1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Zhang S, Anang S, Zhang Z, Nguyen HT, Ding H, Kappes JC, Sodroski J. Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs. J Virol 2024; 98:e0063124. [PMID: 39248459 PMCID: PMC11495050 DOI: 10.1128/jvi.00631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bayly-Jones C, Lupton CJ, Keen AC, Dong S, Mastos C, Luo W, Qian C, Jones GD, Venugopal H, Chang YG, Clarke RJ, Halls ML, Ellisdon AM. LYCHOS is a human hybrid of a plant-like PIN transporter and a GPCR. Nature 2024; 634:1238-1244. [PMID: 39358511 PMCID: PMC11525196 DOI: 10.1038/s41586-024-08012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Lysosomes have crucial roles in regulating eukaryotic metabolism and cell growth by acting as signalling platforms to sense and respond to changes in nutrient and energy availability1. LYCHOS (GPR155) is a lysosomal transmembrane protein that functions as a cholesterol sensor, facilitating the cholesterol-dependent activation of the master protein kinase mechanistic target of rapamycin complex 1 (mTORC1)2. However, the structural basis of LYCHOS assembly and activity remains unclear. Here we determine several high-resolution cryo-electron microscopy structures of human LYCHOS, revealing a homodimeric transmembrane assembly of a transporter-like domain fused to a G-protein-coupled receptor (GPCR) domain. The class B2-like GPCR domain is captured in the apo state and packs against the surface of the transporter-like domain, providing an unusual example of a GPCR as a domain in a larger transmembrane assembly. Cholesterol sensing is mediated by a conserved cholesterol-binding motif, positioned between the GPCR and transporter domains. We reveal that the LYCHOS transporter-like domain is an orthologue of the plant PIN-FORMED (PIN) auxin transporter family, and has greater structural similarity to plant auxin transporters than to known human transporters. Activity assays support a model in which the LYCHOS transporter and GPCR domains coordinate to sense cholesterol and regulate mTORC1 activation.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher J Lupton
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shuqi Dong
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wentong Luo
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chunyi Qian
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gareth D Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Yong-Gang Chang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Camperdown, New South Wales, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Andrew M Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
5
|
Diniz CRAF, Crestani AP, Casarotto PC, Biojone C, Cannarozzo C, Winkel F, Prozorov MA, Kot EF, Goncharuk SA, Benette Marques D, Rakauskas Zacharias L, Autio H, Sahu MP, Borges-Assis AB, Leite JP, Mineev KS, Castrén E, Resstel LBM. Fluoxetine and Ketamine Enhance Extinction Memory and Brain Plasticity by Triggering the p75 Neurotrophin Receptor Proteolytic Pathway. Biol Psychiatry 2024:S0006-3223(24)01425-2. [PMID: 38945387 DOI: 10.1016/j.biopsych.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain. As such qualities were found to be crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR. METHODS Enzyme-linked immunosorbent assay-based binding and nuclear magnetic resonance spectroscopy were performed to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to investigate whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75NTR knockout mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verify how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male wild-type mice and rats. RESULTS Antidepressants were found to bind to p75NTR. FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes. CONCLUSIONS We hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain's ability for remodeling.
Collapse
Affiliation(s)
- Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Center for Neuroscience, University of California, Davis, Davis, California.
| | - Ana Paula Crestani
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Plinio Cabrera Casarotto
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Biomedicine and Translational Neuropsychiatry Unit-Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Cecilia Cannarozzo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail A Prozorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Rakauskas Zacharias
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Henri Autio
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Anna Bárbara Borges-Assis
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
6
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
7
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
8
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Steck TL, Ali Tabei SM, Lange Y. Estimating the Cholesterol Affinity of Integral Membrane Proteins from Experimental Data. Biochemistry 2024; 63:19-26. [PMID: 38099740 PMCID: PMC10765374 DOI: 10.1021/acs.biochem.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The cholesterol affinities of many integral plasma membrane proteins have been estimated by molecular computation. However, these values lack experimental confirmation. We therefore developed a simple mathematical model to extract sterol affinity constants and stoichiometries from published isotherms for the dependence of the activity of such proteins on the membrane cholesterol concentration. The binding curves for these proteins are sigmoidal, with strongly lagged thresholds attributable to competition for the cholesterol by bilayer phospholipids. The model provided isotherms that matched the experimental data using published values for the sterol association constants and stoichiometries of the phospholipids. Three oligomeric transporters were found to bind cholesterol without cooperativity, with dimensionless association constants of 35 for Kir3.4* and 100 for both Kir2 and a GAT transporter. (The corresponding ΔG° values were -8.8, -11.4, and -11.4 kJ/mol, respectively). These association constants are significantly lower than those for the phospholipids, which range from ∼100 to 6000. The BK channel, the nicotinic acetylcholine receptor, and the M192I mutant of Kir3.4* appear to bind multiple cholesterol molecules cooperatively (n = 2 or 4), with subunit affinities of 563, 950, and 700, respectively. The model predicts that the three less avid transporters are approximately half-saturated in their native plasma membranes; hence, they are sensitive to variations in cholesterol in vivo. The more avid proteins would be nearly saturated in vivo. The method can be applied to any integral protein or other ligands in any bilayer for which there are reasonable estimates of the sterol affinities and stoichiometries of the phospholipids.
Collapse
Affiliation(s)
- Theodore L. Steck
- Department
of Biochemistry and Molecular Biology, University
of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - S. M. Ali Tabei
- Department
of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, United States
| | - Yvonne Lange
- Department
of Pathology, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
10
|
Galluccio M, Mazza T, Scalise M, Tripicchio M, Scarpelli M, Tolomeo M, Pochini L, Indiveri C. Over-Production of the Human SLC7A10 in E. coli and Functional Assay in Proteoliposomes. Int J Mol Sci 2023; 25:536. [PMID: 38203703 PMCID: PMC10779382 DOI: 10.3390/ijms25010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy. In this study, we present a methodology for producing the recombinant human transporter in E. coli. Its transport function was assayed in proteoliposomes following the uptake of radiolabeled L-serine. After the testing of several growth conditions, the hASC-1 transporter was successfully expressed in BL21(DE3) codon plus RIL in the presence of 0.5% glucose and induced with 0.05 mM IPTG. After solubilization with C12E8 and cholesteryl hemisuccinate and purification by Ni-chelating chromatography, hASC-1 was reconstituted in proteoliposomes. In this experimental system it was able to catalyze an Na+-independent homologous antiport of L-serine. A Km for L-serine transport of 0.24 mM was measured. The experimental model developed in this work represents a reproducible system for the transport assay of hASC-1 in the absence of interferences. This tool will be useful to unveil unknown transport properties of hASC-1 and for testing ligands with possible application in human pharmacology.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Tiziano Mazza
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Martina Scarpelli
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Maria Tolomeo
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
11
|
Biojone C, Cannarozzo C, Seiffert N, Diniz CRAF, Brunello CA, Castrén E, Casarotto P. Mutation in the TRKB Cholesterol Recognition Site that blocks Antidepressant Binding does not Influence the Basal or BDNF-Stimulated Activation of TRKB. Cell Mol Neurobiol 2023; 44:4. [PMID: 38104054 PMCID: PMC10725331 DOI: 10.1007/s10571-023-01438-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 12/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) acting upon its receptor Neurotrophic tyrosine kinase receptor 2 (NTRK2, TRKB) plays a central role in the development and maintenance of synaptic function and activity- or drug-induced plasticity. TRKB possesses an inverted cholesterol recognition and alignment consensus sequence (CARC), suggesting this receptor can act as a cholesterol sensor. We have recently shown that antidepressant drugs directly bind to the CARC domain of TRKB dimers, and that this binding as well as biochemical and behavioral responses to antidepressants are lost with a mutation in the TRKB CARC motif (Tyr433Phe). However, it is not clear if this mutation can also compromise the receptor function and lead to behavioral alterations. Here, we observed that Tyr433Phe mutation does not alter BDNF binding to TRKB, or BDNF-induced dimerization of TRKB. In this line, primary cultures from embryos of heterozygous Tyr433Phe mutant mice (hTRKB.Tyr433Phe) are responsive to BDNF-induced activation of TRKB, and samples from adult mice do not show any difference on TRKB activation compared to wild-type littermates (TRKB.wt). The behavioral phenotype of hTRKB.Tyr433Phe mice is indistinguishable from the wild-type mice in cued fear conditioning, contextual discrimination task, or the elevated plus maze, whereas mice heterozygous to BDNF null allele show a phenotype in context discrimination task. Taken together, our results indicate that Tyr433Phe mutation in the TRKB CARC motif does not show signs of loss-of-function of BDNF responses, while antidepressant binding to TRKB and responses to antidepressants are lost in Tyr433Phe mutants, making them an interesting mouse model for antidepressant research.
Collapse
Affiliation(s)
- Caroline Biojone
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cecilia Cannarozzo
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
| | - Nina Seiffert
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
| | - Cassiano R A F Diniz
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Cecilia A Brunello
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland
| | - Plinio Casarotto
- Neuroscience Center - HiLife, University of Helsinki, P. O. Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
12
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
14
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
15
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
16
|
Yaksh TL, Santos GGD, Borges Paes Lemes J, Malange K. Neuraxial drug delivery in pain management: An overview of past, present, and future. Best Pract Res Clin Anaesthesiol 2023; 37:243-265. [PMID: 37321769 DOI: 10.1016/j.bpa.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Activation of neuraxial nociceptive linkages leads to a high level of encoding of the message that is transmitted to the brain and that can initiate a pain state with its attendant emotive covariates. As we review here, the encoding of this message is subject to a profound regulation by pharmacological targeting of dorsal root ganglion and dorsal horn systems. Though first shown with the robust and selective modulation by spinal opiates, subsequent work has revealed the pharmacological and biological complexity of these neuraxial systems and points to several regulatory targets. Novel therapeutic delivery platforms, such as viral transfection, antisense and targeted neurotoxins, point to disease-modifying approaches that can selectively address the acute and chronic pain phenotype. Further developments are called for in delivery devices to enhance local distribution and to minimize concentration gradients, as frequently occurs with the poorly mixed intrathecal space. The field has advanced remarkably since the mid-1970s, but these advances must always address the issues of safety and tolerability of neuraxial therapy.
Collapse
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA.
| | | | | | - Kaue Malange
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA
| |
Collapse
|
17
|
Lange Y, Tabei SMA, Steck TL. A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding. J Lipid Res 2023; 64:100344. [PMID: 36791915 PMCID: PMC10119614 DOI: 10.1016/j.jlr.2023.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and Perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the under-staining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic ER proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipid. § Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- 1Department of Pathology, Rush University Medical Center, Chicago, Il 60612, USA.
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Il 60637, USA
| |
Collapse
|
18
|
Baier CJ, Barrantes FJ. Role of cholesterol-recognition motifs in the infectivity of SARS-CoV-2 variants. Colloids Surf B Biointerfaces 2023; 222:113090. [PMID: 36563415 PMCID: PMC9743692 DOI: 10.1016/j.colsurfb.2022.113090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The presence of linear amino acid motifs with the capacity to recognize the neutral lipid cholesterol, known as Cholesterol Recognition/interaction Amino acid Consensus sequence (CRAC), and its inverse or mirror image, CARC, has recently been reported in the primary sequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S homotrimeric glycoprotein. These motifs also occur in the two other pathogenic coronaviruses, SARS-CoV, and Middle-East respiratory syndrome CoV (MERS-CoV), most conspicuously in the transmembrane domain, the fusion peptide, the amino-terminal domain, and the receptor binding domain of SARS-CoV-2 S protein. Here we analyze the presence of cholesterol-recognition motifs in these key regions of the spike glycoprotein in the pathogenic CoVs. We disclose the inherent pathophysiological implications of the cholesterol motifs in the virus-host cell interactions and variant infectivity.
Collapse
Affiliation(s)
- Carlos Javier Baier
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina,Correspondence to: INBIOSUR-CONICET-UNS, DBByF, San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, BIOMED UCA-CONICET, 1600 Av. A. Moreau de Justo, C1107AAZ Buenos Aires, Argentina,Correspondence to: BIOMED UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
19
|
Vaithianathan T, Schneider EH, Bukiya AN, Dopico AM. Cholesterol and PIP 2 Modulation of BK Ca Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:217-243. [PMID: 36988883 PMCID: PMC10683925 DOI: 10.1007/978-3-031-21547-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (β and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth H Schneider
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
20
|
Tan S, Zhang X, Zhang Q, Li YM, Zhang P, Yin LP. HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport. PLANT SIGNALING & BEHAVIOR 2022; 17:2005881. [PMID: 34809535 PMCID: PMC8928839 DOI: 10.1080/15592324.2021.2005881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by detergent-resistant membranes. However, studies on IRT1 exocytosis and function in response to iron status are limited. Presently, we found that the histidine-rich motif (HRM) of MxIRT1 could bind to iron directly and HRM determined the delivery of MxIRT1 to the PM, after which the cholesterol recognition amino acid consensus (CRAC) motif-regulated MxIRT1 mediated metal transport. IMAC assay revealed that H192 was the vital site for HRM binding to Fe2+, and metal-binding activity was stopped after the deletion of HRM (MxIRT1∆HM) or in H192 site-directed mutants (H192A). MxIRT1∆HM or H192A in transgenic yeast and Arabidopsis failed to localize in the PM and displayed impaired iron absorption. In the PM, Y266 in CRAC was required for metal transport; Y266A transgenic Arabidopsis displayed the same root length, Cd2+ flux, and Fe concentration as Arabidopsis mutant irt1 under iron-deficient conditions. Therefore, H192 in HRM may be an iron sensor to regulate delivery of MxIRT1 vesicles to the PM after binding with iron; Y266 in CRAC acts as an iron sensor for active metal transport under iron-deficient conditions.
Collapse
Affiliation(s)
- Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Xi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Qi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Yu-Meng Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Peng Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
21
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
22
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
23
|
Wang Q, Cao Y, Shen L, Xiao T, Cao R, Wei S, Tang M, Du L, Wu H, Wu B, Yu Y, Wang S, Wen M, OuYang B. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. SCIENCE ADVANCES 2022; 8:eabq4722. [PMID: 36026448 PMCID: PMC9417176 DOI: 10.1126/sciadv.abq4722] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 05/24/2023]
Abstract
Cholesterol, an essential molecule for cell structure, function, and viability, plays crucial roles in the development, progression, and survival of cancer cells. Earlier studies have shown that cholesterol-lowering drugs can inhibit the high expression of programmed-death ligand 1 (PD-L1) that contributes to immunoevasion in cancer cells. However, the regulatory mechanism of cell surface PD-L1 abundance by cholesterol is still controversial. Here, using nuclear magnetic resonance and biochemical techniques, we demonstrated that cholesterol can directly bind to the transmembrane domain of PD-L1 through two cholesterol-recognition amino acid consensus (CRAC) motifs, forming a sandwich-like architecture and stabilizing PD-L1 to prevent downstream degradation. Mutations at key binding residues prohibit PD-L1-cholesterol interactions, decreasing the cellular abundance of PD-L1. Our results reveal a unique regulatory mechanism that controls the stability of PD-L1 in cancer cells, providing an alternative method to overcome PD-L1-mediated immunoevasion in cancers.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Shen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shukun Wei
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Tang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyi Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wu
- National Facility for Protein Science Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Yu
- National Facility for Protein Science Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
New Antimicrobial Peptide with Two CRAC Motifs: Activity against Escherichia coli and Bacillus subtilis. Microorganisms 2022; 10:microorganisms10081538. [PMID: 36013956 PMCID: PMC9412426 DOI: 10.3390/microorganisms10081538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the emergence of multiple antibiotic resistance in many pathogens, the studies on new antimicrobial peptides (AMPs) have become a priority scientific direction in fundamental and applied biology. Diverse mechanisms underlie the antibacterial action of AMPs. Among them are the effects that AMPs cause on bacterial cell membranes. In this work, we studied the antibacterial activity of a peptide named P4 with the following sequence RTKLWEMLVELGNMDKAVKLWRKLKR that was constructed from two alpha-helical fragments of the influenza virus protein M1 and containing two cholesterol-recognizing amino-acid consensus (CRAC) motifs. Previously we have shown that 50 μM of peptide P4 is toxic to cultured mouse macrophages. In the present work, we have found that peptide P4 inhibits the growth of E. coli and B. subtilis strains at concentrations that are significantly lower than the cytotoxic concentration that was found for macrophages. The half-maximal inhibitory concentration (IC50) for B. subtilis and E. coli cells were 0.07 ± 0.01 μM and 1.9 ± 0.4 μM, respectively. Scramble peptide without CRAC motifs did not inhibit the growth of E. coli cells and was not cytotoxic for macrophages but had an inhibitory effect on the growth of B. subtilis cells (IC50 0.4 ± 0.2 μM). A possible involvement of CRAC motifs and membrane sterols in the mechanism of the antimicrobial action of the P4 peptide is discussed. We assume that in the case of the Gram-negative bacterium E. coli, the mechanism of the toxic action of peptide P4 is related to the interaction of CRAC motifs with sterols that are present in the bacterial membrane, whereas in the case of the Gram-positive bacterium B. subtilis, which lacks sterols, the toxic action of peptide P4 is based on membrane permeabilization through the interaction of the peptide cationic domain and anionic lipids of the bacterial membrane. Whatever the mechanism can be, we report antimicrobial activity of the peptide P4 against the representatives of Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria.
Collapse
|
25
|
North KC, Zhang M, Singh AK, Zaytseva D, Slayden AV, Bukiya AN, Dopico AM. Cholesterol inhibition of slo1 channels is Ca2+-dependent and can be mediated by either high-affinity Ca2+-sensing site in the slo1 cytosolic tail. Mol Pharmacol 2021; 101:132-143. [PMID: 34969832 DOI: 10.1124/molpharm.121.000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022] Open
Abstract
Ca2+-/voltage-gated K+ channels of large conductance (BK) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown. Slo1 channels are activated by increases in Ca2+ nearby Ca2+-recognition sites in the slo1 cytosolic tail: one high-affinity and one low-affinity sites locate to the Regulator of Conductance for K+ (RCK) 1 domain, while another high-affinity site locates within the RCK2 domain. Here we first evaluated the cross-talking between Ca2+ and CLR on the function of slo1 (cbv1 isoform) channels reconstituted into planar lipid bilayers. CLR robustly reduced channel open probability while barely decreasing unitary current amplitude, with CLR maximal effects being observed at 10-30 µM internal Ca2+ CLR actions were not only modulated by internal Ca2+ levels but also disappeared in absence of this divalent. Moreover, in absence of Ca2+, BK channel-activating concentrations of Mg2+ (10 mM) did not support CLR action. Next, we evaluated CLR actions on channels where the different Ca2+-sensing sites present in the slo1 cytosolic domain became nonfunctional via mutagenesis. CLR still reduced the activity of low-affinity Ca2+ (RCK1:E379A, E404A) mutants. In contrast, CLR became inefficacious when both high-affinity Ca2+ sites were mutated (RCK1:D367A,D372A, and RCK2:D899N,D900N,D901N,D902N,D903N), yet still was able to decrease the activity of each high-affinity site mutant. Therefore, BK channel inhibition by CLR selectively requires optimal levels of Ca2+ being recognized by either of the slo1 high-affinity Ca2+-sensing sites. Significance Statement Results reveal that the widely reported inhibition of BK (slo1) channels by membrane cholesterol requires a physiologically range of internal Ca2+ and is selectively linked to the two high-affinity Ca2+-sensing sites located in the cytosolic tail domain of slo1 proteins, which underscores that Ca2+ and cholesterol actions are allosterically coupled to the channel gate. Cholesterol modification of BK channel activity likely contributes to disruption of normal physiology by common health conditions that are triggered by disruption of cholesterol homeostasis.
Collapse
Affiliation(s)
| | - Man Zhang
- Shanghai Center for System Biomedicine, Shanghai Jiao Tong University, China
| | | | | | | | - Anna N Bukiya
- Pharmacology, The University of Tennessee Health Science Center, United States
| | - Alex M Dopico
- Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, United States
| |
Collapse
|
26
|
Two Cholesterol Recognition Amino Acid Consensus Motifs of GP64 with Uncleaved Signal Peptide Are Required for Bombyx mori Nucleopolyhedrovirus Infection. Microbiol Spectr 2021; 9:e0172521. [PMID: 34937190 PMCID: PMC8694094 DOI: 10.1128/spectrum.01725-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal peptide (SP) of integrated membrane proteins is removed cotranslationally or posttranslationally in the endoplasmic reticulum, while GP64, a membrane fusion protein of Bombyx mori nucleopolyhedrovirus (BmNPV), retains its SP in the mature protein and virion. In this study, we revealed that uncleaved SP is a key determinant with additional functions in infection. First, uncleaved SP endows BmNPV with strong virulence; second, SP retention-induced BmNPV infection depends on cholesterol recognition amino acid consensus domain 1 (CRAC1) and CRAC2. In contrast, the recombinant virus with SP-cleaved GP64 has reduced infectivity, and only CRAC2 is required for BmNPV infection. Furthermore, we showed that cholesterol in the plasma membrane is an important fusion receptor that interacts with CRAC2 of GP64. Our study suggested that BmNPV GP64 is a key cholesterol-binding protein and uncleaved SP determines GP64's unique dependence on the CRAC domains. IMPORTANCE BmNPV is a severe pathogen that mainly infects silkworms. GP64 is the key membrane fusion protein that mediates BmNPV infection, and some studies have indicated that cholesterol and lipids are involved in BmNPV infection. A remarkable difference from other membrane fusion proteins is that BmNPV GP64 retains its SP in the mature protein, but the cause is still unclear. In this study, we investigated the reason why BmNPV retains this SP, and its effects on protein targeting, virulence, and CRAC dependence were revealed by comparison of recombinant viruses harboring SP-cleaved or uncleaved GP64. Our study provides a basis for understanding the dependence of BmNPV infection on cholesterol/lipids and host specificity.
Collapse
|
27
|
Shi Y, Ye Z, Lu G, Yang N, Zhang J, Wang L, Cui J, Del Pozo MA, Wu Y, Xia D, Shen HM. Cholesterol-enriched membrane micro-domaindeficiency induces doxorubicin resistancevia promoting autophagy in breast cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:311-329. [PMID: 34786475 PMCID: PMC8573103 DOI: 10.1016/j.omto.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 10/27/2022]
Abstract
Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Naidi Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, Jiangsu Province 211800, China
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 119077, Singapore.,Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
28
|
Cholesterol-dependent endocytosis of GPCRs: implications in pathophysiology and therapeutics. Biophys Rev 2021; 13:1007-1017. [DOI: 10.1007/s12551-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
|
29
|
Sun XL. The role of cell surface sialic acids for SARS-CoV-2 infection. Glycobiology 2021; 31:1245-1253. [PMID: 33909065 PMCID: PMC8600286 DOI: 10.1093/glycob/cwab032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a new virus that has higher contagious capacity than any other previous human coronaviruses (HCoVs) and causes the current coronavirus disease 2019 pandemic. Sialic acids are a group of nine-carbon acidic α-keto sugars, usually located at the end of glycans of cell surface glycoconjugates and serve as attachment sites for previous HCoVs. It is therefore speculated that sialic acids on the host cell surface could serve as co-receptors or attachment factors for SARS-CoV-2 cell entry as well. Recent in silico modeling, molecular modeling predictions and microscopy studies indicate potential sialic acid binding by SARS-CoV-2 upon cell entry. In particular, a flat sialic acid-binding domain was proposed at the N-terminal domain of the spike protein, which may lead to the initial contact and interaction of the virus on the epithelium followed by higher affinity binding to angiotensin-converting enzyme 2 (ACE2) receptor, likely a two-step attachment fashion. However, recent in vitro and ex vivo studies of sialic acids on ACE2 receptor confirmed an opposite role for SARS-CoV-2 binding. In particular, neuraminidase treatment of epithelial cells and ACE2-expressing 293T cells increased SARS-CoV-2 binding. Furthermore, the ACE2 glycosylation inhibition studies indicate that sialic acids on ACE2 receptor prevent ACE2-spike protein interaction. On the other hand, a most recent study indicates that gangliosides could serve as ligands for receptor-binding domain of SARS-CoV-2 spike protein. This mini-review discusses what has been predicted and known so far about the role of sialic acid for SARS-CoV-2 infection and future research perspective.
Collapse
Affiliation(s)
- Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA
| |
Collapse
|
30
|
Kotlyarov S, Kotlyarova A. Bioinformatic Analysis of ABCA1 Gene Expression in Smoking and Chronic Obstructive Pulmonary Disease. MEMBRANES 2021; 11:674. [PMID: 34564491 PMCID: PMC8464760 DOI: 10.3390/membranes11090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
Smoking is a key modifiable risk factor for developing the chronic obstructive pulmonary disease (COPD). When smoking, many processes, including the reverse transport of cholesterol mediated by the ATP binding cassette transporter A1 (ABCA1) protein are disrupted in the lungs. Changes in the cholesterol content in the lipid rafts of plasma membranes can modulate the function of transmembrane proteins localized in them. It is believed that this mechanism participates in increasing the inflammation in COPD. METHODS Bioinformatic analysis of datasets from Gene Expression Omnibus (GEO) was carried out. Gene expression data from datasets of alveolar macrophages and the epithelium of the respiratory tract in smokers and COPD patients compared with non-smokers were used for the analysis. To evaluate differentially expressed genes, bioinformatic analysis was performed in comparison groups using the limma package in R (v. 4.0.2), and the GEO2R and Phantasus tools (v. 1.11.0). RESULTS The conducted bioinformatic analysis showed changes in the expression of the ABCA1 gene associated with smoking. In the alveolar macrophages of smokers, the expression levels of ABCA1 were lower than in non-smokers. At the same time, in most of the airway epithelial datasets, gene expression did not show any difference between the groups of smokers and non-smokers. In addition, it was shown that the expression of ABCA1 in the epithelial cells of the trachea and large bronchi is higher than in small bronchi. CONCLUSIONS The conducted bioinformatic analysis showed that smoking can influence the expression of the ABCA1 gene, thereby modulating lipid transport processes in macrophages, which are part of the mechanisms of inflammation development.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
31
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
32
|
van Aalst E, Koneri J, Wylie BJ. In Silico Identification of Cholesterol Binding Motifs in the Chemokine Receptor CCR3. MEMBRANES 2021; 11:570. [PMID: 34436333 PMCID: PMC8401243 DOI: 10.3390/membranes11080570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023]
Abstract
CC motif chemokine receptor 3 (CCR3) is a Class A G protein-coupled receptor (GPCR) mainly responsible for the cellular trafficking of eosinophils. As such, it plays key roles in inflammatory conditions, such as asthma and arthritis, and the metastasis of many deadly forms of cancer. However, little is known about how CCR3 functionally interacts with its bilayer environment. Here, we investigate cholesterol binding sites in silico through Coarse-Grained Molecular Dynamics (MD) and Pylipid analysis using an extensively validated homology model based on the crystal structure of CCR5. These simulations identified several cholesterol binding sites containing Cholesterol Recognition/Interaction Amino Acid Consensus motif (CRAC) and its inversion CARC motifs in CCR3. One such site, a CARC site in TM1, in conjunction with aliphatic residues in TM7, emerged as a candidate for future investigation based on the cholesterol residency time within the binding pocket. This site forms the core of a cholesterol binding site previously observed in computational studies of CCR2 and CCR5. Most importantly, these cholesterol binding sites are conserved in other chemokine receptors and may provide clues to cholesterol regulation mechanisms in this subfamily of Class A GPCRs.
Collapse
Affiliation(s)
| | | | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.v.A.); (J.K.)
| |
Collapse
|
33
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
34
|
Abstract
Cholesterol is present within the cell nucleus, where it associates with chromatin, but to date, a direct role for cholesterol in nuclear processes has not been identified. We demonstrate that the transcriptional repressor brain acid soluble protein 1 (BASP1) directly interacts with cholesterol within the cell nucleus through a consensus cholesterol interaction motif. BASP1 recruits cholesterol to the promoter region of target genes, where it is required to mediate chromatin remodeling and transcriptional repression. Our work demonstrates that cholesterol plays a direct role in transcriptional regulation. Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.
Collapse
|
35
|
Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A. A molecular sensor for cholesterol in the human serotonin 1A receptor. SCIENCE ADVANCES 2021; 7:7/30/eabh2922. [PMID: 34301606 PMCID: PMC8302130 DOI: 10.1126/sciadv.abh2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 05/10/2023]
Abstract
The function of several G protein-coupled receptors (GPCRs) exhibits cholesterol sensitivity. Cholesterol sensitivity of GPCRs could be attributed to specific sequence and structural features, such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif, that facilitate their cholesterol-receptor interaction. In this work, we explored the molecular basis of cholesterol sensitivity exhibited by the serotonin1A receptor, the most studied GPCR in the context of cholesterol sensitivity, by generating mutants of key residues in CRAC motifs in transmembrane helix 2 (TM2) and TM5 of the receptor. Our results show that a lysine residue (K101) in one of the CRAC motifs is crucial for sensing altered membrane cholesterol levels. Insights from all-atom molecular dynamics simulations showed that cholesterol-sensitive functional states of the serotonin1A receptor are associated with reduced conformational dynamics of extracellular loops of the receptor. These results constitute one of the first reports on the molecular mechanism underlying cholesterol sensitivity of GPCRs.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Shishu Pal Singh
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
| | | |
Collapse
|
36
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
37
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
38
|
Cannarozzo C, Fred SM, Girych M, Biojone C, Enkavi G, Róg T, Vattulainen I, Casarotto PC, Castrén E. Cholesterol-recognition motifs in the transmembrane domain of the tyrosine kinase receptor family: The case of TRKB. Eur J Neurosci 2021; 53:3311-3322. [PMID: 33825223 DOI: 10.1111/ejn.15218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
Abstract
Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.
Collapse
Affiliation(s)
| | - Senem Merve Fred
- Neuroscience Center - HiLife, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center - HiLife, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | | | - Eero Castrén
- Neuroscience Center - HiLife, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
40
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
41
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Paz ML, Barrantes FJ. Cholesterol in myasthenia gravis. Arch Biochem Biophys 2021; 701:108788. [PMID: 33548213 DOI: 10.1016/j.abb.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The cholinergic neuromuscular junction is the paradigm peripheral synapse between a motor neuron nerve ending and a skeletal muscle fiber. In vertebrates, acetylcholine is released from the presynaptic site and binds to the nicotinic acetylcholine receptor at the postsynaptic membrane. A variety of pathologies among which myasthenia gravis stands out can impact on this rapid and efficient signaling mechanism, including autoimmune diseases affecting the nicotinic receptor or other synaptic proteins. Cholesterol is an essential component of biomembranes and is particularly rich at the postsynaptic membrane, where it interacts with and modulates many properties of the nicotinic receptor. The profound changes inflicted by myasthenia gravis on the postsynaptic membrane necessarily involve cholesterol. This review analyzes some aspects of myasthenia gravis pathophysiology and associated postsynaptic membrane dysfunction, including dysregulation of cholesterol metabolism in the myocyte brought about by antibody-receptor interactions. In addition, given the extensive therapeutic use of statins as the typical cholesterol-lowering drugs, we discuss their effects on skeletal muscle and the possible implications for MG patients under chronic treatment with this type of compound.
Collapse
Affiliation(s)
- Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA, CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Fantini J, Chahinian H, Yahi N. Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19. Biochem Biophys Res Commun 2021; 538:132-136. [PMID: 33097184 PMCID: PMC7547605 DOI: 10.1016/j.bbrc.2020.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
Covid-19 is an infectious respiratory disease due to a coronavirus named SARS-CoV-2. A critical step of the infection cycle is the binding of the virus spike S protein to the cellular ACE-2 receptor. This interaction involves a receptor binding domain (RBD) located at the center of the S trimer, whereas the lateral N-terminal domain (NTD) displays a flat ganglioside binding site that enables the virus to bind to lipid rafts of the plasma membrane, where the ACE-2 receptor resides. S protein binding to lipid rafts can be blocked by hydroxychloroquine, which binds to gangliosides, and by azithromycin, which binds to the NTD. Based on these data, we identified the NTD of SARS-CoV-2 as a promising target for both therapeutic and vaccine strategies, a notion later supported by the discovery, in convalescent Covid-19 patients, of a neutralizing antibody (4A8) that selectively binds to the NTD. The 4A8 epitope overlaps the ganglioside binding domain, denying any access of the virus to lipid rafts when the antibody is bound to the S protein. Thus, our data explain why antibody binding to the tip of the NTD results in SARS-CoV-2 neutralization. The high level of conservation of the ganglioside binding domain of SARS-CoV-2 (100% identity in 584 of 600 isolates analyzed worldwide) offers unique opportunities for innovative vaccine/therapeutic strategies.
Collapse
|
44
|
Dunina-Barkovskaya AY, Vishnyakova KS. Modulation of the Cholesterol-Dependent Activity of Macrophages IC-21 by CRAC Peptides with Substituted Motif-Forming Amino Acids. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2020; 14:331-343. [PMID: 33288988 PMCID: PMC7709805 DOI: 10.1134/s1990747820040054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The activity of many membrane proteins, such as receptors, ionic channels, transporters, and enzymes, is cholesterol dependent; however, mechanisms of the cholesterol-dependent regulation of protein functions remain obscure. Recent studies suggest that membrane proteins can directly interact with cholesterol owing to the presence of the cholesterol-recognizing amino-acid consensus (CRAC) motifs. One of the ways to verify and further develop this notion is a design of CRAC-containing peptides and investigation of their effects on cholesterol-dependent cell functions. Previously we showed that a newly constructed peptide RTKLWEMLVELGNMDKAVKLWRKLKR (peptide P4) containing two CRAC motifs modulates cholesterol-dependent interactions of cultured macrophages IC-21 with 2-μm particles. In this work, in order to clarify the role of CRAC-forming amino acids, we employed the same experimental system to test the activity of peptides closely related to P4 but with modified CRAC motifs. We found that peptide STKLSEMLSELGNMDKASKLSRKLSR (Mut2) analogous to P4, except that all CRAC-forming amino acids (V, W, K/R) were substituted by serine, did not produce any effect in the concentration range 0.5-50 μM corresponding to the range of the P4 activity. Neither was effective peptide RTKLSEMLVELGNMDKAVKLSRKLKR (Mut3), in which only aromatic amino acids (W) of the CRAC motifs were substituted. Peptide STKLWEMLVELGNMDKAVKLWRKLSR (Mut4), in which only cationic amino acids (R/K) in the CRAC motifs were changed, produced almost the same effect as that of peptide P4 with a bell-shape dose-response curve. At low concentrations (1-4 μM) Mut4 notably increased the number of beads per cell, at higher concentrations this parameter diminished, and at 50 μM Mut4 produced a robust toxic effect. Finally, peptide EWGMAVLWERNRKLKKDLKVLKMLRT (Mut1) composed of the same amino acid residues as P4 but in a random order ("scramble") and possessing one CRAC motif, different from that in P4, produced a moderate stimulation at 4-10 μM but was not toxic at 50 μM. As in the case of peptide P4, the effects of Mut4 and Mut1 depended on the cholesterol content in the cell membrane: after the incubation of cells with cholesterol-extracting agent methyl-β-cyclodextrin stimulatory effects produced by Mut4 and Mut1 at low doses were suppressed. Our results indicate that CRAC motifs play an important role in the mechanisms of the peptide-induced modulations of cholesterol-dependent cell functions in the experimental system used and that of the three motif-forming amino acids, critical is the presence of the aromatic amino acid (W). Further research is required to comprehend the molecular mechanisms of interactions of CRAC-containing peptides with cell membrane components that lead to modulation of cell functions. We anticipate that CRAC-containing peptides may provide a basis for the development of new tools for directed regulation of the activity of target cholesterol-dependent membrane proteins and for the design of new antimicrobial and immunomodulating drugs in particular.
Collapse
Affiliation(s)
- A. Ya. Dunina-Barkovskaya
- Belozersky Institute of Physico-chemical Biology, Moscow Lomonosov State University, 119992 Moscow, Russia
| | - Kh. S. Vishnyakova
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, 119191 Moscow, Russia
| |
Collapse
|
45
|
Aggregation of 25-hydroxycholesterol in a complex biomembrane. Differences with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183413. [PMID: 32721397 DOI: 10.1016/j.bbamem.2020.183413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
25-Hydroxycholesterol (25HC), one of the most important oxysterol molecules, can be used by cells to fight bacterial and viral infections but the mechanism that defines its biological effects are unknown. Using molecular dynamics, we have aimed to describe the orientation and location of 25HC in the membrane as well as the interactions it might have with lipids. We have studied two complex model membrane systems, one similar to the late endosome membrane and the other one to the plasma membrane. Our results reinforce that 25HC is inserted in the membrane in a relative stable location similar to but not identical to cholesterol. 25HC fluctuates in the membrane to a much greater degree than cholesterol, but the effect of 25HC on the phospholipid order parameters is not significantly different. One of the most notable facts about 25HC is that, unlike cholesterol, this molecule tends to aggregate, forming dimers, trimers and higher-order aggregates. These aggregates are formed spontaneously through the formation of hydrogen bonds between the two 25HC atoms, the formation of hydrogen bonds being independent of the studied system. Remarkably, no contacts or hydrogen bonds are observed between 25HC and cholesterol molecules, as well as between cholesterol molecules themselves at any time. It would be conceivable that 25HC, by forming high order aggregates without significantly altering the membrane properties, would modify the way proteins interact with the membrane and henceforth form a true innate antiviral molecule.
Collapse
|
46
|
Kurth M, Lolicato F, Sandoval-Perez A, Amaya-Espinosa H, Teslenko A, Sinning I, Beck R, Brügger B, Aponte-Santamaría C. Cholesterol Localization around the Metabotropic Glutamate Receptor 2. J Phys Chem B 2020; 124:9061-9078. [PMID: 32954729 DOI: 10.1021/acs.jpcb.0c05264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptor (mGluR) 2 plays a key role in the central nervous system. mGluR2 has been shown to be regulated by its surrounding lipid environment, especially by cholesterol, by an unknown mechanism. Here, using a combination of biochemical approaches, photo-cross-linking experiments, and molecular dynamics simulations we show the interaction of cholesterol with at least two, but potentially five more, preferential sites on the mGluR2 transmembrane domain. Our simulations demonstrate that surface matching, rather than electrostatic interactions with specific amino acids, is the main factor defining cholesterol localization. Moreover, the cholesterol localization observed here is similar to the sterol-binding pattern previously described in silico for other members of the mGluR family. Biochemical assays suggest little influence of cholesterol on trafficking or dimerization of mGluR2. Nevertheless, simulations revealed a significant reduction of residue-residue contacts together with an alteration in the internal mechanical stress at the cytoplasmic side of the helical bundle when cholesterol was present in the membrane. These alterations may be related to destabilization of the basal state of mGluR2. Due to the high sequence conservation of the transmembrane domains of mGluRs, the molecular interaction of cholesterol and mGluR2 described here is also likely to be relevant for other members of the mGLuR family.
Collapse
Affiliation(s)
- Markus Kurth
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Angelica Sandoval-Perez
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Alexandra Teslenko
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Rainer Beck
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic 2020; 21:662-674. [PMID: 32930466 DOI: 10.1111/tra.12762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
48
|
Li MJ, Atkins WM, McClary WD. Preparation of Lipid Nanodiscs with Lipid Mixtures. ACTA ACUST UNITED AC 2020; 98:e100. [PMID: 31746556 DOI: 10.1002/cpps.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid nanodiscs provide a native-like lipid environment for membrane proteins, and they have become a valuable platform for the study of membrane biophysics. A range of biophysical and biochemical analyses are enabled when membrane proteins are captured in lipid nanodiscs. Two parameters that can be controlled when capturing membrane proteins in lipid nanodiscs are the radius, and hence the surface area of the lipid surface, and the composition of the lipid bilayer. Despite their emergence as a versatile tool, most studies with lipid nanodiscs in the literature have focused on nanodiscs of a single radius with a single lipid. In light of the complexity of biological membranes, it is likely that nanodiscs with multiple membrane components would be more sophisticated models for membrane research. It is possible to prepare nanodiscs with more complex lipid mixtures to probe the effects of lipid composition on several aspects of membrane biochemistry. Detailed protocols are described here for the preparation of nanodiscs with mixtures of phospholipids, incorporation of cholesterol, and incorporation of a spectroscopic lipid probe. These protocols provide starting points for the construction of nanodiscs with more physiological membrane compositions or with useful biophysical probes. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Assembly of mixed lipid nanodiscs Basic Protocol 2: Assembly of nanodiscs with cholesterol Basic Protocol 3: Incorporation of laurdan into nanodiscs for membrane fluidity measurements.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Wynton D McClary
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
49
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
50
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|