1
|
Cokelaere C, Dok R, Cortesi EE, Zhao P, Sablina A, Nuyts S, Derua R, Janssens V. TIPRL1 and its ATM-dependent phosphorylation promote radiotherapy resistance in head and neck cancer. Cell Oncol (Dordr) 2024; 47:793-818. [PMID: 37971644 DOI: 10.1007/s13402-023-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.
Collapse
Affiliation(s)
- Célie Cokelaere
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Emanuela E Cortesi
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Peihua Zhao
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- SybioMA, Proteomics Core Facility, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
2
|
Nadel G, Yao Z, Hacohen-Lev-Ran A, Wainstein E, Maik-Rachline G, Ziv T, Naor Z, Admon A, Seger R. Phosphorylation of PP2Ac by PKC is a key regulatory step in the PP2A-switch-dependent AKT dephosphorylation that leads to apoptosis. Cell Commun Signal 2024; 22:154. [PMID: 38419089 PMCID: PMC10900696 DOI: 10.1186/s12964-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCβ) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.
Collapse
Affiliation(s)
- Guy Nadel
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Avital Hacohen-Lev-Ran
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Thomas N, Schröder NH, Nowak MK, Wollnitzke P, Ghaderi S, von Wnuck Lipinski K, Wille A, Deister-Jonas J, Vogt J, Gräler MH, Dannenberg L, Buschmann T, Westhoff P, Polzin A, Kelm M, Keul P, Weske S, Levkau B. Sphingosine-1-phosphate suppresses GLUT activity through PP2A and counteracts hyperglycemia in diabetic red blood cells. Nat Commun 2023; 14:8329. [PMID: 38097610 PMCID: PMC10721873 DOI: 10.1038/s41467-023-44109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Red blood cells (RBC) are the major carriers of sphingosine-1-phosphate (S1P) in blood. Here we show that variations in RBC S1P content achieved by altering S1P synthesis and transport by genetic and pharmacological means regulate glucose uptake and metabolic flux. This is due to S1P-mediated activation of the catalytic protein phosphatase 2 (PP2A) subunit leading to reduction of cell-surface glucose transporters (GLUTs). The mechanism dynamically responds to metabolic cues from the environment by increasing S1P synthesis, enhancing PP2A activity, reducing GLUT phosphorylation and localization, and diminishing glucose uptake in RBC from diabetic mice and humans. Functionally, it protects RBC against lipid peroxidation in hyperglycemia and diabetes by activating the pentose phosphate pathway. Proof of concept is provided by the resistance of mice lacking the S1P exporter MFSD2B to diabetes-induced HbA1c elevation and thiobarbituric acid reactive substances (TBARS) generation in diabetic RBC. This mechanism responds to pharmacological S1P analogues such as fingolimod and may be functional in other insulin-independent tissues making it a promising therapeutic target.
Collapse
Affiliation(s)
- Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Shahrooz Ghaderi
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Jens Vogt
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany.
| |
Collapse
|
4
|
He C, Gu J, Wang D, Wang K, Wang Y, You Q, Wang L. Small molecules targeting molecular chaperones for tau regulation: Achievements and challenges. Eur J Med Chem 2023; 261:115859. [PMID: 37839344 DOI: 10.1016/j.ejmech.2023.115859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Abnormal post-translational modification of microtubule-associated protein Tau (MAPT) is a prominent pathological feature in Alzheimer's disease (AD). Previous research has focused on designing small molecules to target Tau modification, aiming to restore microtubule stability and regulate Tau levels in vivo. However, progress has been hindered, and no effective Tau-targeted drugs have been successfully marketed, which urgently requires more strategies. Heat shock proteins (HSPs), especially Hsp90 and Hsp70, have been found to play a crucial role in Tau maturation and degradation. This review explores innovative approaches using small molecules that interact with the chaperone system to regulate Tau levels. We provide a comprehensive overview of the mechanisms involving HSPs and their co-chaperones in the Tau regulation cycle. Additionally, we analyze small molecules targeting these chaperone systems to modulate Tau function. By understanding the characteristics of the molecular chaperone system and its specific impact on Tau, we aim to provide a perspective that seeks to regulate Tau levels through the manipulation of the molecular chaperone system and ultimately develop effective treatments for AD.
Collapse
Affiliation(s)
- Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Qadri MM. Targeting CD44 Receptor Pathways in Degenerative Joint Diseases: Involvement of Proteoglycan-4 (PRG4). Pharmaceuticals (Basel) 2023; 16:1425. [PMID: 37895896 PMCID: PMC10609794 DOI: 10.3390/ph16101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and gout are the most prevalent degenerative joint diseases (DJDs). The pathogenesis underlying joint disease in DJDs remains unclear. Considering the severe toxicities reported with anti-inflammatory and disease-modifying agents, there is a clear need to develop new treatments that are specific in their effect while not being associated with significant toxicities. A key feature in the development of joint disease is the overexpression of adhesion molecules, e.g., CD44. Expression of CD44 and its variants in the synovial tissues of patients with DJDs is strongly associated with cartilage damage and appears to be a predicting factor of synovial inflammation in DJDs. Targeting CD44 and its downstream signaling proteins has emerged as a promising therapeutic strategy. PRG4 is a mucinous glycoprotein that binds to the CD44 receptor and is physiologically involved in joint lubrication. PRG4-CD44 is a pivotal regulator of synovial lining cell hemostasis in the joint, where lack of PRG4 expression triggers chronic inflammation and fibrosis, driven by persistent activation of synovial cells. In view of the significance of CD44 in DJD pathogenesis and the potential biological role for PRG4, this review aims to summarize the involvement of PRG4-CD44 signaling in controlling synovitis, synovial hypertrophy, and tissue fibrosis in DJDs.
Collapse
Affiliation(s)
- Marwa M. Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Hsiao KC, Ruan SY, Chen SM, Lai TY, Chan RH, Zhang YM, Chu CA, Cheng HC, Tsai HW, Tu YF, Law BK, Chang TT, Chow NH, Chiang CW. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer. Cell Commun Signal 2023; 21:172. [PMID: 37430297 DOI: 10.1186/s12964-023-01182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Collapse
Affiliation(s)
- Kai-Ching Hsiao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Siou-Ying Ruan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Min Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ren-Hao Chan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yan-Ming Zhang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-An Chu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Brian K Law
- Department of Pharmacology and Therapeutics and the UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
8
|
van Pelt J, Meeusen B, Derua R, Guffens L, Van Cutsem E, Janssens V, Verslype C. Human pancreatic cancer patients with Epithelial-to-Mesenchymal Transition and an aggressive phenotype show a disturbed balance in Protein Phosphatase Type 2A expression and functionality. J Transl Med 2023; 21:317. [PMID: 37170215 PMCID: PMC10176933 DOI: 10.1186/s12967-023-04145-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a low survival, its incidence is rising and little therapeutic improvements are expected in the near future. It has been observed that Epithelial-to-Mesenchymal transition (EMT) contributes (including in PDAC) to a more aggressive cancer phenotype. Additionally, largely unexplored, studies indicate a mechanistic interplay between Protein Phosphatase Type 2A (PP2A) enzymes and EMT that could offer treatment opportunities. The aim was to investigate the relation of a PP2A expression signature (encompassing all PP2A subunits, endogenous inhibitors and activators) with EMT and aggressive pancreatic cancer, and to discuss possible implications. METHODS We retrieved different PDAC expression datasets from NCBI to capture the variation in patients, and analyzed these using datamining, survival analysis, differential gene and protein expression. We determined genes highly associated with aggressive PDAC. For in vitro evaluation, Panc-1 cells were treated with the pharmacologic PP2A inhibitor Okadaic Acid (OA). Additionally, two OA-resistant Panc-1 clones were developed and characterized. RESULTS In patients, there is a strong correlation between EMT and aggressive PDAC, and between aggressive PDAC and PP2A, with a significant upregulation of PP2A inhibitor genes. Several PP2A genes significantly correlated with decreased survival. In vitro, short-term exposure to OA induced EMT in Panc-1 cells. This shift towards EMT was further pronounced in the OA-resistant Panc-1 clones, morphologically and by pathway analysis. Proteomic analysis and gene sequencing showed that the advanced OA-resistant model most resembles the clinical PDAC presentation (with EMT signature, and with several specific PP2A genes upregulated, and others downregulated). CONCLUSIONS We demonstrated a strong association between EMT, altered PP2A expression and aggressive PDAC in patients. Also, in vitro, PP2A inhibition induces EMT. Overall, statistics suggests the mechanistic importance of PP2A dysregulation for PDAC progression. Translationally, our observations indicate that pharmacologic restoration of PP2A activity could be an attractive therapeutic strategy to block or reverse progression.
Collapse
Affiliation(s)
- Jos van Pelt
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium.
| | - Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
- SyBioMa (KU Leuven), Herestraat 49, B3000, Leuven, Belgium
| | - Liesbeth Guffens
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium
| | - Eric Van Cutsem
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
| | - Veerle Janssens
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium.
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, O&N1, University of Leuven (KU Leuven), Herestraat 49, Bus 901, B3000, Leuven, Belgium.
| | - Chris Verslype
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven, Geb. Onderwijs & Navorsing 4, Room 07.465, Herestraat 49, Bus 603, B3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), Herestraat 49, B3000, Leuven, Belgium
| |
Collapse
|
9
|
Arribas RL, Viejo L, Bravo I, Martínez M, Ramos E, Romero A, García-Frutos EM, Janssens V, Montiel C, de Los Ríos C. C-glycosides analogues of the okadaic acid central fragment exert neuroprotection via restoration of PP2A-phosphatase activity: A rational design of potential drugs for Alzheimer's disease targeting tauopathies. Eur J Med Chem 2023; 251:115245. [PMID: 36905916 DOI: 10.1016/j.ejmech.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important Ser/Thr phosphatase that participates in the regulation of multiple cellular processes. This implies that any deficient activity of PP2A is the responsible of severe pathologies. For instance, one of the main histopathological features of Alzheimer's disease is neurofibrillary tangles, which are mainly comprised by hyperphosphorylated forms of tau protein. This altered rate of tau phosphorylation has been correlated with PP2A depression AD patients. With the goal of preventing PP2A inactivation in neurodegeneration scenarios, we have aimed to design, synthesize and evaluate new ligands of PP2A capable of preventing its inhibition. To achieve this goal, the new PP2A ligands present structural similarities with the central fragment C19-C27 of the well-established PP2A inhibitor okadaic acid (OA). Indeed, this central moiety of OA does not exert inhibitory actions. Hence, these compounds lack PP2A-inhibiting structural motifs but, in contrast, compete with PP2A inhibitors, thus recovering phosphatase activity. Proving this hypothesis, most compounds showed a good neuroprotective profile in neurodegeneration models related to PP2A impairment, highlighting derivative 10, named ITH12711, as the most promising one. This compound (1) restored in vitro and cellular PP2A catalytic activity, measured on a phospho-peptide substrate and by western-blot analyses, (2) proved good brain penetration measured by PAMPA, and (3) prevented LPS-induced memory impairment of mice in the object recognition test. Thus, the promising outcomes of the compound 10 validate our rational approach to design new PP2A-activating drugs based on OA central fragment.
Collapse
Affiliation(s)
- Raquel L Arribas
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain
| | - Lucía Viejo
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Isaac Bravo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain; Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Minerva Martínez
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona Km.33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Veerle Janssens
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, B-3000, Leuven, Belgium; LBI (KU Leuven Brain Institute), B-3000, Leuven, Belgium
| | - Carmen Montiel
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain.
| |
Collapse
|
10
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
11
|
Simpson LM, Fulcher LJ, Sathe G, Brewer A, Zhao JF, Squair DR, Crooks J, Wightman M, Wood NT, Gourlay R, Varghese J, Soares RF, Sapkota GP. An affinity-directed phosphatase, AdPhosphatase, system for targeted protein dephosphorylation. Cell Chem Biol 2023; 30:188-202.e6. [PMID: 36720221 DOI: 10.1016/j.chembiol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.
Collapse
Affiliation(s)
- Luke M Simpson
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Luke J Fulcher
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daniel R Squair
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Crooks
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P Sapkota
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
12
|
de los Ríos C, Viejo L, Carretero VJ, Juárez NH, Cruz-Martins N, Hernández-Guijo JM. Promising Molecular Targets in Pharmacological Therapy for Neuronal Damage in Brain Injury. Antioxidants (Basel) 2023; 12:118. [PMID: 36670980 PMCID: PMC9854812 DOI: 10.3390/antiox12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The complex etiopathogenesis of brain injury associated with neurodegeneration has sparked a lot of studies in the last century. These clinical situations are incurable, and the currently available therapies merely act on symptoms or slow down the course of the diseases. Effective methods are being sought with an intent to modify the disease, directly acting on the properly studied targets, as well as to contribute to the development of effective therapeutic strategies, opening the possibility of refocusing on drug development for disease management. In this sense, this review discusses the available evidence for mitochondrial dysfunction induced by Ca2+ miscommunication in neurons, as well as how targeting phosphorylation events may be used to modulate protein phosphatase 2A (PP2A) activity in the treatment of neuronal damage. Ca2+ tends to be the catalyst for mitochondrial dysfunction, contributing to the synaptic deficiency seen in brain injury. Additionally, emerging data have shown that PP2A-activating drugs (PADs) suppress inflammatory responses by inhibiting different signaling pathways, indicating that PADs may be beneficial for the management of neuronal damage. In addition, a few bioactive compounds have also triggered the activation of PP2A-targeted drugs for this treatment, and clinical studies will help in the authentication of these compounds. If the safety profiles of PADs are proven to be satisfactory, there is a case to be made for starting clinical studies in the setting of neurological diseases as quickly as possible.
Collapse
Affiliation(s)
- Cristóbal de los Ríos
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, University Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Lucía Viejo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Hernández Juárez
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natália Cruz-Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029 Madrid, Spain
| |
Collapse
|
13
|
Verbinnen I, Procknow SS, Lenaerts L, Reynhout S, Mehregan A, Ulens C, Janssens V, King KA. Clinical and molecular characteristics of a novel rare de novo variant in PPP2CA in a patient with a developmental disorder, autism, and epilepsy. Front Cell Dev Biol 2022; 10:1059938. [DOI: 10.3389/fcell.2022.1059938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
PP2A-related (neuro) developmental disorders are a family of genetic diseases caused by a heterozygous alteration in one of several genes encoding a subunit of type 2A protein phosphatases. Reported affected genes, so far, are PPP2R5D, encoding the PP2A regulatory B56δ subunit; PPP2R1A, encoding the scaffolding Aα subunit; and PPP2CA, encoding the catalytic Cα subunit—in that order of frequency. Patients with a pathogenic de novo mutation in one of these genes, in part, present with overlapping features, such as generalized hypotonia, intellectual and developmental delay, facial dysmorphologies, seizures, and autistic features, and, in part, with opposite features, e.g., smaller versus larger head sizes or normal versus absent corpus callosum. Molecular variant characterization has been consistent so far with loss-of-function or dominant-negative disease mechanisms for all three affected genes. Here, we present a case report of another PPP2CA-affected individual with a novel de novo missense variant, resulting in a one-amino acid substitution in the Cα subunit: p.Cys196Arg. Biochemical characterization of the variant revealed its pathogenicity, as it appeared severely catalytically impaired, showed mildly affected A subunit binding, and moderately decreased binding to B/B55, B”/PR72, and all B56 subunits, except B56γ1. Carboxy-terminal methylation appeared unaffected, as was binding to B”’/STRN3—all being consistent with a partial loss of function. Clinically, the girl presented with mild-to-moderate developmental delay, a full-scale IQ of 83, mild dysmorphic facial features, tonic–clonic seizures, and autistic behaviors. Brain MRI appeared normal. We conclude that this individual falls within the milder end of the clinical and molecular spectrum of previously reported PPP2CA cases.
Collapse
|
14
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
15
|
Oyama N, Vaneynde P, Reynhout S, Pao EM, Timms A, Fan X, Foss K, Derua R, Janssens V, Chung W, Mirzaa GM. Clinical, neuroimaging and molecular characteristics of PPP2R5D-related neurodevelopmental disorders: an expanded series with functional characterisation and genotype-phenotype analysis. J Med Genet 2022; 60:511-522. [PMID: 36216457 DOI: 10.1136/jmg-2022-108713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.
Collapse
Affiliation(s)
- Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Emily M Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York City, New York, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,SyBioMa, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Wendy Chung
- Department of Pediatrics, Columbia University, New York City, New York, USA.,Department of Medicine, Columbia University, New York City, New York, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA .,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Hua L, Zhang Q, Zhu X, Wang R, You Q, Wang L. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. J Med Chem 2022; 65:8091-8112. [PMID: 35686733 DOI: 10.1021/acs.jmedchem.2c00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, with the successful development of proteolysis-targeting chimeric molecules (PROTACs), the potential of heterobifunctional molecules to contribute to reenvisioning drug design, especially small-molecule drugs, has been increasingly recognized. Inspired by PROTACs, diverse heterobifunctional molecules have been reported to simultaneously bind two or more molecules and bring them into proximity to interaction, such as ribonuclease-recruiting, autophagy-recruiting, lysosome-recruiting, kinase-recruiting, phosphatase-recruiting, glycosyltransferase-recruiting, and acetyltransferase-recruiting chimeras. On the basis of the heterobifunctional principle, more opportunities for advancing drug design by linking potential effectors to a protein of interest (POI) have emerged. Herein, we introduce heterobifunctional molecules other than PROTACs, summarize the limitations of existing molecules, list the main challenges, and propose perspectives for future research directions, providing insight into alternative design strategies based on substrate-proximity-based targeting.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Xinyue Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| |
Collapse
|
17
|
Galiger C, Dahlhaus M, Vitek MP, Debatin KM, Beltinger C. PPP2CA Is a Novel Therapeutic Target in Neuroblastoma Cells That Can Be Activated by the SET Inhibitor OP449. Front Oncol 2022; 12:744984. [PMID: 35814385 PMCID: PMC9258974 DOI: 10.3389/fonc.2022.744984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and has a poor prognosis in high-risk cases, requiring novel therapies. Pathways that depend on phospho-signaling maintain the aggressiveness of NB. Protein phosphatase 2 (PP2A) with its catalytic subunit PPP2CA is a major phosphatase in cancer cells, including NB. We show that reduction of PPP2CA by knock-down decreased growth of NB cells and that complete ablation of PPP2CA by knock-out was not tolerated. Thus, NB cells are addicted to PPP2CA, an addiction augmented by MYCN activation. SET, a crucial endogenous inhibitor of PP2A, was overexpressed in poor-prognosis NB. The SET inhibitor OP449 effectively decreased the viability of NB cells, independent of their molecular alterations and in line with a tumor suppressor function of PPP2CA. The contrasting concentration-dependent functions of PPP2CA as an essential survival gene at low expression levels and a tumor suppressor at high levels are reminiscent of other genes showing this so-called Goldilocks phenomenon. PP2A reactivated by OP449 decreased activating phosphorylation of serine/threonine residues in the AKT pathway. Conversely, induced activation of AKT led to partial rescue of OP449-mediated viability inhibition. Dasatinib, a kinase inhibitor used in relapsed/refractory NB, and OP449 synergized, decreasing activating AKT phosphorylations. In summary, concomitantly reactivating phosphatases and inhibiting kinases with a combination of OP449 and dasatinib are promising novel therapeutic approaches to NB.
Collapse
Affiliation(s)
- Celimene Galiger
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Meike Dahlhaus
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Michael Peter Vitek
- Cognosci, Inc., Research Triangle Park, NC, United States
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section of Experimental Pediatric Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- *Correspondence: Christian Beltinger,
| |
Collapse
|
18
|
Gu M, Tan M, Zhou L, Sun X, Lu Q, Wang M, Jiang H, Liang Y, Hou Q, Xue X, Xu Z, Dai C. Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury. Kidney Int 2022; 102:321-336. [PMID: 35483524 DOI: 10.1016/j.kint.2022.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
Energy metabolism is crucial in maintaining cellular homeostasis and adapting to stimuli for tubular cells. However, the underlying mechanisms remain largely unknown. Here, we report that PP2Acα was upregulated in damaged tubular cells from patients and animal models with acute or chronic kidney injury. Using in vitro and in vivo model, we demonstrated that PP2Acα induction in damaged tubular cells suppresses fatty acid oxidation and promotes glycolysis, leading to cell death and fibrosis. Mechanistically, we revealed that PP2Acα dephosphorylates ACC through interaction with B56δ, leading to the regulation of fatty acid oxidation. Furthermore, PP2Acα also dephosphorylates p-Glut1 (Thr478) and suppresses Trim21-mediated Glut1 ubiquitination and degradation, leading to the promotion of glucose intake and glycolysis. Thus, this study adds new insight into the tubular cell metabolic alterations in kidney diseases. PP2Acα may be a promising therapeutic target for kidney injury.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lu Zhou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaoli Sun
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qingmiao Lu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mingjie Wang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Liang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xian Xue
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhuo Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Chen L, Guo P, Li W, Jiang X, Zhao Q, Li D, Wang Q, Xiao Y, Xing X, Pang Y, Aschner M, Zhang L, Chen W. Protein phosphatase 2A regulates cytotoxicity and drug resistance by dephosphorylating xenobiotic metabolism enzymes AHR and MDR1. J Biol Chem 2022; 298:101918. [PMID: 35405096 PMCID: PMC9118923 DOI: 10.1016/j.jbc.2022.101918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine dephosphorylating enzyme complex that plays numerous roles in biological processes, including cell growth and metabolism. However, its specific actions in many of these critical pathways are unclear. To explore mechanisms underlying metabolic enzyme regulation in the liver, we investigated the key pathways involved in regulation of xenobiotic-metabolizing enzymes in a mouse model with hepatocyte-specific deletion of Ppp2r1a, encoding the Aα subunit of PP2A. We performed transcriptome and phosphoproteome analysis in mouse livers at the age of 3 months and identified 2695 differentially expressed genes and 549 upregulated phosphoproteins in homozygous knockout mouse livers compared with WT littermates. In particular, the expression of metabolic enzymes Cyp2e1, Cyp1a1, Cyp1a2, Mdr1a, and Abcg2 was dramatically altered in homozygous knockout mouse livers. We also demonstrated that activation of PP2A reversed the decline of metabolic enzyme expression in primary mouse hepatocytes. We found that specific PP2A holoenzymes were involved in metabolic enzyme induction through dephosphorylation of transcription factors, nuclear receptors, or the target enzymes themselves, leading to dysregulation of xenobiotic metabolism or drug-induced hepatotoxicity. Notably, we confirmed that a regulatory axis, PP2A B56α–aryl hydrocarbon receptor–Cyp1a1, was involved in benzo(a)pyrene-induced cytotoxicity through dephosphorylation of the metabolic nuclear receptor, aryl hydrocarbon receptor, at serine 36. In addition, we showed that PP2A B56δ complexes directly dephosphorylated the multidrug efflux pump MDR1 (encoded by multi-drug resistance gene 1), contributing to drug resistance against the chemotherapeutic 5-fluorouracil. Taken together, these novel findings demonstrate the involvement of PP2A in the regulation of liver metabolism.
Collapse
Affiliation(s)
- Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaqin Pang
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi 533000, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China.
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Simón-Gracia L, Loisel S, Sidorenko V, Scodeller P, Parizot C, Savier E, Haute T, Teesalu T, Rebollo A. Preclinical Validation of Tumor-Penetrating and Interfering Peptides against Chronic Lymphocytic Leukemia. Mol Pharm 2022; 19:895-903. [PMID: 35113575 DOI: 10.1021/acs.molpharmaceut.1c00837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults. The disease is characterized by the accumulation of tumoral B cells resulting from a defect of apoptosis. We have in vitro and in vivo preclinically validated a tumor-penetrating peptide (named TT1) coupled to an interfering peptide (IP) that dissociates the interaction between the serine/threonine protein phosphatase 2A (PP2A) from its physiological inhibitor, the oncoprotein SET. This TT1-IP peptide has an antitumoral effect on CLL, as shown by the increased survival of mice bearing xenograft models of CLL, compared to control mice. The peptide did not show toxicity, as indicated by the mouse body weight and the biochemical parameters, such as renal and hepatic enzymes. In addition, the peptide-induced apoptosis in vitro of primary tumoral B cells isolated from CLL patients but not of those isolated from healthy patients. Finally, the peptide had approximately 5 h half-life in human serum and showed pharmacokinetic parameters compatible with clinical development as a therapeutic peptide against CLL.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Severine Loisel
- Université de Brest, Service Général des plateformes, Animalerie Commune, 29238 Brest, France
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Christophe Parizot
- Sorbonne Université, Inserm, CIMI-Paris, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Eric Savier
- Department of Hepato-Biliary and Pancreatic Surgery and Liver Transplantation, Pitie-Salpetriere Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 75013 Paris, France.,St Antoine Research Center (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, INSERM, 75012 Paris, France
| | - Tanguy Haute
- Université de Brest, Plateforme SyNanoVect, 29238 Brest, France
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Center for Nanomedicine, University of California Santa Barbara, 92037 Santa Barbara, California, United States
| | - Angelita Rebollo
- Université de Paris, Inserm U1267, CNRS, Faculté de Pharmacie, 75006 Paris, France
| |
Collapse
|
21
|
Gao R, Li X, Gao H, Zhao K, Liu X, Liu J, Wang Q, Zhu Y, Chen H, Xiang S, Zhan Y, Yin R, Yu M, Ning H, Yang X, Li C. Protein phosphatase 2A catalytic subunit β suppresses PMA/ionomycin-induced T-cell activation by negatively regulating PI3K/Akt signaling. FEBS J 2022; 289:4518-4535. [PMID: 35068054 DOI: 10.1111/febs.16370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit β isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xin Li
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Qi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaxin Zhu
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| |
Collapse
|
22
|
Chen X, Wang W, Liu X, Liu H, Sun H, Wang L, Yu J, Li J, Shi Y. Catalytic Subunit of Protein Phosphatase 2A (PP2Ac) Influences the Meiosis Initiation During Spermatocyte Meiosis Prophase I. Reprod Sci 2022; 29:3201-3211. [PMID: 35041133 DOI: 10.1007/s43032-022-00843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022]
Abstract
As a serine/threonine phosphatase, protein phosphatase 2A (PP2A) is essential in numerous physiological processes. By generating a catalytic subunit of PP2A (Ppp2ca) conditional knockout (CKO) in C57BL/6 J mice, we explored the possible mechanisms of azoospermia by focusing on meiosis initiation and spermatogenesis. The deficiency of Ppp2ca in germ cells conspicuously disturbed spermatogonial differentiation and led to pachynema arrest, accompanied by significant apoptosis in germ cells and defects in programmed double-strand break (DSB) repair. While the formation of XY body was normal, respectively. Ppp2ca-deficient spermatocytes exhibited an abnormal cohesion complex degradation of chromosome, probably contributing to cell death. Furthermore, transcriptomics analysis was conducted to prove several genes involved in spermatogenesis and exhibited transcriptional dysregulations in Ppp2ca-deficient testes. Our study demonstrates the irreplaceable role of PP2A in spermatogenesis and provides more evidences of azoospermia etiology.
Collapse
Affiliation(s)
- Xia Chen
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Wenbin Wang
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Xing Liu
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Huijun Liu
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Huiting Sun
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Linxiao Wang
- Laboratory of Neurological Diseases, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Jiajun Yu
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China
| | - Jianmin Li
- Key Laboratory of National Reproductive Medicine, Animal Core Facility, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yichao Shi
- Center of Reproduction, Nanjing Medical University Affiliated Changzhou Second People's Hospital, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
23
|
Nadel G, Yao Z, Wainstein E, Cohen I, Ben-Ami I, Schajnovitz A, Maik-Rachline G, Naor Z, Horwitz BA, Seger R. GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Commun Signal 2022; 20:5. [PMID: 34998390 PMCID: PMC8742922 DOI: 10.1186/s12964-021-00805-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH. METHODS Here we used kinase activity assays of PI3K and followed phosphorylation state of proteins using specific antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by TUNEL assay and PARP1 cleavage. RESULTS We identified the mechanism that allows the unique stimulated inactivation of AKT and show that the main regulator of this process is the phosphatase PP2A, operating with the non-canonical regulatory subunit IGBP1. In resting cells, an IGBP1-PP2Ac dimer binds to PI3K, dephosphorylates the inhibitory pSer608-p85 of PI3K and thus maintains its high basal activity. Upon GqPCR activation, the PP2Ac-IGBP1 dimer detaches from PI3K and thus allows the inhibitory dephosphorylation. At this stage, the free PP2Ac together with IGBP1 and PP2Aa binds to AKT, causing its dephosphorylation and inactivation. CONCLUSION Our results show a stimulated shift of PP2Ac from PI3K to AKT termed "PP2A switch" that represses the PI3K/AKT pathway, providing a unique mechanism of GPCR-stimulated dephosphorylation. Video Abstract.
Collapse
Affiliation(s)
- Guy Nadel
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Izel Cohen
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ido Ben-Ami
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,IVF and Fertility Unit, Department of OB/GYN, Shaare Zedek Medical Center and The Hebrew University Medical School, Jerusalem, Israel
| | - Amir Schajnovitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin A Horwitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and Its Inhibitors in Helper T-Cell Differentiation and Autoimmunity. Front Immunol 2022; 12:786857. [PMID: 35069561 PMCID: PMC8766794 DOI: 10.3389/fimmu.2021.786857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Meraj H. Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Kim KM, Jang WG. NXNL1 negatively regulates osteoblast differentiation via GDF15-induced PP2A Cα dependent manner in MC3T3-E1 cells. Biofactors 2022; 48:239-248. [PMID: 34932831 DOI: 10.1002/biof.1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022]
Abstract
Controlling the level of intracellular reactive oxygen species (ROS) is important for the survival and differentiation of osteoblasts. Intracellular ROS levels are controlled by antioxidant enzymes that modulate the redox state of the cell. Nucleoredoxin-like 1 (NXNL1) is an antioxidant enzyme that increases the viability of rod and cone cells by protecting them from oxidative stress, and is a potential pharmacological target for the treatment of retinitis pigmentosa. The present study investigated the role of NXNL on osteoblast differentiation of MC3T3-E1 preosteoblast cells. Results from qPCR experiments demonstrated that growth differentiation factor 15 (GDF15) increased NXNL1 expression, and that GDF15-induced NXNL1 decreased the expression of osteogenic genes such as distal-less homeobox 5 (Dlx5) and Runt-related transcription factor 2. Furthermore, NXNL1 also inhibits bone morphogenetic protein 2-induced phosphorylation of Smad1/5/9 and alkaline phosphatase activity. The inhibitory effects of NXNL1 on osteoblast differentiation were mediated by protein phosphatase 2A Cα (PP2A Cα). The expression of PP2A Cα was regulated by GDF15, and overexpression of PP2A Cα increased the expression of NXNL1. Taken together, our results demonstrate that NXNL1 inhibits osteoblast differentiation of MC3T3-E1 due to GDF15-induced expression of PP2A Cα.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, South Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, South Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, South Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, South Korea
| |
Collapse
|
26
|
Chen PH, Hu Z, An E, Okeke IO, Zheng S, Luo X, Gong A, Jaime-Figueroa S, Crews CM. Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chem Biol 2021; 16:2808-2815. [PMID: 34780684 PMCID: PMC10437008 DOI: 10.1021/acschembio.1c00693] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation, which regulates many critical aspects of cell biology, is dynamically governed by kinases and phosphatases. Many diseases are associated with dysregulated hyperphosphorylation of critical proteins, such as retinoblastoma protein in cancer. Although kinase inhibitors have been widely applied in the clinic, growing evidence of off-target effects and increasing drug resistance prompts the need to develop a new generation of drugs. Here, we propose a proof-of-concept study of phosphorylation targeting chimeras (PhosTACs). Similar to PROTACs in their ability to induce ternary complexes, PhosTACs focus on recruiting a Ser/Thr phosphatase to a phosphosubstrate to mediate its dephosphorylation. However, distinct from PROTACs, PhosTACs can uniquely provide target gain-of-function opportunities to manipulate protein activity. In this study, we applied a chemical biology approach to evaluate the feasibility of PhosTACs by recruiting the scaffold and catalytic subunits of the PP2A holoenzyme to protein substrates such as PDCD4 and FOXO3a for targeted protein dephosphorylation. For FOXO3a, this dephosphorylation resulted in the transcriptional activation of a FOXO3a-responsive reporter gene.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Elvira An
- Department of Pharmacology, Yale University, New Haven, Connecticut, 06511, United States
| | - Ifunanya Ozioma Okeke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
- Yale University School of Medicine, New Haven, Connecticut, 06511, United States
| | - Xuanmeng Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Angela Gong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut, 06511, United States
- Yale University School of Medicine, New Haven, Connecticut, 06511, United States
| |
Collapse
|
27
|
Lu H, He S, Zhang Q, Li X, Xie Z, Wang Z, Qi Y, Huang Y. Dual-sensitive dual-prodrug nanoparticles with light-controlled endo/lysosomal escape for synergistic photoactivated chemotherapy. Biomater Sci 2021; 9:7115-7123. [PMID: 34569561 DOI: 10.1039/d1bm01154e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for synergistic chemotherapy. In this work, we designed dual-sensitive dual-prodrug nanoparticles (DDNPs) for photoactivated platinum-based synergistic chemotherapy. With photosensitivity, DDNPs could be photoactivated from inert Pt(IV) to toxic Pt(II) under safe UVA light in a spatiotemporally controlled manner. Concurrently, mild could be generated from DDNPs to assist the endo/lysosomal escape of DDNPs for better photoactivated chemotherapy (PACT). Furthermore, with acid-sensitivity, demethylcantharidin (DMC), a protein phosphatase 2A (PP2A) inhibitor, was released to block the DNA repair pathway and thereby could sensitize platinum-based chemotherapy in intracellular acidic microenvironments. Along with a precise ratio (Pt : DMC = 1 : 2), DDNPs had a powerful synergistic anti-cancer effect in vitro and in vivo. In the future, DDNPs have great potential as a safe and multifunctional drug delivery system for precise nanomedicine in clinical treatments.
Collapse
Affiliation(s)
- Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zigui Wang
- Zhengzhou Immunobiotech Co., Ltd, Zhengzhou 450016, P.R. China.
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
28
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
29
|
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J, Yang L. Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 2021; 22:1236. [PMID: 34539832 PMCID: PMC8438693 DOI: 10.3892/etm.2021.10671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion-transport proteins, aquaporin-2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial-mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Yiqun Ma
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Ziye Huang
- Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Wan
- Department of Radiology, Yunnan Kun-Gang Hospital, Anning, Yunnan 650300, P.R. China
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
30
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
31
|
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J Med Chem 2021; 64:8916-8938. [PMID: 34156850 DOI: 10.1021/acs.jmedchem.1c00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among numerous posttranslational regulation patterns, phosphorylation is reversibly controlled by the balance of kinases and phosphatases. The major form of cellular signaling involves the reversible phosphorylation of proteins on tyrosine, serine, or threonine residues. However, altered phosphorylation levels are found in diverse diseases, including cancer, making kinases and phosphatases ideal drug targets. In contrast to the success of prosperous kinase inhibitors, design of small molecules targeting phosphatase is struggling due to past bias and difficulty. This is especially true for serine/threonine phosphatases, one of the largest phosphatase families. From this perspective, we aim to provide insights into serine/threonine phosphatases and the small molecules targeting these proteins for drug development, especially in cancer. Through highlighting the modulation strategies, we aim to provide basic principles for the design of small molecules and future perspectives for the application of drugs targeting serine/threonine phosphatases.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjiao Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
32
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
33
|
Larouche M, Kachaner D, Wang P, Normandin K, Garrido D, Yao C, Cormier M, Johansen KM, Johansen J, Archambault V. Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. J Cell Biol 2021; 220:211965. [PMID: 33836042 PMCID: PMC8042607 DOI: 10.1083/jcb.202008145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.
Collapse
Affiliation(s)
- Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Peng Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Maxime Cormier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Cryo-EM structure of the Hippo signaling integrator human STRIPAK. Nat Struct Mol Biol 2021; 28:290-299. [PMID: 33633399 PMCID: PMC8315899 DOI: 10.1038/s41594-021-00564-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a large, multisubunit protein phosphatase 2A (PP2A) assembly that integrates diverse cellular signals in the Hippo pathway to regulate cell proliferation and survival. The architecture and assembly mechanism of this critical complex are poorly understood. Using cryo-EM, we determine the structure of the human STRIPAK core comprising PP2AA, PP2AC, STRN3, STRIP1, and MOB4 at 3.2-Å resolution. Unlike the canonical trimeric PP2A holoenzyme, STRIPAK contains four copies of STRN3 and one copy of each the PP2AA-C heterodimer, STRIP1, and MOB4. The STRN3 coiled-coil domains form an elongated homotetrameric scaffold that links the complex together. An inositol hexakisphosphate (IP6) is identified as a structural cofactor of STRIP1. Mutations of key residues at subunit interfaces disrupt the integrity of STRIPAK, causing aberrant Hippo pathway activation. Thus, STRIPAK is established as a noncanonical PP2A complex with four copies of regulatory STRN3 for enhanced signal integration.
Collapse
|
35
|
Gnanaprakash M, Staniszewski A, Zhang H, Pitstick R, Kavanaugh MP, Arancio O, Nicholls RE. Leucine Carboxyl Methyltransferase 1 Overexpression Protects Against Cognitive and Electrophysiological Impairments in Tg2576 APP Transgenic Mice. J Alzheimers Dis 2021; 79:1813-1829. [PMID: 33459709 PMCID: PMC8203222 DOI: 10.3233/jad-200462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The serine/threonine protein phosphatase, PP2A, is thought to play a central role in the molecular pathogenesis of Alzheimer’s disease (AD), and the activity and substrate specificity of PP2A is regulated, in part, through methylation and demethylation of its catalytic subunit. Previously, we found that transgenic overexpression of the PP2A methyltransferase, LCMT-1, or the PP2A methylesterase, PME-1, altered the sensitivity of mice to impairments caused by acute exposure to synthetic oligomeric amyloid-β (Aβ). Objective: Here we sought to test the possibility that these molecules also controlled sensitivity to impairments caused by chronically elevated levels of Aβ produced in vivo. Methods: To do this, we examined the effects of transgenic LCMT-1, or PME-1 overexpression on cognitive and electrophysiological impairments caused by chronic overexpression of mutant human APP in Tg2576 mice. Results: We found that LCMT-1 overexpression prevented impairments in short-term spatial memory and synaptic plasticity in Tg2576 mice, without altering APP expression or soluble Aβ levels. While the magnitude of the effects of PME-1 overexpression in Tg2576 mice was small and potentially confounded by the emergence of non-cognitive impairments, Tg2576 mice that overexpressed PME-1 showed a trend toward earlier onset and/or increased severity of cognitive and electrophysiological impairments. Conclusion: These data suggest that the PP2A methyltransferase, LCMT-1, and the PP2A methylesterase, PME-1, may participate in the molecular pathogenesis of AD by regulating sensitivity to the pathogenic effects of chronically elevated levels of Aβ.
Collapse
Affiliation(s)
- Madhumathi Gnanaprakash
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | | | | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2:442-465. [PMID: 33114225 PMCID: PMC7711450 DOI: 10.3390/clockssleep2040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate "sleep-state" or the "deprived state". As sleep has a significant effect on physiology, we believe that lack of total sleep, or particularly rapid eye movement (REM) sleep, for a prolonged period would have a profound impact on various body tissues. Therefore, using the microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following nine days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely, and 13 similarly across brain and liver tissue. Our results suggest that nine-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.
Collapse
Affiliation(s)
- Atul Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ryan Oliver
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Santosh K Kar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Bio Incubator, Campus-11, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
37
|
Dzulko M, Pons M, Henke A, Schneider G, Krämer OH. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer 2020; 1874:188453. [PMID: 33068647 DOI: 10.1016/j.bbcan.2020.188453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.
Collapse
Affiliation(s)
- Melanie Dzulko
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, 81675 Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
38
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
39
|
Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, Yang F, Wang A, Wang L, Zhuang M, Wu S, Zhang Q, Xia Y, Lu D. Angiotensin II Decreases Endothelial Nitric Oxide Synthase Phosphorylation via AT 1R Nox/ROS/PP2A Pathway. Front Physiol 2020; 11:566410. [PMID: 33162896 PMCID: PMC7580705 DOI: 10.3389/fphys.2020.566410] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidences suggest that angiotensin (Ang) II participates in the pathogenesis of endothelial dysfunction (ED) through multiple signaling pathways, including angiotensin type 1 receptor (AT1R) mediated NADPH oxidase (Nox)/reactive oxygen species (ROS) signal transduction. However, the detailed mechanism is not completely understood. In this study, we reported that AngII/AT1R-mediated activated protein phosphatase 2A (PP2A) downregulated endothelial nitric oxide synthase (eNOS) phosphorylation via Nox/ROS pathway. AngII treatment reduced the levels of phosphorylation of eNOS Ser1177 and nitric oxide (NO) content along with phosphorylation of PP2Ac (PP2A catalytic subunit) Tyr307, meanwhile increased the PP2A activity and ROS production in human umbilical vein endothelial cells (HUVECs). These changes could be impeded by AT1R antagonist candesartan (CAN). The pretreatment of 10−8 M PP2A inhibitor okadaic acid (OA) reversed the levels of eNOS Ser1177 and NO content. Similar effects of AngII on PP2A and eNOS were also observed in the mesenteric arteries of Sprague-Dawley rats subjected to AngII infusion via osmotic minipumps for 2 weeks. We found that the PP2A activity was increased, but the levels of PP2Ac Tyr307 and eNOS Ser1177 as well as NO content were decreased in the mesenteric arteries. The pretreatments of antioxidant N-acetylcysteine (NAC) and apocynin (APO) abolished the drop of the levels of PP2Ac Tyr307 and eNOS Ser1177 induced by AngII in HUVECs. The knockdown of p22phox by small interfering RNA (siRNA) gave rise to decrement of ROS production and increment of the levels of PP2Ac Tyr307 and eNOS Ser1177. These results indicated that AngII/AT1R pathway activated PP2A by downregulating its catalytic subunit Tyr307 phosphorylation, which relies on the Nox activation and ROS production. In summary, our findings indicate that AngII downregulates PP2A catalytic subunit Tyr307 phosphorylation to activate PP2A via AT1R-mediated Nox/ROS signaling pathway. The activated PP2A further decreases levels of eNOS Ser1177 phosphorylation and NO content leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Ding
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Min Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Juncai Jiang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yanbei Luo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Shengnan Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Yakeshi, China
| | - Fei Yang
- Department of Cardiology, The Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Alei Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lingxiao Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Mei Zhuang
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yong Xia
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Deqin Lu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
40
|
Xie F, Li F, Li R, Liu Z, Shi J, Zhang C, Dong N. Inhibition of PP2A enhances the osteogenic differentiation of human aortic valvular interstitial cells via ERK and p38 MAPK pathways. Life Sci 2020; 257:118086. [PMID: 32679147 DOI: 10.1016/j.lfs.2020.118086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
AIMS To investigate the role of PP2A in calcified aortic valve disease (CAVD). MATERIALS AND METHODS The expressions of PP2A subunits were detected by real-time polymerase chain reaction (RT-PCR) and western blot in aortic valves from patients with CAVD and normal controls, the activities of PP2A were analyzed by commercial assay kit at the same time. Aortic valve calcification of mice was evaluated through histological and echocardiographic analysis. ApoE-/- mice and ApoE-/- mice injected intraperitoneally with PP2A inhibitor LB100 were fed a high-cholesterol diet for 24 weeks. Immunofluorescent staining was used to locate the cell-type in which PP2A activity was decreased, the PP2A activity of valvular interstitial cells (VICs) treated with osteogenic induction medium was assessed by western blot and commercial assay kit. After changing the activity of VICs through pharmacologic and genetic intervention, the osteoblast differentiation and mineralization were assessed by western blot and Alizarin Red staining. Finally, the mechanism was clarified by using several specific inhibitors. KEY FINDINGS PP2A activity was decreased both in calcified aortic valves and human VICs under osteogenic induction. The PP2A inhibitor LB100 aggravated the aortic valve calcification of mice. Furthermore, PPP2CA overexpression inhibited osteogenic differentiation of VICs, whereas PPP2CA knockdown promoted the process. Further study revealed that the ERK/p38 MAPKs signaling pathways mediated the osteogenic differentiation of VICs induced by PP2A inactivation. SIGNIFICANCE This study demonstrated that PP2A plays an important role in CAVD pathophysiology, PP2A activation may provide a novel strategy for the pharmacological treatment of CAVD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
41
|
Tang Y, Fang G, Guo F, Zhang H, Chen X, An L, Chen M, Zhou L, Wang W, Ye T, Zhou L, Nie P, Yu H, Lin M, Zhao Y, Lin X, Yuan Z, Jiao S, Zhou Z. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell 2020; 38:115-128.e9. [PMID: 32589942 DOI: 10.1016/j.ccell.2020.05.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Loss of Hippo tumor-suppressor activity and hyperactivation of YAP are commonly observed in cancers. Inactivating mutations of Hippo kinases MST1/2 are uncommon, and it remains unclear how their activity is turned off during tumorigenesis. We identified STRN3 as an essential regulatory subunit of protein phosphatase 2A (PP2A) that recruits MST1/2 and promotes its dephosphorylation, which results in YAP activation. We also identified STRN3 upregulation in gastric cancer correlated with YAP activation and poor prognosis. Based on this mechanistic understanding and aided by structure-guided medicinal chemistry, we developed a highly selective peptide inhibitor, STRN3-derived Hippo-activating peptide, or SHAP, which disrupts the STRN3-PP2Aa interaction and reactivates the Hippo tumor suppressor, inhibits YAP activation, and has antitumor effects in vivo.
Collapse
Affiliation(s)
- Yang Tang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai 200040, China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxu Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liwei An
- Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Min Chen
- Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Ye
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhou
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
42
|
Uzair ID, Flamini MI, Sanchez AM. Rapid Estrogen and Progesterone Signaling to Dendritic Spine Formation via Cortactin/Wave1-Arp2/3 Complex. Neuroendocrinology 2020; 110:535-551. [PMID: 31509830 DOI: 10.1159/000503310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17β-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.
Collapse
Affiliation(s)
- Ivonne Denise Uzair
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Marina Ines Flamini
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina,
| |
Collapse
|
43
|
Kleinberger T. Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death. FEBS Lett 2019; 594:1891-1917. [DOI: 10.1002/1873-3468.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology the Rappaport Faculty of Medicine Technion –Israel Institute of Technology Haifa Israel
| |
Collapse
|
44
|
Jin N, Shi R, Jiang Y, Chu D, Gong CX, Iqbal K, Liu F. Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging (Albany NY) 2019; 11:9672-9688. [PMID: 31714894 PMCID: PMC6874473 DOI: 10.18632/aging.102413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is the major tau phosphatase. Its activity toward tau is regulated by the methylation of PP2A catalytic subunit (PP2Ac) at Leu309. Protein phosphatase methylesterase-1 (PME-1) demethylates PP2Ac and suppresses its activity. We previously found that glycogen synthase kinase-3β (GSK-3β) suppresses PME-1 expression. However, the underlying molecular mechanism is unknown. In the present study, we analyzed the promoter of PME-1 gene and found that human PME-1 promoter contains two lymphoid enhancer binding factor-1/T-cell factor (LEF1/TCF) cis-elements in which β-catenin serves as a co-activator. β-catenin acted on these two cis-elements and promoted PME-1 expression. GSK-3β phosphorylated β-catenin and suppressed its function in promoting PME-1 expression. Inhibition and activation of GSK-3β by PI3K-AKT pathway promoted and suppressed, respectively, PME-1 expression in primary cultured neurons, SH-SY5Y cells and in the mouse brain. These findings suggest that GSK-3β phosphorylates β-catenin and suppresses its function on PME-1 expression, resulting in an increase of PP2Ac methylation.
Collapse
Affiliation(s)
- Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ruirui Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| |
Collapse
|
45
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
46
|
Luo Y, Zhang Q, Ding J, Yu M, Jiang J, Yang F, Wang S, Wang A, Wang L, Wu S, Xia Y, Lu D. Roles of I 2PP2A in the downregulation of eNOS Ser1177 phosphorylation by angiotensin II-activated PP2A. Biochem Biophys Res Commun 2019; 516:613-618. [PMID: 31239152 DOI: 10.1016/j.bbrc.2019.06.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
The chronic elevation of angiotensin II (Ang II) is an important cause of endothelial dysfunction (ED). The Ang II/type 1 receptor (AT1R) signaling pathway can cause endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) dysfunction through various mechanisms leading to ED. The modulation of eNOS phosphorylated at Ser1177 is an important mechanism upregulating eNOS activity. Protein phosphatase 2 A (PP2A) has been reported to dephosphorylate eNOS at Ser1177. The PP2A inhibitor 2 protein (I2PP2A) is a specific endogenous inhibitor that binds the catalytic subunit of PP2A and directly inhibits PP2A activity. Therefore, we hypothesized that Ang II might attenuate I2PP2A expression to activate PP2A, which downregulates eNOS Ser 1177 phosphorylation, leading to eNOS dysfunction. In our study, we used Ang II-treated human umbilical vein endothelial cells (HUVECs) and, found that the eNOS Ser1177 phosphorylation levels were downregulated, the activity of PP2A was increased, and I2PP2A expression was decreased. Furthermore, these effects were blocked by candesartan (CAN). The phosphorylation levels of eNOS Ser1177 were decreased after I2PP2A was knocked down by specific siRNA but increased after I2PP2A overexpression. We also found that the Ang II treatment decreased the association of I2PP2A with PP2A but increased the association between PP2A and eNOS. Taken together, our results suggest that Ang II activates PP2A by downregulating the I2PP2A expression through the AT1R signaling pathway leading to the loss of eNOS Ser1177 phosphorylation and ED.
Collapse
Affiliation(s)
- Yanbei Luo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Ding
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Min Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Juncai Jiang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fei Yang
- Department of Cardiology, The Second Provincial People's Hospital of Gansu, Lanzhou, Gansu, China
| | - Shengnan Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Yakeshi, Inner Mongolia, China
| | - Alei Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingxiao Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shan Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Xia
- Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Deqin Lu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
47
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Kinetochore Recruitment of the Spindle and Kinetochore-Associated (Ska) Complex Is Regulated by Centrosomal PP2A in Caenorhabditis elegans. Genetics 2019; 212:509-522. [PMID: 31018924 DOI: 10.1534/genetics.119.302105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
During mitosis, kinetochore-microtubule interactions ensure that chromosomes are accurately segregated to daughter cells. RSA-1 (regulator of spindle assembly-1) is a regulatory B″ subunit of protein phosphatase 2A that was previously proposed to modulate microtubule dynamics during spindle assembly. We have identified a genetic interaction between the centrosomal protein, RSA-1, and the spindle- and kinetochore-associated (Ska) complex in Caenorhabditis elegans In a forward genetic screen for suppressors of rsa-1(or598) embryonic lethality, we identified mutations in ska-1 and ska-3 Loss of SKA-1 and SKA-3, as well as components of the KMN (KNL-1/MIS-12/NDC-80) complex and the microtubule end-binding protein EBP-2, all suppressed the embryonic lethality of rsa-1(or598) These suppressors also disrupted the intracellular localization of the Ska complex, revealing a network of proteins that influence Ska function during mitosis. In rsa-1(or598) embryos, SKA-1 is excessively and prematurely recruited to kinetochores during spindle assembly, but SKA-1 levels return to normal just prior to anaphase onset. Loss of the TPX2 homolog, TPXL-1, also resulted in overrecruitment of SKA-1 to the kinetochores and this correlated with the loss of Aurora A kinase on the spindle microtubules. We propose that rsa-1 regulates the kinetochore localization of the Ska complex, with spindle-associated Aurora A acting as a potential mediator. These data reveal a novel mechanism of protein phosphatase 2A function during mitosis involving a centrosome-based regulatory mechanism for Ska complex recruitment to the kinetochore.
Collapse
|
49
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
50
|
Reynhout S, Jansen S, Haesen D, van Belle S, de Munnik SA, Bongers EM, Schieving JH, Marcelis C, Amiel J, Rio M, Mclaughlin H, Ladda R, Sell S, Kriek M, Peeters-Scholte CM, Terhal PA, van Gassen KL, Verbeek N, Henry S, Scott Schwoerer J, Malik S, Revencu N, Ferreira CR, Macnamara E, Braakman HM, Brimble E, Ruzhnikov MR, Wagner M, Harrer P, Wieczorek D, Kuechler A, Tziperman B, Barel O, de Vries BB, Gordon CT, Janssens V, Vissers LE. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am J Hum Genet 2019; 104:139-156. [PMID: 30595372 DOI: 10.1016/j.ajhg.2018.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Collapse
|