1
|
Riedl A, Bojková D, Tan J, Jeney Á, Larsen PK, Jeney C, Full F, Kalinke U, Ruzsics Z. Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery. Vaccines (Basel) 2024; 12:791. [PMID: 39066429 PMCID: PMC11281640 DOI: 10.3390/vaccines12070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction.
Collapse
Affiliation(s)
- André Riedl
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Denisa Bojková
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital, 60596 Frankfurt am Main, Germany
| | - Jiang Tan
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ábris Jeney
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia-Katharina Larsen
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Csaba Jeney
- Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Full
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Institute for Experimental Infection Research, 30625 Hanover, Germany
| | - Zsolt Ruzsics
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany (F.F.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Yang S, Tian M, Dai Y, Wang R, Yamada S, Feng S, Wang Y, Chhangani D, Ou T, Li W, Guo X, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a systemic brain-muscle signaling axis. Sci Immunol 2024; 9:eadm7908. [PMID: 38996009 DOI: 10.1126/sciimmunol.adm7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong Wang
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Shigehiro Yamada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou 121001, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E Rincon-Limas
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Esih H, Mezgec K, Billmeier M, Malenšek Š, Benčina M, Grilc B, Vidmar S, Gašperlin M, Bele M, Zidarn M, Zupanc TL, Morgan T, Jordan I, Sandig V, Schrödel S, Thirion C, Protzer U, Wagner R, Lainšček D, Jerala R. Mucoadhesive film for oral delivery of vaccines for protection of the respiratory tract. J Control Release 2024; 371:179-192. [PMID: 38795814 DOI: 10.1016/j.jconrel.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.
Collapse
Affiliation(s)
- Hana Esih
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klemen Mezgec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Billmeier
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia
| | - Blaž Grilc
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | | | - Tina Morgan
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | - Ingo Jordan
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Volker Sandig
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology & Hygiene, University Hospital, Regensburg, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Fischer J, Fedotova A, Jaki L, Sallard E, Erhardt A, Fuchs J, Ruzsics Z. Combining CRISPR-Cas-mediated terminal resolution with a novel genetic workflow to achieve high-diversity adenoviral libraries. Mol Ther Methods Clin Dev 2024; 32:101241. [PMID: 38585687 PMCID: PMC10995876 DOI: 10.1016/j.omtm.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.
Collapse
Affiliation(s)
- Julian Fischer
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Ariana Fedotova
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Jaki
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Erwan Sallard
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Erhardt
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jonas Fuchs
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Funk C, Uhlig N, Ruzsics Z, Baur F, Peindl M, Nietzer S, Epting K, Vacun G, Dandekar G, Botteron C, Werno C, Grunwald T, Bailer SM. TheraVision: Engineering platform technology for the development of oncolytic viruses based on herpes simplex virus type 1. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200784. [PMID: 38596296 PMCID: PMC10950833 DOI: 10.1016/j.omton.2024.200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Matthias Peindl
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
| | - Sarah Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Karina Epting
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gabriele Vacun
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
6
|
Daradoumis J, Müller MD, Neckermann P, Asbach B, Schrödel S, Thirion C, Wagner R, thor Straten P, Holst PJ, Boilesen D. Preferential Expansion of HPV16 E1-Specific T Cells from Healthy Donors' PBMCs after Ex Vivo Immunization with an E1E2E6E7 Fusion Antigen. Cancers (Basel) 2023; 15:5863. [PMID: 38136407 PMCID: PMC10741473 DOI: 10.3390/cancers15245863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.
Collapse
Affiliation(s)
- Joana Daradoumis
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Dons Müller
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Per thor Straten
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Copenhagen, Denmark
| | - Peter Johannes Holst
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
| | - Ditte Boilesen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Loma Therapeutics ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Schwartz U, Komatsu T, Huber C, Lagadec F, Baumgartl C, Silberhorn E, Nuetzel M, Rayne F, Basyuk E, Bertrand E, Rehli M, Wodrich H, Laengst G. Changes in adenoviral chromatin organization precede early gene activation upon infection. EMBO J 2023; 42:e114162. [PMID: 37641864 PMCID: PMC10548178 DOI: 10.15252/embj.2023114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Collapse
Affiliation(s)
- Uwe Schwartz
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Claudia Huber
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Floriane Lagadec
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB)Georg‐August‐University GöttingenGöttingenGermany
| | | | | | - Margit Nuetzel
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
| | - Fabienne Rayne
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Eugenia Basyuk
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Edouard Bertrand
- CNRS UMR 5355Institut de Généthique Moléculaire de MontpellierMontpellierFrance
| | - Michael Rehli
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibniz Institute for ImmunotherapyRegensburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Gernot Laengst
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| |
Collapse
|
8
|
Skandorff I, Gille J, Ragonnaud E, Andersson AM, Schrödel S, Thirion C, Wagner R, Holst PJ. The Insertion of an Evolutionary Lost Four-Amino-Acid Cytoplasmic Tail Peptide into a Syncytin-1 Vaccine Increases T- and B-Cell Responses in Mice. Viruses 2023; 15:1686. [PMID: 37632028 PMCID: PMC10458386 DOI: 10.3390/v15081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Human endogenous retrovirus type W (HERV-W) is expressed in various cancers. We previously developed an adenovirus-vectored cancer vaccine targeting HERV-W by encoding an assembled HERV-W group-specific antigen sequence and the HERV-W envelope sequence Syncytin-1. Syncytin-1 is constitutively fusogenic and forms large multinucleated cell fusions when overexpressed. Consequently, immunising humans with a vaccine encoding Syncytin-1 can lead to the formation of extensive syncytia, which is undesirable and poses a potential safety issue. Here, we show experiments in cell lines that restoring an evolutionary lost cleavage site of the fusion inhibitory R-peptide of Syncytin-1 inhibit cell fusion. Interestingly, this modification of the HERV-W vaccine's fusogenicity increased the expression of the vaccine antigens in vitro. It also enhanced Syncytin-1-specific antibody responses and CD8+-mediated T-cell responses compared to the wildtype vaccine in vaccinated mice, with a notable enhancement in responses to subdominant T-cell epitopes but equal responses to dominant epitopes and similar rates of survival following a tumour challenge. The impairment of cell-cell fusion and the enhanced immunogenicity profile of this HERV-W vaccine strengthens the prospects of obtaining a meaningful immune response against HERV-W in patients with HERV-W-overexpressing cancers.
Collapse
Affiliation(s)
- Isabella Skandorff
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
| | - Jasmin Gille
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg Germany, 93053 Regensburg, Germany; (J.G.); (R.W.)
| | - Emeline Ragonnaud
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Silke Schrödel
- Sirion Biotech GmbH, Am Haag 6, 82166 Graefelfing, Germany; (S.S.); (C.T.)
| | - Christian Thirion
- Sirion Biotech GmbH, Am Haag 6, 82166 Graefelfing, Germany; (S.S.); (C.T.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg Germany, 93053 Regensburg, Germany; (J.G.); (R.W.)
| | - Peter Johannes Holst
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Skandorff I, Ragonnaud E, Gille J, Andersson AM, Schrödel S, Duvnjak L, Turner L, Thirion C, Wagner R, Holst PJ. Human Ad19a/64 HERV-W Vaccines Uncover Immunosuppression Domain-Dependent T-Cell Response Differences in Inbred Mice. Int J Mol Sci 2023; 24:9972. [PMID: 37373123 DOI: 10.3390/ijms24129972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Expression of human endogenous retrovirus type W (HERV-W) has been linked to cancer, making HERV-W antigens potential targets for therapeutic cancer vaccines. In a previous study, we effectively treated established tumours in mice by using adenoviral-vectored vaccines targeting the murine endogenous retrovirus envelope and group-specific antigen (Gag) of melanoma-associated retrovirus (MelARV) in combination with anti-PD-1. To break the immunological tolerance to MelARV, we mutated the immunosuppressive domain (ISD) of the MelARV envelope. However, reports on the immunogenicity of the HERV-W envelope, Syncytin-1, and its ISD are conflicting. To identify the most effective HERV-W cancer vaccine candidate, we evaluated the immunogenicity of vaccines encoding either the wild-type or mutated HERV-W envelope ISD in vitro and in vivo. Here, we show that the wild-type HERV-W vaccine generated higher activation of murine antigen-presenting cells and higher specific T-cell responses than the ISD-mutated counterpart. We also found that the wild-type HERV-W vaccine was sufficient to increase the probability of survival in mice subjected to HERV-W envelope-expressing tumours compared to a control vaccine. These findings provide the foundation for developing a therapeutic cancer vaccine targeting HERV-W-positive cancers in humans.
Collapse
Affiliation(s)
- Isabella Skandorff
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jasmin Gille
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | | | - Silke Schrödel
- Sirion Biotech GmbH, Am Haag 6, 82166 Graefelfing, Germany
| | - Lara Duvnjak
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark
| | - Louise Turner
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Peter Johannes Holst
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Basnet S, Santos JM, Quixabeira DCA, Clubb JHA, Grönberg-Vähä-Koskela SAM, Arias V, Pakola S, Kudling TV, Heiniö C, Havunen R, Cervera-Carrascon V, Sorsa S, Anttila M, Kanerva A, Hemminki A. Oncolytic adenovirus coding for bispecific T cell engager against human MUC-1 potentiates T cell response against solid tumors. Mol Ther Oncolytics 2023; 28:59-73. [PMID: 36699617 PMCID: PMC9842968 DOI: 10.1016/j.omto.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy with bispecific T cell engagers has shown efficacy in patients with hematologic malignancies and uveal melanoma. Antitumor effects of bispecific T cell engagers in most solid tumors are limited due to their short serum half-life and insufficient tumor concentration. We designed a novel serotype 5/3 oncolytic adenovirus encoding a human mucin1 antibody and the human CD3 receptor, Ad5/3-E2F-d24-aMUC1aCD3 (TILT-321). TILT-321 is engineered to replicate only in cancer cells, leading to a high concentration of the aMUC1aCD3 molecule in the tumor microenvironment. Infection and cell viability assays were performed to determine the oncolytic potential of the novel construct. The functionality of the virus-derived aMUC1aCD3 was evaluated in vitro. When TILT-321 was combined with allogeneic T cells, rapid tumor cell lysis was observed. TILT-321-infected cells secreted functional aMUC1aCD3, as shown by increased T cell activity and its binding to MUC1 and CD3. In vivo, TILT-321 treatment led to effective antitumor efficacy mediated by increased intratumoral T cell activity in an A549 and patient-derived ovarian cancer xenograft mouse model humanized with peripheral blood mononuclear cells (PBMC). This study provides a proof of concept for an effective strategy to overcome the key limitations of recombinant bispecific T cell engager delivery for solid tumor treatment.
Collapse
Affiliation(s)
- Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Susanna A M Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00029, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00029, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland
| | - Marjukka Anttila
- Department of Pathology, Finnish Food Authority, 00790, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,Department of Gynecology and Obstetrics, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,TILT Biotherapeutics Ltd, 00290, Helsinki, Finland.,Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, and University of Helsinki, 00029, Helsinki, Finland
| |
Collapse
|
12
|
Boilesen DR, Neckermann P, Willert T, Müller MD, Schrödel S, Pertl C, Thirion C, Asbach B, Wagner R, Holst PJ. Efficacy and Synergy with Cisplatin of an Adenovirus Vectored Therapeutic E1E2E6E7 Vaccine against HPV Genome-Positive C3 Cancers in Mice. Cancer Immunol Res 2023; 11:261-275. [PMID: 36534088 DOI: 10.1158/2326-6066.cir-22-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infections are the main cause of cervical and oropharyngeal cancers. As prophylactic vaccines have no curative effect, an efficient therapy would be highly desired. Most therapeutic vaccine candidates target only a small subset of HPV regulatory proteins, namely, E6 and E7, and are therefore restricted in the breadth of their immune response. However, research has suggested E1 and E2 as promising targets to fight HPV+ cancer. Here, we report the design of adenoviral vectors efficiently expressing HPV16 E1 and E2 in addition to transformation-deficient E6 and E7. Vaccination elicited vigorous CD4+ and CD8+ T-cell responses against all encoded HPV16 proteins in outbred mice and against E1 and E7 in C57BL/6 mice. Therapeutic vaccination of C3 tumor-bearing mice led to significantly reduced tumor growth and enhanced survival for both small and established tumors. Tumor biopsies revealed increased numbers of tumor-infiltrating CD8+ T cells in treated mice. Cisplatin enhanced the effect of therapeutic vaccination, accompanied by enhanced infiltration of dendritic cells into the tumor. CD8+ T cells were identified as effector cells in T-cell depletion assays, seemingly under regulation by FoxP3+CD4+ regulatory T cells. Finally, therapeutic vaccination with Ad-Ii-E1E2E6E7 exhibited significantly enhanced survival compared with vaccination with two peptides each harboring a known E6/E7 epitope. We hypothesize that this difference could be due to the induction of additional T-cell responses against E1. These results support the use of this novel vaccine candidate targeting an extended set of antigens (Ad-Ii-E1E2E6E7), in combination with cisplatin, as an advanced strategy to combat HPV+ cancers.
Collapse
Affiliation(s)
- Ditte Rahbæk Boilesen
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Mikkel Dons Müller
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | | | | | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, The Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
13
|
Adenovirus vector system: construction, history and therapeutic applications. Biotechniques 2022; 73:297-305. [DOI: 10.2144/btn-2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the isolation of adenovirus (AdV) in 1953, AdVs have been used as vectors for various therapeutic purposes, such as gene therapy in cancers and other malignancies, vaccine development and delivery of CRISPR-Cas9 machinery. Over the years, several AdV vector modifications have been introduced, including fiber switching, incorporation of ligands in the viral capsid and hexon modification of the fiber, to improve the efficiency of AdV as a vector. CRISPR-Cas9 has recently been used for these modifications and is also used in other adeno-associated viruses. These modifications further allow the production of AdV libraries that display random peptides for the production of cancer-targeting AdV vectors. This review focuses on the common methods of AdV construction, changes in AdV tropism for the improvement of therapeutic efficiency and the role of AdV vectors in gene therapy, vaccine development and CRISPR-Cas9 delivery.
Collapse
|
14
|
Riedl A, Fischer J, Burgert HG, Ruzsics Z. Rescue of Recombinant Adenoviruses by CRISPR/Cas-Mediated in vivo Terminal Resolution. Front Microbiol 2022; 13:854690. [PMID: 35369433 PMCID: PMC8975557 DOI: 10.3389/fmicb.2022.854690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
Recombinant adenovirus (rAd) vectors represent one of the most frequently used vehicles for gene transfer applications in vitro and in vivo. rAd genomes are constructed in Escherichia coli where their genomes can be maintained, propagated, and modified in form of circular plasmids or bacterial artificial chromosomes. Although the rescue of rAds from their circular plasmid or bacmid forms is well established, it works with relatively low primary efficiency, preventing this technology for library applications. To overcome this barrier, we tested a novel strategy for the reconstitution of rAds that utilizes the CRISPR/Cas-machinery to cleave the circular rAd genomes in close proximity to their inverted terminal repeats (ITRs) within the producer cells upon transfection. This CRISPR/Cas-mediated in vivo terminal resolution allowed efficient rescue of vectors derived from different human adenovirus (HAdV) species. By this means, it was not only possible to increase the efficiency of virus rescue by about 50-fold, but the presented methodology appeared also remarkably simpler and faster than traditional rAd reconstitution methods.
Collapse
|
15
|
Wang L, Chen Y, Liu X, Li Z, Dai X. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Front Oncol 2022; 11:704999. [PMID: 35111663 PMCID: PMC8801488 DOI: 10.3389/fonc.2021.704999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the main causes of disease-related deaths in the world. Although cancer treatment strategies have been improved in recent years, the survival time of cancer patients is still far from satisfied. Cancer immunotherapy, such as Oncolytic virotherapy, Immune checkpoints inhibition, Chimeric antigen receptor T (CAR-T) cell therapy, Chimeric antigen receptor natural killer (CAR-NK) cell therapy and macrophages genomic modification, has emerged as an effective therapeutic strategy for different kinds of cancer. However, many patients do not respond to the cancer immunotherapy which warrants further investigation to optimize this strategy. The clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9), as a versatile genome engineering tool, has become popular in the biology research field and it was also applied to optimize tumor immunotherapy. Moreover, CRISPR-based high-throughput screening can be used in the study of immunomodulatory drug resistance mechanism. In this review, we summarized the development as well as the application of CRISPR/Cas9 technology in the cancer immunotherapy and discussed the potential problems that may be caused by this combination.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xinrui Liu
- Neurosurgery Department, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai,
| |
Collapse
|
16
|
Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, Mueller-Schmucker S, Irrgang P, Fraedrich K, Cara A, Hoffmann M, Pöhlmann S, Ensser A, Pertl C, Willert T, Thirion C, Grunwald T, Überla K, Tenbusch M. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun 2021; 12:6871. [PMID: 34836955 PMCID: PMC8626513 DOI: 10.1038/s41467-021-27063-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Willar
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Valentina Eberlein
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Nadja Uhlig
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Mueller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
17
|
Neckermann P, Boilesen DR, Willert T, Pertl C, Schrödel S, Thirion C, Asbach B, Holst PJ, Wagner R. Design and Immunological Validation of Macaca fascicularis Papillomavirus Type 3 Based Vaccine Candidates in Outbred Mice: Basis for Future Testing of a Therapeutic Papillomavirus Vaccine in NHPs. Front Immunol 2021; 12:761214. [PMID: 34777375 PMCID: PMC8581358 DOI: 10.3389/fimmu.2021.761214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Persistent human papillomavirus (HPV) infections are causative for cervical neoplasia and carcinomas. Despite the availability of prophylactic vaccines, morbidity and mortality induced by HPV are still too high. Thus, an efficient therapy, such as a therapeutic vaccine, is urgently required. Herein, we describe the development and validation of Macaca fascicularis papillomavirus type 3 (MfPV3) antigens delivered via nucleic-acid and adenoviral vectors in outbred mouse models. Ten artificially fused polypeptides comprising early viral regulatory proteins were designed and optionally linked to the T cell adjuvant MHC-II-associated invariant chain. Transfected HEK293 cells and A549 cells transduced with recombinant adenoviruses expressing the same panel of artificial antigens proved proper and comparable expression, respectively. Immunization of outbred CD1 and OF1 mice led to CD8+ and CD4+ T cell responses against MfPV3 antigens after DNA- and adenoviral vector delivery. Moreover, in vivo cytotoxicity of vaccine-induced CD8+ T cells was demonstrated in BALB/c mice by quantifying specific killing of transferred peptide-pulsed syngeneic target cells. The use of the invariant chain as T cell adjuvant enhanced the T cell responses regarding cytotoxicity and in vitro analysis suggested an accelerated turnover of the antigens as causative. Notably, the fusion-polypeptide elicited the same level of T-cell responses as administration of the antigens individually, suggesting no loss of immunogenicity by fusing multiple proteins in one vaccine construct. These data support further development of the vaccine candidates in a follow up efficacy study in persistently infected Macaca fascicularis monkeys to assess their potential to eliminate pre-malignant papillomavirus infections, eventually instructing the design of an analogous therapeutic HPV vaccine.
Collapse
Affiliation(s)
- Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ditte Rahbaek Boilesen
- Centre for Medical Parasitology, the Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | | | | | | | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, the Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development. Viruses 2021; 13:v13050779. [PMID: 33924851 PMCID: PMC8146441 DOI: 10.3390/v13050779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.
Collapse
|
19
|
Marschall M, Strojan H, Kiener R, Wangen C, Sonntag E, Müller R, Zeitträger I, Wagner S, Stamminger T, Milbradt J, Behrends U, Körber N, Bauer T, Schrödel S, Thirion C, Wagner R, Hutterer C. Differential upregulation of host cell protein kinases by the replication of α-, β- and γ-herpesviruses provides a signature of virus-specific signalling. J Gen Virol 2020; 101:284-289. [PMID: 31958050 DOI: 10.1099/jgv.0.001370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, β- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Richard Kiener
- Institute for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Zeitträger
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Uta Behrends
- German Center for Infection Research (DZIF), Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München/TUM, Munich, Germany
- Children's Hospital Schwabing, Technische Universität München (TUM), Munich, Germany
| | - Nina Körber
- Institute of Virology, Helmholtz Zentrum München/TUM, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München/TUM, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | | | | | - Ralf Wagner
- Institute for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Corina Hutterer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Davola ME, Vito A, Wei J, El-Sayes N, Workenhe S, Mossman KL. Genetic modification of oncolytic viruses to enhance antitumor immunity. Methods Enzymol 2019; 635:231-250. [PMID: 32122548 DOI: 10.1016/bs.mie.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the many immunotherapies being developed and tested both preclinically and clinically, oncolytic viruses (OVs) are gaining traction as a forerunner in the search for potent new therapeutic agents, with a genetically engineered herpes simplex virus type 1 (HSV-1) recently approved by the FDA for the treatment of melanoma. The great potential of OVs to fight cancer is driving different approaches to improve OV-based therapy, with genetic modification of OVs to enhance host antitumor immunity being one of the most promising approaches. In this chapter we describe possible modifications in the OV genome that could increase its antitumor activity and immunostimulatory capacity, together with different methods to achieve these goals. Finally, we present different analyses to verify the desired genetic modification and evaluate its impact on host antitumor immunity in preliminary stages.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Samuel Workenhe
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Replication deficient human adenovirus vector serotype 19a/64: Immunogenicity in mice and female cynomolgus macaques. Vaccine 2018; 36:6212-6222. [PMID: 30190120 DOI: 10.1016/j.vaccine.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023]
Abstract
The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To further characterize the potential of this vector as a vaccine we designed replication deficient hAd19a, hAd5 and MVA vectors expressing a papillomavirus (PV) antigen fused to the human MHC class II associated invariant chain T cell adjuvant (hIi) and investigated their immunogenicity in vivo in mice and cynomolgus macaques. We initially showed that the hIi encoded in the hAd5 enhanced PV specific CD8+ T cell responses in mice. The T cell responses induced after hAd19a vaccination was similar to those induced by hAd5 vaccination. The hAd19a induced responses were not reduced in presence of preexisting Ad5 immunity in mice. In macaques both vaccines were equally potent at inducing CD8+ T cells after MVA boost, while the level of CD4+ T cell responses were found to be broader in hAd19a primed animals. These data demonstrate the potential of hAd19a as an alternative vector to hAd5 to elicit potent T cell responses to PV.
Collapse
|
22
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
23
|
Kiener R, Fleischmann M, Schwegler C, Ruzsics Z, Thirion C, Schrödel S, Asbach B, Wagner R. Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo. Sci Rep 2018; 8:1474. [PMID: 29367743 PMCID: PMC5784015 DOI: 10.1038/s41598-018-19874-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes. We found that unlike Ad5, Ad19a/64 vectors readily transduce a broad panel of immune cells, including monocytes, T cells, NK cells and monocyte-derived dendritic cells (moDCs). Both Ad19a/64- and MVA-transduced moDCs efficiently restimulated IE-1 or pp65-specific T cells but MVA induced a higher amount of cytotoxicity in this cell type. Ad5 and Ad19 induced upregulation of CD86 and HLA-DR in moDCs whereas expression of CD80 and CD83 was largely unaltered. By contrast, MVA transduction led to downregulation of all markers. Taken together, our data demonstrate that Ad19a/64 is a promising vector for the delivery of HCMV immunogens since it transduces dendritic cells with an efficiency that is comparable to MVA, but cytotoxicity and interference with dendritic cell maturation are less pronounced.
Collapse
Affiliation(s)
- Richard Kiener
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Markus Fleischmann
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christiane Schwegler
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Medical Faculty, University of Freiburg, Hermann-Herder Str 11, 79104, Freiburg, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef- Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
24
|
Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother 2017; 13:3020-3032. [PMID: 29083948 PMCID: PMC5718829 DOI: 10.1080/21645515.2017.1383575] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The 2014-15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.
Collapse
Affiliation(s)
- Katie Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Alexandra J. Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
25
|
Morris SJ, Sebastian S, Spencer AJ, Gilbert SC. Simian adenoviruses as vaccine vectors. Future Virol 2016; 11:649-659. [PMID: 29527232 PMCID: PMC5842362 DOI: 10.2217/fvl-2016-0070] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
Replication incompetent human adenovirus serotype 5 (HAdV-C5) has been extensively used as a delivery vehicle for gene therapy proteins and infectious disease antigens. These vectors infect replicating and nonreplicating cells, have a broad tissue tropism, elicit high immune responses and are easily purified to high titers. However, the utility of HAdV-C5 vectors as potential vaccines is limited due to pre-existing immunity within the human population that significantly reduces the immunogenicity of HAdV-C5 vaccines. In recent years, adenovirus vaccine development has focused on simian-derived adenoviral vectors, which have the desirable vector characteristics of HAdV-C5 but with negligible seroprevalence in the human population. Here, we discuss recent advances in simian adenovirus vaccine vector development and evaluate current research specifically focusing on clinical trial data.
Collapse
Affiliation(s)
- Susan J Morris
- Jenner Institute, ORCRB, University of Oxford, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Sarah Sebastian
- Jenner Institute, ORCRB, University of Oxford, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Alexandra J Spencer
- Jenner Institute, ORCRB, University of Oxford, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- Jenner Institute, ORCRB, University of Oxford, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
26
|
Yuan M, Webb E, Lemoine NR, Wang Y. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses. Viruses 2016; 8:72. [PMID: 26959050 PMCID: PMC4810262 DOI: 10.3390/v8030072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023] Open
Abstract
The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.
Collapse
Affiliation(s)
- Ming Yuan
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Eika Webb
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Nicholas Robert Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China.
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Mück-Häusl M, Solanki M, Zhang W, Ruzsics Z, Ehrhardt A. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses. Nucleic Acids Res 2015; 43:e50. [PMID: 25609697 PMCID: PMC4417142 DOI: 10.1093/nar/gkv031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/11/2015] [Indexed: 11/13/2022] Open
Abstract
Recombinant adenoviruses containing a double-stranded DNA genome of 26-45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies.
Collapse
Affiliation(s)
- Martin Mück-Häusl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany Institute of Virology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
28
|
The amphipathic helix of adenovirus capsid protein VI contributes to penton release and postentry sorting. J Virol 2014; 89:2121-35. [PMID: 25473051 DOI: 10.1128/jvi.02257-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle.
Collapse
|