1
|
d' Isa R, Parsons MH, Chrzanowski M, Bebas P, Stryjek R. Catch me if you can: free-living mice show a highly flexible dodging behaviour suggestive of intentional tactical deception. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231692. [PMID: 39253095 PMCID: PMC11382684 DOI: 10.1098/rsos.231692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 09/11/2024]
Abstract
Intentional tactical deception, the employment of a tactic to intentionally deceive another animal, is a complex behaviour based on higher-order cognition, that has rarely been documented outside of primates and corvids. New laboratory-to-field assays, however, provide the opportunity to investigate such behaviour among free-living mice. In the present study, we placed laboratory-style test chambers with a single entrance near a forest outside Warsaw, where we observed the social interactions of two territorial murids, black-striped and yellow-necked mice, under food competition for seven months. Notably, among the social interactions, we video-recorded 21 instances of deceptive pursuer evasion. In the most obvious cases, an individual inside the chamber, to avoid an incoming mouse, hid by the chamber opening (the only means to enter or exit), paused until the pursuer entered and passed by, and then exploited the distraction of the back-turned pursuer by fleeing through the opening in a direction opposite to the one the pursuer came from. This deceptive dodging is the first evidence of a behaviour suggestive of intentional tactical deception among mice. As such, this deceptive behaviour may be of interest not only for rodent psychology but also, more generally, for the fields of non-human intentionality and theory of mind.
Collapse
Affiliation(s)
- Raffaele d' Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Marcin Chrzanowski
- Faculty of Biology, Biology Teaching Laboratory, University of Warsaw, Warsaw, Poland
| | - Piotr Bebas
- Faculty of Biology, Department of Animal Physiology, Institute of Functional Biology and Ecology, University of Warsaw, Warsaw, Poland
| | - Rafal Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
d'Isa R, Fasano S, Brambilla R. Editorial: Animal-friendly methods for rodent behavioral testing in neuroscience research. Front Behav Neurosci 2024; 18:1431310. [PMID: 38983871 PMCID: PMC11232432 DOI: 10.3389/fnbeh.2024.1431310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Fasano
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Indrigo M, Morella I, Orellana D, d'Isa R, Papale A, Parra R, Gurgone A, Lecca D, Cavaccini A, Tigaret CM, Cagnotto A, Jones K, Brooks S, Ratto GM, Allen ND, Lelos MJ, Middei S, Giustetto M, Carta AR, Tonini R, Salmona M, Hall J, Thomas K, Brambilla R, Fasano S. Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2. EMBO Mol Med 2023; 15:e15984. [PMID: 37792911 PMCID: PMC10630888 DOI: 10.15252/emmm.202215984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.
Collapse
Affiliation(s)
- Marzia Indrigo
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Daniel Orellana
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Alessandro Papale
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Riccardo Parra
- NEST, Istituto Nanoscienze CNR, and Scuola Normale SuperiorePisaItaly
| | | | - Daniela Lecca
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Anna Cavaccini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Alfredo Cagnotto
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | | | - Simon Brooks
- School of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Silvia Middei
- Institute of Cell Biology and Neurobiology CNRRomaItaly
| | - Maurizio Giustetto
- Department of NeuroscienceUniversity of TorinoTorinoItaly
- National Institute of NeuroscienceTorinoItaly
| | - Anna R Carta
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Mario Salmona
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Kerrie Thomas
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”Università degli Studi di PaviaPaviaItaly
| | - Stefania Fasano
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
4
|
Chopra D, Chadha VD, Dhawan DK. Understanding the role of zingerone on biochemical and behavioral changes in rat brain inflicted with C6 glioma cells. J Biochem Mol Toxicol 2023; 37:e23477. [PMID: 37477207 DOI: 10.1002/jbt.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Malignant glioma is the deadliest form of brain cancer. Zingerone (ZO), a polyphenolic compound found in ginger, offers pharmacological properties that make it a promising agent for containing the growth of glioma cells. The present study was conducted to understand the efficacy of ZO in containing the growth of C6 glioma cells. The study also assessed the prophylactic role of ZO on rat brain glioma induced by C6 cell lines by addressing its antioxidative action on biochemical, behavioral, and histoarchitectural indices. For dose optimization, the animals were pretreated with different doses of ZO for a period of 2 weeks before the inoculation of glioma cells (1 × 105 /10 µL phosphate-buffered saline) in the caudate region of rat brain and the treatment with ZO continued for 4 more weeks post implantation. In vitro studies were done to assess the radical scavenging activity of ZO and also to determine its effects on viability of C6 glioma cells at different concentrations. Glioma-bearing rats showed significant alterations in memory; exploratory and muscular activities which were appreciably improved upon simultaneous supplementation of ZO administered at a dose of 50 mg/kg body weight and were also visible even at a higher dose. Glioma-bearing rats revealed a significant increase in reactive oxygen species, protein carbonyl contents, and lipid peroxidation, but showed a significant decrease in reduced glutathione and antioxidative enzymes in the brain tissue. Interestingly, all the biochemical indices and altered brain histoarchitecture displaying cellular atypia and hyperplasia showed appreciable improvement when supplemented with ZO at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Devika Chopra
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), Panjab University, Chandigarh, India
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Barros CFD, Guarnieri LDO, Mansk LMZ, Secio-Silva A, Emrich F, Ferreira M, Silva WND, Peliciari-Garcia RA, Pereira GS, Bargi-Souza P. The memory impairment by hypothyroidism in mice is dependent on time-of-day and sex. Behav Brain Res 2023; 452:114595. [PMID: 37482305 DOI: 10.1016/j.bbr.2023.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Hypothyroidism is an endocrine-metabolic disorder, and as such it compromises a wide range of physiological functions. Memory deficits and, the most recently described, circadian rhythm disruption are among the impairments caused by thyroid dysfunctions. However, although highly likely, there is no evidence connecting these two effects of hypothyroidism. Here, we hypothesized the time-of-day interferes with the memory deficit caused by hypothyroidism. C57BL/6 J mice from both sexes were subjected to novel object recognition (NOR) task during the rest and active phases, corresponding to ZT 2-4 and 14-16, respectively (ZT: Zeitgeber time; ZT 0: lights on at 07:00 am). First, we showed that neither sex nor ZT altered object recognition memory (ORM) in euthyroid mice. Next, animals were divided into control (euthyroid) and hypothyroid [induced with methimazole (0.01%) and perchlorate (0.1%) treatment in the drinking water for 21 days] groups. Under euthyroid conditions, male and female mice recognized the novel object regardless of the time-of-day. However, hypothyroidism impaired ORM at rest phase (ZT 2-4) in both sexes. Surprisingly, in the active phase (ZT 14-16), the hypothyroid males performed the NOR, though a longer time to execute the task was required. In contrast, female hypothyroid mice showed a greater impairment in ORM. Our results suggest that hypothyroidism may disrupt the circadian rhythm in brain areas related to mnemonic processes since in euthyroid condition ORM is not affected by the time-of-day. Furthermore, our findings in an animal model indicate a pronounced deleterious effect of hypothyroidism in women.
Collapse
Affiliation(s)
- Carolina Fonseca de Barros
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara Monteiro Zanetti Mansk
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Felipe Emrich
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maíza Ferreira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Walison Nunes da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Departamento de Ciências Biológicas, Setor de Morfofisiologia e Patologia, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Grace Schenatto Pereira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Paula Bargi-Souza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
d'Isa R, Gerlai R. Designing animal-friendly behavioral tests for neuroscience research: The importance of an ethological approach. Front Behav Neurosci 2023; 16:1090248. [PMID: 36703720 PMCID: PMC9871504 DOI: 10.3389/fnbeh.2022.1090248] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
7
|
Watanabe S. Infrared thermography for non-invasive measurement of social inequality aversion in rodents and potential usefulness for future animal-friendly studies. Front Behav Neurosci 2023; 17:1131427. [PMID: 36950066 PMCID: PMC10025391 DOI: 10.3389/fnbeh.2023.1131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Infrared thermography is a method that detects thermal radiation energy and can measure the body surface temperature of animals from a distance. While rectal temperature has traditionally been used to measure animals' core temperature, thermal imaging can avoid the stress and potential rise of body temperature deriving from handling of the animals. Additionally, being non-invasive and contactless, thermal imaging allows free movement of the animals. The validity of this technique as a psychophysiological method has been proven in a series of stress-induced hyperthermia (SIH) studies of mice under social inequality conditions. Restraint in a holder elicits SIH in mice. A restrained mouse surrounded by freely moving cage mates displays increased SIH suggesting that social inequality enhances the stress. Social inequality can be examined also in unrestrained mice, in particular through unequal distribution of food. In this protocol, a food-deprived mouse is given a small piece of cheese, while its cage mate is given a large piece of cheese. This inequity causes SIH, suggesting social inequality aversion in mice. Thus, social inequality in different situations similarly increased SIH. Importantly, in future studies infrared thermography could also be used to evaluate emotional arousal states different from stress (for example to assess reactivity to rewards or in social and sexual preference tests). Moreover, the technique could be used to investigate also cognitive arousal induced by novelty. Indeed, infrared thermography could be a particularly useful tool for animal-friendly studies of cognition and emotion in rodents.
Collapse
|
8
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
9
|
Du Q, Huang L, Tang Y, Kang J, Ye W, Feng Z. Median Nerve Stimulation Attenuates Traumatic Brain Injury-Induced Comatose State by Regulating the Orexin-A/RasGRF1 Signaling Pathway. World Neurosurg 2022; 168:e19-e27. [PMID: 36064116 DOI: 10.1016/j.wneu.2022.07.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite the arousal effect of median nerve stimulation (MNS) being well documented in the clinical treatment of coma patients with traumatic brain injury (TBI), the mechanisms underlying the observed effect are still not completely understood. This study aimed to evaluate the protective effects and potential mechanism of MNS in comatose rats with TBI. METHODS A total of 60 rats were randomly divided into 5 groups: the control group, sham-stimulated group, MNS group, orexins receptor type 1 (OX1R) antagonist group, and antagonist control group. The free-fall drop method was used to establish a TBI model. After administrating MNS or OX1R antagonist, consciousness was evaluated. Protein levels in the prefrontal cortex were measured using an enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence. RESULTS In the MNS group, tissue damage and consciousness state was markedly improved compared with that in the sham-stimulated group. Administration of the OX1R antagonist attenuated the beneficial effects of MNS in TBI-induced comatose rats. Additionally, MNS also significantly enhanced the expression of orexin-A/OX1R and the activation of Ras guanine nucleotide-releasing factor 1 (RasGRF1). CONCLUSIONS These data show that MNS exerts its wake-promoting effect by activating the OX1R-RasGRF1 pathway in TBI-induced comatose rats.
Collapse
Affiliation(s)
- Qing Du
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Lianghua Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yunliang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wen Ye
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
10
|
Treatment with cyclophosphamide in post-weaning mice causes prolonged suppression of neural stem cell proliferation in the hippocampal dentate gyrus. Brain Res 2022; 1796:148108. [DOI: 10.1016/j.brainres.2022.148108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
|
11
|
Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Sci Rep 2021; 11:21177. [PMID: 34707108 PMCID: PMC8551159 DOI: 10.1038/s41598-021-00402-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
Spatial working memory can be assessed in mice through the spontaneous alternation T-maze test. The T-maze is a T-shaped apparatus featuring a stem (start arm) and two lateral goal arms (left and right arms). The procedure is based on the natural tendency of rodents to prefer exploring a novel arm over a familiar one, which induces them to alternate the choice of the goal arm across repeated trials. During the task, in order to successfully alternate choices across trials, an animal has to remember which arm had been visited in the previous trial, which makes spontaneous alternation T-maze an optimal test for spatial working memory. As this test relies on a spontaneous behaviour and does not require rewards, punishments or pre-training, it represents a particularly useful tool for cognitive evaluation, both time-saving and animal-friendly. We describe here in detail the apparatus and the protocol, providing representative results on wild-type healthy mice.
Collapse
|
12
|
Miao W, Jiang L, Xu F, Lyu J, Jiang X, He M, Liu Y, Yang T, Leak RK, Stetler RA, Chen J, Hu X. Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response. Prog Neurobiol 2021; 205:102125. [PMID: 34333040 DOI: 10.1016/j.pneurobio.2021.102125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/20/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Vascular cognitive impairment and dementia (VaD) is the second most common type of dementia caused by chronic vascular hypoperfusion. Adiponectin, one of the cytokines produced by adipocytes (adipocytokine), plays a role in CNS pathologies, but its specific function in VaD is unknown. Here, transcriptomic analyses on human brain tissues showed downregulation of adipocytokine/PPAR signaling in VaD patients, with prominent upregulation of pro-inflammatory responses. Using the murine asymmetric common carotid artery stenosis (ACAS) model, we discovered that the adiponectin/PPARγ axis is essential in reducing chronic hypoperfusion-induced cognitive deficits via modulation of microglial function. Adiponectin levels in the plasma increased early after VaD induction, but decreased in the cerebrospinal fluid in the late phase of VaD. Adiponectin deficiency worsened hippocampus-dependent cognitive deficits, exacerbated neuroinflammation and microglia/macrophage activation, and amplified neuronal loss, but these behavioral and histological outcomes were rescued by adipoRon, a small molecule agonist of the adiponectin receptors. AdipoRon boosted PPARγ expression and inhibited pro-inflammatory microglial responses in vitro, thereby protecting ischemic neurons in primary microglia-neuron cocultures. Microglia/macrophage-specific knockout of PPARγ abolished the neuroprotective effects of adipoRon. Collectively, these data confirm the importance of adiponectin/PPARγ signaling in maintaining cognitive functions in chronic hypoperfusion-induced dementia, and thus provide novel therapeutic targets for VaD.
Collapse
Affiliation(s)
- Wanying Miao
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Liyuan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Maxine He
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
d'Isa R, Comi G, Leocani L. The 4-Hole-Board Test for Assessment of Long-Term Spatial Memory in Mice. Curr Protoc 2021; 1:e228. [PMID: 34432376 DOI: 10.1002/cpz1.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hole-board test has been used in rodents since the early 60s to measure exploratory behavior, locomotor activity and cognitive function. The test is based on rodents' natural curiosity and attraction for novelty. Basically, the hole-board consists of a small square arena with an extractable platform as floor, which has a set of equally spaced circular holes on its surface. In this article, we describe the protocol of a 4-hole-board test allowing the assessment of long-term spatial memory in mice without the employment of water or food restriction, painful stimuli (as electrical shocks) or any aversive condition (as forced swimming or exposure to intense light). Four holes are present on the floor of the square arena (one for each of its four quadrants). Mice released in the arena spontaneously approach the holes and explore them by briefly inserting the snout inside, a behavior defined as nose-poking (or head-dipping). If, after 24 hr, rodents are re-exposed to the hole-board, the novelty of the holes decreases. Animals with an intact long-term memory will show a reduction of the frequency of nose-poking into the holes. The total number of nose-pokes on day 1 is an index of exploration, while the percentage of decrease in nose-poking on day 2 represents an index of long-term spatial memory. Number of quadrant crossings is scored as a control measure for locomotor activity, which with the present protocol should remain stable across the days of testing. Indeed, the 4-hole-board test represents a stress-free and animal-friendly option to evaluate long-term spatial memory. In the present paper, we provide detailed description of the hole-board apparatus and step-by-step protocol for assessment of spatial memory in mice. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Validation of the 4-hole-board Basic Protocol 2: Evaluation of long-term spatial memory through the 4-hole-board test.
Collapse
Affiliation(s)
- Raffaele d'Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, Milan, Italy.,Casa di Cura del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Lavigna G, Masone A, Bouybayoune I, Bertani I, Lucchetti J, Gobbi M, Porcu L, Zordan S, Rigamonti M, Imeri L, Restelli E, Chiesa R. Doxycycline rescues recognition memory and circadian motor rhythmicity but does not prevent terminal disease in fatal familial insomnia mice. Neurobiol Dis 2021; 158:105455. [PMID: 34358614 PMCID: PMC8463834 DOI: 10.1016/j.nbd.2021.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Fatal familial insomnia (FFI) is a dominantly inherited prion disease linked to the D178N mutation in the gene encoding the prion protein (PrP). Symptoms, including insomnia, memory loss and motor abnormalities, appear around 50 years of age, leading to death within two years. No treatment is available. A ten-year clinical trial of doxycycline (doxy) is under way in healthy individuals at risk of FFI to test whether presymptomatic doxy prevents or delays the onset of disease. To assess the drug's effect in a tractable disease model, we used Tg(FFI-26) mice, which accumulate aggregated and protease-resistant PrP in their brains and develop a fatal neurological illness highly reminiscent of FFI. Mice were treated daily with 10 mg/kg doxy starting from a presymptomatic stage for twenty weeks. Doxy rescued memory deficits and restored circadian motor rhythmicity in Tg(FFI-26) mice. However, it did not prevent the onset and progression of motor dysfunction, clinical signs and progression to terminal disease. Doxy did not change the amount of aggregated and protease-resistant PrP, but reduced microglial activation in the hippocampus. Presymptomatic doxy treatment rescues cognitive impairment and the motor correlates of sleep dysfunction in Tg(FFI-26) mice but does not prevent fatal disease.
Collapse
Affiliation(s)
- Giada Lavigna
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ihssane Bouybayoune
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Luca Imeri
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
15
|
He Z, Song J, Li X, Li X, Zhu H, Wu C, Xiao W, Du X, Ni J, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) alleviates neuronal apoptosis through regulating peroxisome proliferator-activated receptor γ in a triple transgenic animal model of Alzheimer's disease. J Biol Inorg Chem 2021; 26:551-568. [PMID: 34240269 DOI: 10.1007/s00775-021-01874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianxi Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wen Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518033, China.
| |
Collapse
|
16
|
Li J, Liu M, Gao J, Jiang Y, Wu L, Cheong YK, Ren G, Yang Z. AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats. Brain Behav Immun 2020; 87:645-659. [PMID: 32097763 PMCID: PMC7126810 DOI: 10.1016/j.bbi.2020.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.
Collapse
Affiliation(s)
- Junyang Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Meicen Liu
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jin Gao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuen-Ki Cheong
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
d'Isa R, Castoldi V, Marenna S, Santangelo R, Comi G, Leocani L. A new electrophysiological non-invasive method to assess retinocortical conduction time in the Dark Agouti rat through the simultaneous recording of electroretinogram and visual evoked potential. Doc Ophthalmol 2020; 140:245-255. [PMID: 31832898 DOI: 10.1007/s10633-019-09741-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a non-invasive method exploiting simultaneous recording of epidermal visual evoked potential (VEP) and epicorneal electroretinogram (ERG) to study retinocortical function and to evaluate its reliability and repeatability over time. METHODS Female wild-type DA rats were anesthetized with ketamine/xylazine (40/5 mg/kg). Epidermal VEP (Ag/AgCl cup electrode on scalp) and epicorneal ERG (gold ring electrode on eye surface) were recorded simultaneously in response to flash stimulation. RESULTS ANOVA for repeated measures showed that peak times of ERG b-wave and of VEP N1 and P2 were stable across 6 weekly time-points, as well as the corresponding amplitudes. Mean retinocortical time from b-wave to N1 (RCT1) was 7.6 ms and remained comparable across the 6 time-points. Mean retinocortical time from b-wave to P2 (RCT2) was 28.7 ms and did not show significant variations over time. Coefficient of variation (CoV%) and CoV% adjusted for sample size, namely relative standard error (RSE%), were calculated as indexes of repeatability. Good RSE% over time was obtained (< 5% for b-wave, N1 and P2 peak times; < 20% and < 7% for RCT1 and RCT2, respectively). CONCLUSIONS Simultaneous recording of ERG and VEP has been previously achieved through invasive methods requiring surgery. Here, we present a new non-invasive method, which allowed to obtain peak and retinocortical times that were constant across a long period and had a good repeatability over time. This method will ensure not only a gain in animal welfare, but will also avoid stress and eye or brain lesions which can interfere with experimental variables.
Collapse
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Valerio Castoldi
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Silvia Marenna
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Roberto Santangelo
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Letizia Leocani
- Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, IRCCS-San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
18
|
25C-NBF, a new psychoactive substance, has addictive and neurotoxic potential in rodents. Arch Toxicol 2020; 94:2505-2516. [DOI: 10.1007/s00204-020-02740-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
|
19
|
Liu X, Zhou Y, Yang D, Li S, Liu X, Wang Z. Type 3 adenylyl cyclase in the MOE is involved in learning and memory in mice. Behav Brain Res 2020; 383:112533. [DOI: 10.1016/j.bbr.2020.112533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023]
|
20
|
Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology (Berl) 2020; 237:1577-1593. [PMID: 32076746 PMCID: PMC7239818 DOI: 10.1007/s00213-020-05484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a mental illness which is characterised by positive and negative symptoms and by cognitive impairments. While the major prevailing hypothesis is that altered dopaminergic and/or glutamatergic transmission contributes to this disease, there is evidence that the noradrenergic system also plays a role in its major symptoms. OBJECTIVES In the present paper, we investigated the pro-cognitive effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) an endogenous neuroprotective compound, on ketamine-modelled schizophrenia in rats. METHODS We used an antagonist of NMDA receptors (ketamine) to model memory deficit symptoms in rats. Using the novel object recognition (NOR) test, we investigated the pro-cognitive effect of 1MeTIQ. Additionally, olanzapine, an atypical antipsychotic drug, was used as a standard to compare the pro-cognitive effects of the substances. In vivo microdialysis studies allowed us to verify the changes in the release of monoamines and their metabolites in the rat striatum. RESULTS Our study demonstrated that 1MeTIQ, similarly to olanzapine, exhibits a pro-cognitive effect in NOR test and enhances memory disturbed by ketamine treatment. Additionally, in vivo microdialysis studies have shown that ketamine powerfully increased noradrenaline release in the rat striatum, while 1MeTIQ and olanzapine completely antagonised this neurochemical effect. CONCLUSIONS 1MeTIQ, as a possible pro-cognitive drug, in contrast to olanzapine, expresses beneficial neuroprotective activity in the brain, increasing concentration of the extraneuronal dopamine metabolite, 3-methoxytyramine (3-MT), which plays an important physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Moreover, we first demonstrated the essential role of noradrenaline release in memory disturbances observed in the ketamine-model of schizophrenia, and its possible participation in negative symptoms of the schizophrenia.
Collapse
|
21
|
Impact of 1-day and 4-day MWM training techniques on oxidative and neurochemical profile in rat brain: A comparative study on learning and memory functions. Neurobiol Learn Mem 2018; 155:390-402. [PMID: 30195048 DOI: 10.1016/j.nlm.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
Among multiple behavioral tasks used to assess memory performance, Morris water maze (MWM) is a well-known and reliable conventional behavioral task to monitor spatial memory performance in rodents. Although multiple procedures are employed by researchers for spatial learning training in MWM, but less is known about impact of these training protocol variations on oxidative and neurochemical systems. Therefore, this study aimed to examine whether variations in training protocol will influence spatial memory performance and induce changes in oxidative status and cholinergic and aminergic neurotransmission in rat brain. For this, rats were assigned to four groups; control (unexposed), 1-trial (exposed to single training trial), 1-day (exposed to four training trials for a single day) and 4-day (exposed to four training trials for four days). After conducting training, spatial reference memory performance was determined by performing retention and consolidation probe trials. Rats were then decapitated and their brain and plasma samples were collected for biochemical, oxidative and neurochemical analysis. It was found that spatial reference memory was improved following both 1-day and 4-day training protocols, however, corticosterone levels were raised extensively following 4-day training exposure compared to 1-day training protocol. Similarly, a significant improvement in redox profile and cholinergic and aminergic neurotransmitters was also observed following 1-day training procedure. Thus, 1-day training procedure can be suggested as a better procedure for assessing the spatial memory performance in rats as it has a profound impact on antioxidant status and cholinergic and aminergic neurotransmission in brain. Moreover, use of single-day training procedure can provide a rapid and effective tool for assessing spatial memory in rats compared to prolonged and complicated 4-day training protocol.
Collapse
|
22
|
Ren HL, Lv CN, Xing Y, Geng Y, Zhang F, Bu W, Wang MW. Downregulated Nuclear Factor E2-Related Factor 2 (Nrf2) Aggravates Cognitive Impairments via Neuroinflammation and Synaptic Plasticity in the Senescence-Accelerated Mouse Prone 8 (SAMP8) Mouse: A Model of Accelerated Senescence. Med Sci Monit 2018; 24:1132-1144. [PMID: 29474348 PMCID: PMC5833362 DOI: 10.12659/msm.908954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background We observed the effects of nuclear factor E2-related factor 2 (Nrf2) downregulation via intrahippocampal injection of a lentiviral vector on cognition in senescence-accelerated mouse prone 8 (SAMP8) to investigate the role of the (Nrf2)/antioxidant response element (ARE) pathway in age-related changes. Material/Methods Control lentivirus and Nrf2-shRNA-lentivirus were separately injected into the hippocampus of 4-month-old SAMR1 and SAMP8 mice and then successfully downregulated Nrf2 expression in this brain region. Five months later, cognitive function tests, including the novel object test, the Morris water maze test, and the passive avoidance task were conducted. Glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1) immunohistochemistry was performed to observe an inflammatory response. Presynaptic synapsin (SYN) were observed by immunofluorescence. We then determined the Nrf2-regulated, heme oxygenase-1 (HO-1), P65, postsynaptic density protein (PSD), and SYN protein levels. The ultrastructure of neurons and synapses in the hippocampal CA1 region was observed by transmission electron microscopy. Results Aging led to a decline in cognitive function compared with SAMR1 mice and the Nrf2-shRNA-lentivirus further exacerbated the cognitive impairment in SAMP8 mice. Nrf2, HO-1, PSD, and SYN levels were significantly reduced (all P<0.05) but high levels of inflammation were detected in SAMP8 mice with low expression of Nrf2. Furthermore, neurons were vacuolated, the number of organelles decreased, and the number of synapses decreased. Conclusions Downregulation of Nrf2 suppressed the Nrf2/ARE pathway, activated oxidative stress and neuroinflammation, and accelerated cognitive impairment in SAMP8 mice. Downregulation of Nrf2 accelerates the aging process through neuroinflammation and synaptic plasticity.
Collapse
Affiliation(s)
- Hui Ling Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chao Nan Lv
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yuan Geng
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wei Bu
- Department of Neurosurgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ming Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
23
|
Tabassum S, Haider S. Extensive but not Limited Repeated Trials in Passive Avoidance Task Induce Stress-like Symptoms and Affect Memory Function in Rats. Neuroscience 2018; 371:495-505. [DOI: 10.1016/j.neuroscience.2017.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
24
|
Papale A, d'Isa R, Menna E, Cerovic M, Solari N, Hardingham N, Cambiaghi M, Cursi M, Barbacid M, Leocani L, Fasano S, Matteoli M, Brambilla R. Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies. Biol Psychiatry 2017; 81:179-192. [PMID: 27587266 DOI: 10.1016/j.biopsych.2016.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dysregulation of Ras-extracellular signal-related kinase (ERK) signaling gives rise to RASopathies, a class of neurodevelopmental syndromes associated with intellectual disability. Recently, much attention has been directed at models bearing mild forms of RASopathies whose behavioral impairments can be attenuated by inhibiting the Ras-ERK cascade in the adult. Little is known about the brain mechanisms in severe forms of these disorders. METHODS We performed an extensive characterization of a new brain-specific model of severe forms of RASopathies, the KRAS12V mutant mouse. RESULTS The KRAS12V mutation results in a severe form of intellectual disability, which parallels mental deficits found in patients bearing mutations in this gene. KRAS12V mice show a severe impairment of both short- and long-term memory in a number of behavioral tasks. At the cellular level, an upregulation of ERK signaling during early phases of postnatal development, but not in the adult state, results in a selective enhancement of synaptogenesis in gamma-aminobutyric acidergic interneurons. The enhancement of ERK activity in interneurons at this critical postnatal time leads to a permanent increase in the inhibitory tone throughout the brain, manifesting in reduced synaptic transmission and long-term plasticity in the hippocampus. In the adult, the behavioral and electrophysiological phenotypes in KRAS12V mice can be temporarily reverted by inhibiting gamma-aminobutyric acid signaling but not by a Ras-ERK blockade. Importantly, the synaptogenesis phenotype can be rescued by a treatment at the developmental stage with Ras-ERK inhibitors. CONCLUSIONS These data demonstrate a novel mechanism underlying inhibitory synaptogenesis and provide new insights in understanding mental dysfunctions associated to RASopathies.
Collapse
Affiliation(s)
- Alessandro Papale
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Raffaele d'Isa
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano
| | - Elisabetta Menna
- National Research Council (CNR), Neuroscience Institute, Milano; Humanitas Clinical and Research Center, Rozzano, Italy
| | - Milica Cerovic
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Department of Neuroscience, IRCCS Mario Negri Institute for Pharmacological Research, Milano
| | - Nicola Solari
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano; Department of Neuroscience, IRCCS Mario Negri Institute for Pharmacological Research, Milano
| | - Neil Hardingham
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marco Cambiaghi
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano
| | - Marco Cursi
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Letizia Leocani
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano
| | - Michela Matteoli
- National Research Council (CNR), Neuroscience Institute, Milano; Humanitas Clinical and Research Center, Rozzano, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milano.
| |
Collapse
|
25
|
Papale A, Morella IM, Indrigo MT, Bernardi RE, Marrone L, Marchisella F, Brancale A, Spanagel R, Brambilla R, Fasano S. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. eLife 2016; 5. [PMID: 27557444 PMCID: PMC4996650 DOI: 10.7554/elife.17111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.17111.001
Collapse
Affiliation(s)
- Alessandro Papale
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ilaria Maria Morella
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Rick Eugene Bernardi
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Livia Marrone
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Marchisella
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rainer Spanagel
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Pellinen J, Wang H, Eckel RH. Mice with altered brain lipoprotein metabolism display maladaptive responses to environmental challenges that may predispose to weight gain. Metab Syndr Relat Disord 2014; 12:339-46. [PMID: 24730656 DOI: 10.1089/met.2013.0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Three-month-old neuron-specific lipoprotein lipase (LPL)-depleted mice (NEXLP(-/-)) mice are preobese and have normal body weight before developing obesity by 4.5 months. This series of experiments investigated responses to novel environment stimuli and acute sleep deprivation in preobese NEXLPL(-/-)) mice to test the hypothesis that neuron-specific LPL deletion alters normal adaptive metabolic responses to environmental challenges. METHODS Three-month-old, age- and weight-matched, male NEXLPL(-/-)) (n=10) and wild-type (WT) (n=10) mice were housed in individual metabolic chambers with a 12-hr dark cycle. Food and water intake, locomotor activity, and calorimetry data were recorded in 12-min intervals. Novel environmental responses were elicited by first-time introduction to chambers at dark onset, followed by acclimation, baseline recording, and 6-hr of sleep deprivation on subsequent experimental days. RESULTS NEXLPL(-/-)) mice displayed a 1.5-fold greater increase in activity in response to a novel environment than seen in WT controls (P=0.0308), and a two-fold greater increase in food intake following acute sleep deprivation (P=0.0117). NEXLPL(-/-)) mice averaged a 27% higher metabolic rate than WT mice throughout the experiments (P<0.0001). Body weight, composition, and temperature did not differ between murine groups throughout the experiments. Levels of free fatty acid, insulin, glucose, and triglycerides were similar between groups at the terminus. CONCLUSIONS A deficiency in neuronal LPL signaling disrupts normal responses to novel environmental exposure and acute sleep deprivation, a maladaptive response that may contribute to weight gain in genetically predisposed mice, and perhaps humans.
Collapse
Affiliation(s)
- Jacob Pellinen
- 1 University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | | | | |
Collapse
|