s41479-017-0036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/13/2017] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected individuals are more susceptible to respiratory tract infections by other infectious agents (viruses, bacteria, parasites, and fungi) as their disease progresses to acquired immunodeficiency syndrome. Despite effective antiretroviral therapy, bacterial pneumonia (the most frequently occurring HIV-associated pulmonary illness) remains a common cause of morbidity and mortality in the HIV-infected population. Over the last few decades, studies have looked at the role of atypical bacterial pneumonia (i.e. pneumonia that causes an atypical clinical presentation or responds differently to typical therapeutics) in association with HIV infection. Due to the lack of available diagnostic strategies, the lack of consideration, and the declining immunity of the patient, HIV co-infections with atypical bacteria are currently believed to be underreported. Thus, following an extensive database search, this review aimed to highlight the current knowledge and gaps regarding atypical bacterial pneumonia in HIV. The authors discuss the prevalence of Chlamydophila pneumoniae, Mycoplasma pneumoniae, Coxiella burnetii, Legionella species and others in the HIV-infected population as well as their clinical presentation, methods of detection, and treatment. Further studies looking at the role of these microbes in association with HIV are required. Increased knowledge of these atypical bacteria will lead to a more rapid diagnosis of these infections, resulting in an improved quality of life for the HIV-infected population.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Adriana Trajtman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Zulma V. Rueda
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Lázaro Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2398696. [PMID: 28593022 PMCID: PMC5448073 DOI: 10.1155/2017/2398696] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.
Collapse
|
19
|
Sapochnik M, Fuertes M, Arzt E. Programmed cell senescence: role of IL-6 in the pituitary. J Mol Endocrinol 2017; 58:R241-R253. [PMID: 28381401 DOI: 10.1530/jme-17-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.
Collapse
Affiliation(s)
- Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Chandrasekaran A, Idelchik MDPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11:91-102. [PMID: 27889642 PMCID: PMC5126126 DOI: 10.1016/j.redox.2016.11.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
21
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
22
|
Systematic identification of an integrative network module during senescence from time-series gene expression. BMC SYSTEMS BIOLOGY 2017; 11:36. [PMID: 28298218 PMCID: PMC5353876 DOI: 10.1186/s12918-017-0417-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Background Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. Results We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Conclusions Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0417-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, Nascimento JM. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci 2017; 267:3-17. [PMID: 27377417 DOI: 10.1007/s00406-016-0709-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/25/2016] [Indexed: 12/17/2022]
Abstract
Approximately 25 % of the world population is affected by a mental disorder at some point in their life. Yet, only in the mid-twentieth century a biological cause has been proposed for these diseases. Since then, several studies have been conducted toward a better comprehension of those disorders, and although a strong genetic influence was revealed, the role of these genes in disease mechanism is still unclear. This led most recent studies to focus on the molecular basis of mental disorders. One line of investigation that has risen in the post-genomic era is proteomics, due to its power of revealing proteins and biochemical pathways associated with biological systems. Therefore, this review compiled and analyzed data of differentially expressed proteins, which were found in postmortem brain studies of the three most prevalent psychiatric diseases: schizophrenia, bipolar disorder and major depressive disorders. Overviewing both the proteomic methods used in postmortem brain studies, the most consistent metabolic pathways found altered in these diseases. We have unraveled those disorders share about 21 % of proteins affected, and though most are related to energy metabolism pathways deregulation, the main differences found are 14-3-3-mediated signaling in schizophrenia, mitochondrial dysfunction in bipolar disorder and oxidative phosphorylation in depression.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Guijarro MV, Carnero A. Genome-Wide miRNA Screening for Genes Bypassing Oncogene-Induced Senescence. Methods Mol Biol 2017; 1534:53-68. [PMID: 27812867 DOI: 10.1007/978-1-4939-6670-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression by binding to sequences within the 3'-UTR of mRNAs. Genome-wide screens have proven powerful in associating genes with certain phenotypes or signal transduction pathways and thus are valuable tools to define gene function. Here we describe a genome-wide miRNA screening strategy to identify miRNAs that are required to bypass oncogene-induced senescence.
Collapse
Affiliation(s)
- Maria V Guijarro
- Musculoskeletal and Oncology Lab, Department of Orthopaedics and Rehabilitation, University of Florida, 1600 Archer Road, MSB M2-212, Gainesville, FL, 32610, USA.
| | - Amancio Carnero
- Molecular Biology of Cancer Group, Oncohematology and Genetic Department, Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Campus HUVR, Edificio IBIS, Avda. Manuel Siurot s/n. 41013, Sevilla, Spain.
| |
Collapse
|
25
|
Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta. Appl Biochem Biotechnol 2016; 181:1561-1572. [DOI: 10.1007/s12010-016-2302-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/23/2016] [Indexed: 12/23/2022]
|
26
|
The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7031397. [PMID: 27119009 PMCID: PMC4826942 DOI: 10.1155/2016/7031397] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/30/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress-related phenotypic changes and a decline in the number of viable cells are crucial contributors to intervertebral disc degeneration. The polyphenol epigallocatechin 3-gallate (EGCG) can interfere with painful disc degeneration by reducing inflammation, catabolism, and pain. In this study, we hypothesized that EGCG furthermore protects against senescence and/or cell death, induced by oxidative stress. Sublethal and lethal oxidative stress were induced in primary human intervertebral disc cells with H2O2 (total n = 36). Under sublethal conditions, the effects of EGCG on p53-p21 activation, proliferative capacity, and accumulation of senescence-associated β-galactosidase were tested. Further, the effects of EGCG on mitochondria depolarization and cell viability were analyzed in lethal oxidative stress. The inhibitor LY249002 was applied to investigate the PI3K/Akt pathway. EGCG inhibited accumulation of senescence-associated β-galactosidase but did not affect the loss of proliferative capacity, suggesting that EGCG did not fully neutralize exogenous radicals. Furthermore, EGCG increased the survival of IVD cells in lethal oxidative stress via activation of prosurvival PI3K/Akt and protection of mitochondria. We demonstrated that EGCG not only inhibits inflammation but also can enhance the survival of disc cells in oxidative stress, which makes it a suitable candidate for the development of novel therapies targeting disc degeneration.
Collapse
|
27
|
Carnero A, Blanco-Aparicio C, Kondoh H, Lleonart ME, Martinez-Leal JF, Mondello C, Ivana Scovassi A, Bisson WH, Amedei A, Roy R, Woodrick J, Colacci A, Vaccari M, Raju J, Al-Mulla F, Al-Temaimi R, Salem HK, Memeo L, Forte S, Singh N, Hamid RA, Ryan EP, Brown DG, Wise JP, Wise SS, Yasaei H. Disruptive chemicals, senescence and immortality. Carcinogenesis 2015; 36 Suppl 1:S19-37. [PMID: 26106138 PMCID: PMC4565607 DOI: 10.1093/carcin/bgv029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes.
Collapse
Affiliation(s)
- Amancio Carnero
- *To whom correspondence should be addressed. Tel: +34955923111; Fax: +34955923101;
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Center, Experimental Therapuetics Department, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto 606-8507, Japan
| | - Matilde E. Lleonart
- Institut De Recerca Hospital Vall D’Hebron, Passeig Vall d’Hebron, 119–129, 08035 Barcelona, Spain
| | | | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - A. Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Italy, Florence 50134, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Roslida A. Hamid
- Department of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor 43400, Malaysia
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - John Pierce Wise
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104, USA and
| | - Sandra S. Wise
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104, USA and
| | - Hemad Yasaei
- Brunel Institute of Cancer Genetics and Pharmacogenomics, Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
28
|
Miller DM, Flaherty KT. Cyclin-dependent kinases as therapeutic targets in melanoma. Pigment Cell Melanoma Res 2014; 27:351-65. [PMID: 24405945 DOI: 10.1111/pcmr.12211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022]
Abstract
Decades of scientific insights have led to a recent expansion of the therapeutic menu for melanoma. Despite these advances, the current targeted therapies and immune checkpoint agents continue to yield suboptimal response and cure rates. Hitherto, the most effective targeted therapy strategies have centered on effectors in the mitogen-activated protein kinase (MAPK) pathway. This review focuses on the emerging evidence of combinatorial approaches targeting both MAPK signaling and dysregulations in cell-cycle checkpoints. We discuss the prospects and limitations of utilizing strategies that promote cellular senescence, such as inhibition of the interphase cyclin-dependent kinases (CDKs) and highlight the current state of CDK drug discovery in melanoma.
Collapse
Affiliation(s)
- David M Miller
- Department of Dermatology, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
29
|
Abstract
Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible.
Collapse
Affiliation(s)
- Rafik Salama
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mahito Sadaie
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|