1
|
Tracy EP, Adereti I, Chu J, Brown J. Hereditary haemorrhagic telangiectasia type 1 complicated by recurrent deep-seated MSSA infections necessitating lifelong antibiotic suppression. BMJ Case Rep 2024; 17:e258558. [PMID: 39375159 DOI: 10.1136/bcr-2023-258558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) leads to arteriovenous malformations (AVM) that increase the risk of haemorrhage and cause right-left shunting bypassing the reticuloendothelial system increasing the risk for recurrent infections. A 60+ year old male patient with HHT type 1 (status post six pulmonary AVM coiled embolisations) with epistaxis presented with intractable back pain, methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia and spinal MRI revealing spondylodiskitis and L4-L5 epidural phlegmon. He has an extensive history of deep-seated infections including two prior spinal infections, two joint infections and one muscular abscess-all with MSSA. The patient was treated with 6 weeks of intravenous nafcillin with symptom resolution. Infectious disease prescribed cefalexin 500 mg daily for suppression of infection recurrence considering his extensive deep-seated infection history and multiple risk factors. This case raises important questions about preventative antimicrobial management of high-risk patients with HHT, which is a grey area in current international HHT guidelines.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Medicine, University of Louisville, Louisville, Kentucky, USA
| | | | - Justin Chu
- Sports Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Julianna Brown
- Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Koh H, Kang W, Mao YY, Park J, Kim S, Hong SH, Lee JH. Employment of diverse in vitro systems for analyzing multiple aspects of disease, hereditary hemorrhagic telangiectasia (HHT). Cell Biosci 2024; 14:65. [PMID: 38778363 PMCID: PMC11110195 DOI: 10.1186/s13578-024-01247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In vitro disease modeling enables translational research by providing insight into disease pathophysiology and molecular mechanisms, leading to the development of novel therapeutics. Nevertheless, in vitro systems have limitations for recapitulating the complexity of tissues, and a single model system is insufficient to gain a comprehensive understanding of a disease. RESULTS Here we explored the potential of using several models in combination to provide mechanistic insight into hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder. Genome editing was performed to establish hPSCs (H9) with ENG haploinsufficiency and several in vitro models were used to recapitulate the functional aspects of the cells that constitute blood vessels. In a 2D culture system, endothelial cells showed early senescence, reduced viability, and heightened susceptibility to apoptotic insults, and smooth muscle cells (SMCs) exhibited similar behavior to their wild-type counterparts. Features of HHT were evident in 3D blood-vessel organoid systems, including thickening of capillary structures, decreased interaction between ECs and surrounding SMCs, and reduced cell viability. Features of ENG haploinsufficiency were observed in arterial and venous EC subtypes, with arterial ECs showing significant impairments. Molecular biological approaches confirmed the significant downregulation of Notch signaling in HHT-ECs. CONCLUSIONS Overall, we demonstrated refined research strategies to enhance our comprehension of HHT, providing valuable insights for pathogenic analysis and the exploration of innovative therapeutic interventions. Additionally, these results underscore the importance of employing diverse in vitro systems to assess multiple aspects of disease, which is challenging using a single in vitro system.
Collapse
Affiliation(s)
- Hyebin Koh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Woojoo Kang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ying-Ying Mao
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jisoo Park
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- KW-Bio Co., Ltd, Chuncheon, South Korea.
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Orlova VV, Nahon DM, Cochrane A, Cao X, Freund C, van den Hil F, Westermann CJJ, Snijder RJ, Ploos van Amstel JK, Ten Dijke P, Lebrin F, Mager HJ, Mummery CL. Vascular defects associated with hereditary hemorrhagic telangiectasia revealed in patient-derived isogenic iPSCs in 3D vessels on chip. Stem Cell Reports 2022; 17:1536-1545. [PMID: 35777360 PMCID: PMC9287680 DOI: 10.1016/j.stemcr.2022.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by weak blood vessels. HHT1 is caused by mutations in the ENDOGLIN (ENG) gene. Here, we generated induced pluripotent stem cells (hiPSCs) from a patient with rare mosaic HHT1 with tissues containing both mutant (ENGc.1678C>T) and normal cells, enabling derivation of isogenic diseased and healthy hiPSCs, respectively. We showed reduced ENG expression in HHT1 endothelial cells (HHT1-hiPSC-ECs), reflecting haploinsufficiency. HHT1c.1678C>T-hiPSC-ECs and the healthy isogenic control behaved similarly in two-dimensional (2D) culture, forming functionally indistinguishable vascular networks. However, when grown in 3D organ-on-chip devices under microfluidic flow, lumenized vessels formed in which defective vascular organization was evident: interaction between inner ECs and surrounding pericytes was decreased, and there was evidence for vascular leakage. Organs on chip thus revealed features of HHT in hiPSC-derived blood vessels that were not evident in conventional 2D assays. Vessels from isogenic hiPSCs from HHT1 patients compared HHT1-hiPSC-ECs show defective vascular organization in 3D microfluidic chips HHT1-hiPSC-ECs show defective EC-pericyte interaction
Collapse
Affiliation(s)
- Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands.
| | - Dennis M Nahon
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology and Human iPSC Hotel, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Francijna van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | | | | | | | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands; INSERM U1273, ESPCI, CNRS FRE 2031, Paris, France
| | | | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Anatomy and Embryology and Human iPSC Hotel, Leiden University Medical Center, Leiden 2333ZA, the Netherlands.
| |
Collapse
|
4
|
Thresholds of Endoglin Expression in Endothelial Cells Explains Vascular Etiology in Hereditary Hemorrhagic Telangiectasia Type 1. Int J Mol Sci 2021; 22:ijms22168948. [PMID: 34445652 PMCID: PMC8396348 DOI: 10.3390/ijms22168948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) is an autosomal dominant inherited disease characterized by arteriovenous malformations and hemorrhage. HHT1 is caused by mutations in ENDOGLIN, which encodes an ancillary receptor for Transforming Growth Factor-β/Bone Morphogenetic Protein-9 expressed in all vascular endothelial cells. Haploinsufficiency is widely accepted as the underlying mechanism for HHT1. However, it remains intriguing that only some, but not all, vascular beds are affected, as these causal gene mutations are present in vasculature throughout the body. Here, we have examined the endoglin expression levels in the blood vessels of multiple organs in mice and in humans. We found a positive correlation between low basal levels of endoglin and the general prevalence of clinical manifestations in selected organs. Endoglin was found to be particularly low in the skin, the earliest site of vascular lesions in HHT1, and even undetectable in the arteries and capillaries of heterozygous endoglin mice. Endoglin levels did not appear to be associated with organ-specific vascular functions. Instead, our data revealed a critical endoglin threshold compatible with the haploinsufficiency model, below which endothelial cells independent of their tissue of origin exhibited abnormal responses to Vascular Endothelial Growth Factor. Our results support the development of drugs promoting endoglin expression as potentially protective.
Collapse
|
5
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|
7
|
Affiliation(s)
- Lars Jakobsson
- From the Karolinska Institutet, Tomtebodavägen, Solna, Sweden (L.J.)
| | - Helen M Arthur
- From the Karolinska Institutet, Tomtebodavägen, Solna, Sweden (L.J.)
| |
Collapse
|
8
|
Blei F. Update August 2019. Lymphat Res Biol 2019. [DOI: 10.1089/lrb.2019.29068.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|