1
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
2
|
Johns AE, Taga A, Charalampopoulou A, Gross SK, Rust K, McCray BA, Sullivan JM, Maragakis NJ. Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model. Stem Cells Transl Med 2024:szae074. [PMID: 39419765 DOI: 10.1093/stcltm/szae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
ATP is present in negligible concentrations in the interstitium of healthy tissues but accumulates to significantly higher concentrations in an inflammatory microenvironment. ATP binds to 2 categories of purine receptors on the surface of cells, the ionotropic P2X receptors and metabotropic P2Y receptors. Included in the family of ionotropic purine receptors is P2X7 (P2X7R), a non-specific cation channel with unique functional and structural properties that suggest it has distinct roles in pathological conditions marked by increased extracellular ATP. The role of P2X7R has previously been explored in microglia and astrocytes within the context of neuroinflammation, however the presence of P2X7R on human motor neurons and its potential role in neurodegenerative diseases has not been the focus of the current literature. We leveraged the use of human iPSC-derived spinal motor neurons (hiPSC-MN) as well as human and rodent tissue to demonstrate the expression of P2X7R on motor neurons. We extend this observation to demonstrate that these receptors are functionally active on hiPSC-MN and that ATP can directly induce death via P2X7R activation in a dose dependent manner. Finally, using a highly specific P2X7R blocker, we demonstrate how modulation of P2X7R activation on motor neurons is neuroprotective and could provide a unique pharmacologic target for ATP-induced MN death that is distinct from the role of ATP as a modulator of neuroinflammation.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Arens Taga
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Andriana Charalampopoulou
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Sarah K Gross
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Khalil Rust
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Brett A McCray
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jeremy M Sullivan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Thakku Sivakumar D, Jain K, Alfehaid N, Wang Y, Teng X, Fischer W, Engel T. The Purinergic P2X7 Receptor as a Target for Adjunctive Treatment for Drug-Refractory Epilepsy. Int J Mol Sci 2024; 25:6894. [PMID: 39000004 PMCID: PMC11241490 DOI: 10.3390/ijms25136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.
Collapse
Affiliation(s)
- Divyeshz Thakku Sivakumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Krishi Jain
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Noura Alfehaid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Yitao Wang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | | | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
5
|
Zhu X, Huang Y, Ding J, Liu J, Cui C, Han G. Investigating the Impact of SN-38 on Mouse Brain Metabolism Based on Metabolomics. Drug Des Devel Ther 2024; 18:2435-2447. [PMID: 38915864 PMCID: PMC11195675 DOI: 10.2147/dddt.s457698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose SN-38 (7-ethyl-10-hydroxycamptothecin), the active metabolite of irinotecan, has been extensively studied in drug delivery systems. However, its impact on neural metabolism remains unclear. This study aims to investigate the toxic effects of SN-38 on mouse brain metabolism. Methods Male mice were divided into an SN-38 group and a control group. The SN-38 group received SN-38 (20 mg/kg/day) via intraperitoneal injection, while the control group was given an equal volume of a blank solvent mixture (DMSO and saline, ratio 1:9). Gas chromatography-mass spectrometry (GC-MS) was employed to analyze differential metabolites in the cortical and hippocampal regions of the SN-38-treated mice. Results SN-38 induced metabolic disturbances in the central nervous system. Eighteen differential metabolites were identified in the hippocampus and twenty-four in the cortex, with six common to both regions. KEGG pathway enrichment analysis revealed statistically significant alterations in six metabolic pathways in the hippocampus and ten in the cortex (P<0.05). Conclusion This study is the first to demonstrate the neurotoxicity of SN-38 in male mice through metabolomics. Differential metabolites in the hippocampal and cortical regions were closely linked to purine metabolism, pyrimidine metabolism, amino acid metabolism, and glyceride metabolism, indicating disruptions in the blood-brain barrier, energy metabolism, and central signaling pathways.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Ya Huang
- College of Traditional Chinese Medicine, Shandong Polytechnic College, Jining, 272000, People’s Republic of China
| | - Jia Ding
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Jianguo Liu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| |
Collapse
|
6
|
Charles A. The role of caffeine in headache disorders. Curr Opin Neurol 2024; 37:289-294. [PMID: 38327229 DOI: 10.1097/wco.0000000000001249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW Caffeine is known to have both beneficial and adverse effects in individuals with headache disorders. This review describes recent findings regarding caffeine that are relevant to headache disorders and puts these findings into the context of clinical management. RECENT FINDINGS Preclinical studies show that caffeine has complex effects on sleep, brain blood flow, and intracranial pressure that may depend on the timing of caffeine intake relative to the sleep-wake cycle. Caffeine metabolism may have significant inter-individual variation that influences its therapeutic and/or adverse effects. Caffeine has acute therapeutic benefit for some primary headache disorders. For migraine, this benefit is predominantly in milder headache without cutaneous allodynia. High levels of caffeine intake may contribute to progression of headache disorders. Caffeine-containing combination analgesics commonly cause medication overuse headache. Abrupt reduction in caffeine consumption is a trigger for migraine that may be important in situations including the hospital setting, religious and cultural fasting, and pregnancy. SUMMARY There is not sufficient evidence to support universal guidelines for the use of dietary and medicinal caffeine in headache disorders. A sensible approach based upon available evidence is to limit dietary caffeine intake to moderate amounts with consistent timing before noon, and to use caffeine-containing combination analgesics infrequently for milder headache.
Collapse
Affiliation(s)
- Andrew Charles
- UCLA Goldberg Migraine Program Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Fernandez M, Nigro M, Travagli A, Pasquini S, Vincenzi F, Varani K, Borea PA, Merighi S, Gessi S. Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy. Pharmaceutics 2023; 15:2441. [PMID: 37896201 PMCID: PMC10610137 DOI: 10.3390/pharmaceutics15102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | | | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.N.); (A.T.); (F.V.); (K.V.)
| |
Collapse
|
8
|
Aframian K, Yousef Yengej D, Nwaobi S, Raman S, Faas GC, Charles A. Effects of chronic caffeine on patterns of brain blood flow and behavior throughout the sleep-wake cycle in freely behaving mice. PNAS NEXUS 2023; 2:pgad303. [PMID: 37780231 PMCID: PMC10538474 DOI: 10.1093/pnasnexus/pgad303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Caffeine has significant effects on neurovascular activity and behavior throughout the sleep-wake cycle. We used a minimally invasive microchip/video system to continuously record effects of caffeine in the drinking water of freely behaving mice. Chronic caffeine shifted both rest and active phases by up to 2 h relative to the light-dark cycle in a dose-dependent fashion. There was a particular delay in the onset of rapid eye movement (REM) sleep as compared with non-REM sleep during the rest phase. Chronic caffeine increased wakefulness during the active phase and consolidated sleep during the rest phase; overall, there was no net change in the amount of time spent in the wake, sleep, or REM sleep states during caffeine administration. Despite these effects on wakefulness and sleep, chronic caffeine decreased mean cerebral blood volume (CBV) during the active phase and increased mean CBV during the rest phase. Chronic caffeine also increased heart rate variability in both the sleep and wake states. These results provide new insight into the effects of caffeine on the biology of the sleep-wake cycle. Increased blood flow during sleep caused by chronic caffeine may have implications for its potential neuroprotective effects through vascular mechanisms of brain waste clearance.
Collapse
Affiliation(s)
- Kimiya Aframian
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Dmitri Yousef Yengej
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Sinifunanya Nwaobi
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Shrayes Raman
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Guido C Faas
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
10
|
Ono G, Kobayakawa K, Saiwai H, Tamaru T, Iura H, Haruta Y, Kitade K, Iida K, Kawaguchi K, Matsumoto Y, Tsuda M, Tamura T, Ozato K, Inoue K, Konno DJ, Maeda T, Okada S, Nakashima Y. Macrophages play a leading role in determining the direction of astrocytic migration in spinal cord injury via ADP-P2Y1R axis. Sci Rep 2023; 13:11177. [PMID: 37429920 DOI: 10.1038/s41598-023-38301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.
Collapse
Affiliation(s)
- Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka Iura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, Section on Molecular Genetics of Immunity, Division of Developmental Biology, NICHD, National Institutes of Health, Building 6A, Room 2A01, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
- Greenpharma Research Center for System Drug Discovery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai-Jiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
12
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
13
|
Morgan J, Moreno O, Alves M, Baz Z, Menéndez Méndez A, Leister H, Melia C, Smith J, Visekruna A, Nicke A, Bhattacharya A, Ceusters M, Henshall DC, Gómez-Vallejo V, Llop J, Engel T. Increased uptake of the P2X7 receptor radiotracer 18 F-JNJ-64413739 in the brain and peripheral organs according to the severity of status epilepticus in male mice. Epilepsia 2023; 64:511-523. [PMID: 36507708 PMCID: PMC10108015 DOI: 10.1111/epi.17484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.
Collapse
Affiliation(s)
- James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Oscar Moreno
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Aida Menéndez Méndez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps University, Marburg, Germany
| | - Ciara Melia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps University, Marburg, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anindya Bhattacharya
- Neuroimmunology Discover, Neuroscience, Janssen Research and Development, San Diego, California, USA
| | - Marc Ceusters
- Neuroscience Therapeutic Area, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
- Marc Ceusters Company, Beerse, Belgium
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
14
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
15
|
Ono G, Kobayakawa K, Saiwai H, Tamaru T, lura H, Haruta Y, Kitade K, Iida KI, Kawaguchi KI, Matsumoto Y, Tsuda M, Tamura T, Ozato K, Inoue K, Konno DJ, Maeda T, Okada S, Nakashima Y. Macrophages play a leading role in determining the direction of astrocytic migration in spinal cord injury via ADP-P2Y1R axis. RESEARCH SQUARE 2023:rs.3.rs-2427082. [PMID: 36789440 PMCID: PMC9928047 DOI: 10.21203/rs.3.rs-2427082/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism by which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3 -/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8 -/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8 -/ bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism in which migrating macrophages attracted astrocytes and affected the pathophysiology and outcome after SCI.
Collapse
Affiliation(s)
- Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka lura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei-Ichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka Nishi-ku Fukuoka-shi Fukuoka 819-0395, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama,236-0004, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Section on Molecular Genetics of Immunity, Building 6A, Room 2A01, 6 Center Drive, Bethesda, MD 20892, USA
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka Nishi-ku Fukuoka-shi Fukuoka 819-0395, Japan; Greenpharma Research Center for System Drug Discovery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai-Jiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, Suita 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Assmann CE, Apolloni S, Ignácio ZM, Bagatini MD. Editorial: Purinergic signaling and neuroinflammation. Front Pharmacol 2022; 13:1113063. [PMID: 36588721 PMCID: PMC9798437 DOI: 10.3389/fphar.2022.1113063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Savina Apolloni
- Department of Biology, Tor Vergata University of Rome, Roma, Italy
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Margarete Dulce Bagatini
- Laboratory of Cell Culture, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil,*Correspondence: Margarete Dulce Bagatini,
| |
Collapse
|
17
|
Volonté C, Amadio S. Rethinking purinergic concepts and updating the emerging role of P2X7 and P2X4 in amyotrophic lateral sclerosis. Neuropharmacology 2022; 221:109278. [PMID: 36202258 DOI: 10.1016/j.neuropharm.2022.109278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
The topic of the present review regards the ubiquitous and phylogenetically most ancient prototype of intercellular signaling, the one mediated by extracellular nucleosides and nucleotides, bearing a strong influence on pathophysiological processes in the nervous system. Not by chance, purine and pyrimidine molecules are the most prevalent and ubiquitous chemical messengers in the animal and plant kingdoms, operating through a large plethora of purinergic metabolizing enzymes, P1 and P2 receptors, nucleoside and nucleotide channels and transporters. Because ectonucleotidases degrade the agonists of P2 receptors while simultaneously generate the agonists for P1 receptors, and because several agonists, or antagonists, simultaneously bind and activate, or inhibit, more than one receptor subtype, it follows that an all-inclusive "purinergic network" perspective should be better considered when looking at purinergic actions. This becomes particularly crucial during pathological conditions as for instance amyotrophic lateral sclerosis, where the contribution of purinergic signaling has been demonstrated to differ according to each target cell phenotype and stage of disease progression. Here we will present some newly updated results about P2X7 and P2X4 as the most thoroughly investigated P2 receptors in amyotrophic lateral sclerosis, being aware that the comprehension of their actions is still in progress, and that the purinergic rationale for studying this disease must be however wide-ranging and all-inclusive. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute for Systems Analysis and Computer Science "Antonio Ruberti", Via Dei Taurini 19, 00185, Rome, Italy; IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy.
| | - Susanna Amadio
- IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy
| |
Collapse
|
18
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
19
|
Mamedova E, Dmytriyeva O, Rekling JC. Thyrotropin-releasing hormone induces Ca 2+ increase in a subset of vagal nodose ganglion neurons. Neuropeptides 2022; 94:102261. [PMID: 35704969 DOI: 10.1016/j.npep.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
Abstract
Thyrotropin-releasing hormone (TRH) plays a central role in metabolic homeostasis, and single-cell sequencing has recently demonstrated that vagal sensory neurons in the nodose ganglion express thyrotropin-releasing hormone receptor 1 (TRHR1). Here, in situ hybridization validated the presence of TRHR1 in nodose ganglion (NG) neurons and immunohistochemistry showed that the receptor is expressed at the protein level. However, it has yet to be demonstrated whether TRHR1 is functionally active in NG neurons. Using NG explants transduced with a genetically encoded Ca2+ indicator (GECI), we show that TRH increases Ca2+ in a subset of NG neurons. TRH-induced Ca2+ transients were briefer compared to those induced by CCK-8, 2-Me-5-HT and ATP. Blocking Na+ channels with TTX or Na+ substitution did not affect the TRH-induced Ca2+ increase, but blocking Gq signaling with YM-254890 abolished the TRH-induced response. Field potential recordings from the vagus nerve in vitro showed an increase in response to TRH, suggesting that TRH signaling produces action potentials in NG neurons. These observations indicate that TRH activates a small group of NG neurons, involving Gq pathways, and we hypothesize that these neurons may play a role in gut-brain signaling.
Collapse
Affiliation(s)
- Esmira Mamedova
- Department of Neuroscience, University of Copenhagen, Panum - 24.4, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Panum - 24.4, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Zuccarini M, Giuliani P, Ronci M, Caciagli F, Caruso V, Ciccarelli R, Di Iorio P. Purinergic Signaling in Oral Tissues. Int J Mol Sci 2022; 23:ijms23147790. [PMID: 35887132 PMCID: PMC9318746 DOI: 10.3390/ijms23147790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The role of the purinergic signal has been extensively investigated in many tissues and related organs, including the central and peripheral nervous systems as well as the gastrointestinal, cardiovascular, respiratory, renal, and immune systems. Less attention has been paid to the influence of purines in the oral cavity, which is the first part of the digestive apparatus and also acts as the body’s first antimicrobial barrier. In this review, evidence is provided of the presence and possible physiological role of the purinergic system in the different structures forming the oral cavity including teeth, tongue, hard palate, and soft palate with their annexes such as taste buds, salivary glands, and nervous fibers innervating the oral structures. We also report findings on the involvement of the purinergic signal in pathological conditions affecting the oral apparatus such as Sjögren’s syndrome or following irradiation for the treatment of head and neck cancer, and the use of experimental drugs interfering with the purine system to improve bone healing after damage. Further investigations are required to translate the results obtained so far into the clinical setting in order to pave the way for a wider application of purine-based treatments in oral diseases.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Department of Pharmacy, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
- Stem TeCh Group, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy; (M.R.); (F.C.)
| |
Collapse
|
21
|
Mekala N, Gheewala N, Rom S, Sriram U, Persidsky Y. Blocking of P2X7r Reduces Mitochondrial Stress Induced by Alcohol and Electronic Cigarette Exposure in Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:1328. [PMID: 35883819 PMCID: PMC9311929 DOI: 10.3390/antiox11071328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
Studies in both humans and animal models demonstrated that chronic alcohol/e-cigarette (e-Cig) exposure affects mitochondrial function and impairs barrier function in brain microvascular endothelial cells (BMVECs). Identification of the signaling pathways by which chronic alcohol/e-Cig exposure induces mitochondrial damage in BMVEC is vital for protection of the blood-brain barrier (BBB). To address the issue, we treated human BMVEC [hBMVECs (D3 cell-line)] with ethanol (ETH) [100 mM], acetaldehyde (ALD) [100 μM], or e-cigarette (e-Cig) [35 ng/mL of 1.8% or 0% nicotine] conditioned medium and showed reduced mitochondrial oxidative phosphorylation (OXPHOS) measured by a Seahorse analyzer. Seahorse data were further complemented with the expression of mitochondrial OXPHOS proteins detected by Western blots. We also observed cytosolic escape of ATP and its extracellular release due to the disruption of mitochondrial membrane potential caused by ETH, ALD, or 1.8% e-Cig exposure. Moreover ETH, ALD, or 1.8% e-Cig treatment resulted in elevated purinergic P2X7r and TRPV1 channel gene expression, measured using qPCR. We also demonstrated the protective role of P2X7r antagonist A804598 (10 μM) in restoring mitochondrial oxidative phosphorylation levels and preventing extracellular ATP release. In a BBB functional assay using trans-endothelial electrical resistance, we showed that blocking the P2X7r channel enhanced barrier function. In summary, we identified the potential common pathways of mitochondrial injury caused by ETH, ALD, and 1.8% e-Cig which allow new protective interventions. We are further investigating the potential link between P2X7 regulatory pathways and mitochondrial health.
Collapse
Affiliation(s)
| | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (N.G.); (S.R.); (U.S.)
| |
Collapse
|
22
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
23
|
Strogulski NR, Stefani MA, Böhmer AE, Hansel G, Rodolphi MS, Kopczynski A, de Oliveira VG, Stefani ET, Portela JV, Schmidt AP, Oses JP, Smith DH, Portela LV. Cerebrospinal fluid purinomics as a biomarker approach to predict outcome after severe traumatic brain injury. J Neurochem 2022; 161:173-186. [PMID: 35157328 PMCID: PMC9035090 DOI: 10.1111/jnc.15590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine-derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale < 8) and 51 controls. Two to four hours after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine-derivatives by HPLC. TBI patients survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) two years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p=0.042; r= -0.506). Remarkably, GTP displayed predictive value (AUC=0.841, p=0.024) for discriminating survival vs. non-survival patients up to three days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality, and guanosine as an indicator of long-term functional disability.
Collapse
Affiliation(s)
- Nathan R Strogulski
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marco Antonio Stefani
- Laboratory of Neuroanatomy, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Elisa Böhmer
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gisele Hansel
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vitória G de Oliveira
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduarda T Stefani
- Laboratory of Neuroanatomy, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana V Portela
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - André P Schmidt
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil. Department of Anesthesia, Santa Casa de Porto Alegre, Universidade Federal de Ciências Médicas de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil. Department of Anesthesia, Hospital Nossa Senhora da Conceição, Porto Alegre, RS, Brazil
| | - Jean Pierre Oses
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Luis V Portela
- Laboratory of Neurotrauma e Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Liu K, Jin X, Zhang X, Lian H, Ye J. The mechanisms of nucleotide actions in insulin resistance. J Genet Genomics 2022; 49:299-307. [DOI: 10.1016/j.jgg.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
25
|
Wei W, Sun Z, He S, Zhang W, Chen S, Cao YN, Wang N. Mechanical ventilation induces lung and brain injury through ATP production, P2Y1 receptor activation and dopamine release. Bioengineered 2022; 13:2346-2359. [PMID: 35034579 PMCID: PMC8974168 DOI: 10.1080/21655979.2021.2022269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanical ventilation can induce lung injury and exacerbate brain injury due to lung-brain interaction. The current study sought to investigate the mechanism of lung-brain interaction induced by mechanical ventilation and offer theoretical insight into the management of ventilator-induced brain injury. The experimental mice were assigned into the spontaneously breathing group and the mechanical ventilation group and injected with dopamine (DA) receptor antagonist haloperidol or P2Y1 receptor antagonist MRS2279 before ventilation. In vitro assay was conducted using lung epithelial cells MLE-12 hippocampal neuron cells and HT-22. Mouse recognition function and lung injury were examined. The condition and concentration of neurons in the hippocampus were observed. The levels of several inflammatory factors, DA, adenosine triphosphate (ATP), P2Y1R, and dysbindin-1 were detected. Mechanical ventilation induced lung and brain injury in mice, manifested in increased inflammatory factors in the bronchoalveolar lavage fluid and hippocampus, prolonged escape latency, and swimming distance and time in the target quadrant with a weakened concentration of neurons in the hippocampus. Our results presented elevated ATP and P2Y1R expressions in the mechanically ventilated mice and stretched MLE-12 cells. The mechanically ventilated mice and P2Y1 receptor activator MRS2365-treated HT-22 cells presented with elevated levels of DA and dysbindin-1. Inactivation of P2Y1 receptor in the hippocampus or blockage of DA receptor alleviated brain injury induced by mechanical ventilation in mice. To conclude, the current study elicited that lung injury induced by mechanical ventilation exacerbated brain injury in mice by increasing ATP production, activating the P2Y1 receptor, and thus promoting DA release.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya-Nan Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
27
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
28
|
Cheng Y, Cui Y, Zhai Y, Xin W, Yu Y, Liang J, Li S, Sun H. Neuroprotective Effects of Exogenous Irisin in Kainic Acid-Induced Status Epilepticus. Front Cell Neurosci 2021; 15:738533. [PMID: 34658794 PMCID: PMC8517324 DOI: 10.3389/fncel.2021.738533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated reactive oxygen species (ROS) level is considered a crucial causative factor for neuronal damage in epilepsy. Irisin has been reported to ameliorate mitochondrial dysfunction and to reduce ROS levels; therefore, in this study, the effect of exogenous irisin on neuronal injury was evaluated in rats with kainic acid (KA)-induced status epilepticus (SE). Our results showed that exogenous irisin treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), and reduced the levels of neuronal injury and mitochondrial oxidative stress. Additionally, an inhibitor of UCP2 (genipin) was administered to investigate the underlying mechanism of irisin-induced neuroprotection; in rats treated with genipin, the neuroprotective effects of irisin on KA-induced SE were found to be partially reversed. Our findings confirmed the neuroprotective effects of exogenous irisin and provide evidence that these effects may be mediated via the BDNF/UCP2 pathway, thus providing valuable insights that may aid the development of exogenous irisin treatment as a potential therapeutic strategy against neuronal injury in epilepsy.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
29
|
Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021; 22:ijms221910649. [PMID: 34638992 PMCID: PMC8508678 DOI: 10.3390/ijms221910649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.
Collapse
|
30
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
31
|
Ferreira-Neto HC, Antunes VR, Stern JE. Purinergic P2 and glutamate NMDA receptor coupling contributes to osmotically driven excitability in hypothalamic magnocellular neurosecretory neurons. J Physiol 2021; 599:3531-3547. [PMID: 34053068 DOI: 10.1113/jp281411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Purinergic and glutamatergic signalling pathways play a key role in regulating the activity of hypothalamic magnocellular neurosecretory neurons (MNNs). However, the precise cellular mechanisms by which ATP and glutamate act in concert to regulate osmotically driven MNN neuronal excitability remains unknown. Here, we report that ATP acts on purinergic P2 receptors in MNNs to potentiate in a Ca2+ -dependent manner extrasynaptic NMDAR function. The P2-NMDAR coupling is engaged in response to an acute hyperosmotic stimulation, contributing to osmotically driven firing activity in MNNs. These results help us to better understand the precise mechanisms contributing to the osmotic regulation of firing activity and hormone release from MNNs. ABSTRACT The firing activity of hypothalamic magnocellular neurosecretory neurons (MNNs) located in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) is coordinated by the combined, fine-tuned action of intrinsic membrane properties, synaptic and extrasynaptic signalling. Among these, purinergic and glutamatergic signalling pathways have been shown to play a key role regulating the activity of MNNs. However, the precise cellular mechanisms by which ATP and glutamate act in concert to regulate osmotically driven MNN neuronal excitability remains unknown. Whole-cell patch-clamp recordings obtained from MNNs showed that ATP (100 μM) induced an increase in firing rate, an effect that was blocked by either 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]2-pyridinyl]azo]1,3-benzenedisulfonic acid tetrasodium salt (PPADS) (10 μM) or kynurenic acid (1 mm). While ATP did not affect the frequency or magnitude of glutamatergic excitatory postsynaptic currents (EPSCs), it induced an inward shift in the holding current that was prevented by PPADS or kynurenic acid treatment, suggesting that ATP enhances a tonic extrasynaptic glutamatergic excitatory current. We observed that ATP-potentiated glutamatergic receptor-mediated currents were evoked by focal application of L-glu (1 mm) and NMDA (50 μM), but not AMPA (50 μM). ATP potentiation of NMDA-evoked currents was blocked by PPADS (10 μM) and by chelation of intracellular Ca2+ with BAPTA (10 mm). Finally, we report that a hyperosmotic stimulus (mannitol 1%, +55 mOsm/kgH2 O) potentiated NMDA-evoked currents and increased MNN firing activity, effects that were blocked by PPADS. Taken together, our data support a functional excitatory coupling between P2 and extrasynaptic NMDA receptors in MNNs, which is engaged in response to an acute hyperosmotic stimulus.
Collapse
Affiliation(s)
- H C Ferreira-Neto
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - V R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - J E Stern
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Salgado M, García-Robles MÁ, Sáez JC. Purinergic signaling in tanycytes and its contribution to nutritional sensing. Purinergic Signal 2021; 17:607-618. [PMID: 34018139 DOI: 10.1007/s11302-021-09791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glial-like cells with an important role in the regulation of neuroendocrine axes and energy homeostasis. These cells have been implicated in glucose, amino acids, and fatty acid sensing in the hypothalamus of rodents, where they are strategically positioned. While their cell bodies contact the cerebrospinal fluid, their extensive processes contact neurons of the arcuate and ventromedial nuclei, protagonists in the regulation of food intake. A growing body of evidence has shown that purinergic signaling plays a relevant role in this homeostatic role of tanycytes, likely regulating the release of gliotransmitters that will modify the activity of satiety-controlling hypothalamic neurons. Connexin hemichannels have proven to be particularly relevant in these mechanisms since they are responsible for the release of ATP from tanycytes in response to nutritional signals. On the other hand, either ionotropic or metabotropic ATP receptors are involved in the generation of intracellular Ca2+ waves in response to hypothalamic nutrients, which can spread between glial cells and towards neighboring neurons. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes, highlighting the participation of purinergic signaling in this process.
Collapse
Affiliation(s)
- Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - María Á García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
33
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
34
|
Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC. Diabetes and hypertension: Pivotal involvement of purinergic signaling. Biomed Pharmacother 2021; 137:111273. [PMID: 33524787 PMCID: PMC7846467 DOI: 10.1016/j.biopha.2021.111273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.
Collapse
Affiliation(s)
- Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andréia Cardoso
- Academic Coordination, Medicine, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Post-Graduation Program of Biological Sciences: Toxicological Biochemistry, CCNE, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Zuccarini M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. In Search of a Role for Extracellular Purine Enzymes in Bone Function. Biomolecules 2021; 11:biom11050679. [PMID: 33946568 PMCID: PMC8147220 DOI: 10.3390/biom11050679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is one of the major tissues that undergoes continuous remodeling throughout life, thus ensuring both organic body growth during development and protection of internal organs as well as repair of trauma during adulthood. Many endogenous substances contribute to bone homeostasis, including purines. Their role has increasingly emerged in recent decades as compounds which, by interacting with specific receptors, can help determine adequate responses of bone cells to physiological or pathological stimuli. Equally, it is recognized that the activity of purines is closely dependent on their interconversion or metabolic degradation ensured by a series of enzymes present at extracellular level as predominantly bound to the cell membrane or, also, as soluble isoforms. While the effects of purines mediated by their receptor interactions have sufficiently, even though not entirely, been characterized in many tissues including bone, those promoted by the extracellular enzymes providing for purine metabolism have not been. In this review, we will try to circumstantiate the presence and the role of these enzymes in bone to define their close relationship with purine activities in maintaining bone homeostasis in normal or pathological conditions.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
- StemTeCh Group, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy; (M.Z.); (P.G.); (P.D.I.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy;
| |
Collapse
|
36
|
Caruso V, Zuccarini M, Di Iorio P, Muhammad I, Ronci M. Metabolic Changes Induced by Purinergic Signaling: Role in Food Intake. Front Pharmacol 2021; 12:655989. [PMID: 33995077 PMCID: PMC8117016 DOI: 10.3389/fphar.2021.655989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023] Open
Abstract
The purinergic signalling has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its implication in the control of food intake. In this review, we provide an integrative view of the molecular mechanisms leading to changes in feeding behaviour within hypothalamic neurons following purinergic receptor activation. We also highlight the importance of purinergic signalling in metabolic homeostasis and the possibility of targeting its receptors for therapeutic purposes.
Collapse
Affiliation(s)
- Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia.,Institute for Research on Pain, ISAL-Foundation, Rimini, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Ishaq Muhammad
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
37
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
38
|
Engel T, Nicke A, Deussing JM, Sperlagh B, Diaz-Hernandez M. Editorial: P2X7 as Common Therapeutic Target in Brain Diseases. Front Mol Neurosci 2021; 14:656011. [PMID: 33986644 PMCID: PMC8110915 DOI: 10.3389/fnmol.2021.656011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Miguel Diaz-Hernandez
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
39
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
40
|
Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci 2021; 22:ijms22073468. [PMID: 33801677 PMCID: PMC8036966 DOI: 10.3390/ijms22073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7–38.5), with Hills coefficient of 4.4 (95% CI: 3.3–5.4), while ATP-like agonists had EC50 of 0.45 μM (95% CI: 0.06–3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 μM (95% CI: 0.3–10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
41
|
Loesch A. On P2X receptors in the brain: microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929-2020). Cell Tissue Res 2021; 384:577-588. [PMID: 33755804 DOI: 10.1007/s00441-021-03411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
This tribute article presents selected immunocytochemical and transmission electron microscope data on the location of ATP-gated P2X receptor in the rat brain, as studied in the 1990s in Prof G. Burnstock's laboratory at University College London. There are examples of immuno-ultrastructural findings and introductory information about pre- and post-synaptic location of P2X receptors in the rat cerebellum and endocrine hypothalamus to support the concept of purinergic transmission in the central nervous system. Then findings of diverse immunoreactivity for P2X1, P2X2, P2X4, and P2X6 receptors associated with brain microvessels are shown, including vascular endothelium and pericytes as well as perivascular astrocytes and neuronal components. These findings imply the involvement of P2X receptors and hence purinergic signalling in the neurovascular unit, at least in microvessels in the rat cerebellum and hypothalamic paraventricular and supraoptic nuclei examined here. Various aspects of P2X receptors in brain microvessels are discussed.
Collapse
Affiliation(s)
- Andrzej Loesch
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London Medical School, Royal Free Campus, London, UK.
| |
Collapse
|
42
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|
43
|
Zolkipli-Cunningham Z, Naviaux JC, Nakayama T, Hirsch CM, Monk JM, Li K, Wang L, Le TP, Meinardi S, Blake DR, Naviaux RK. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS One 2021; 16:e0248771. [PMID: 33735311 PMCID: PMC7971557 DOI: 10.1371/journal.pone.0248771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor activity were measured in CLAMS cages. Plasma metabolomics measured 401 metabolites. Breathomics measured 98 volatile organic compounds. Intraperitoneal eATP dropped basal metabolic rate measured by whole body oxygen consumption by 74% ± 6% (mean ± SEM) and rectal temperature by 6.2˚ ± 0.3˚C in 30 minutes. Over 200 metabolites from 37 different biochemical pathways where changed. Breathomics showed an increase in exhaled carbon monoxide, dimethylsulfide, and isoprene. Metabolomics revealed an acute increase in lactate, citrate, purines, urea, dopamine, eicosanoids, microbiome metabolites, oxidized glutathione, thiamine, niacinamide, and pyridoxic acid, and decreased folate-methylation-1-carbon intermediates, amino acids, short and medium chain acyl-carnitines, phospholipids, ceramides, sphingomyelins, cholesterol, bile acids, and vitamin D similar to some children with ASD. MIA animals were hypersensitive to postnatal exposure to eATP or poly(IC), which produced a rebound increase in body temperature that lasted several weeks before returning to baseline. Acute hyperpurinergia produced metabolic and behavioral changes in mice. The behaviors and metabolic changes produced by ATP injection were associated with mitochondrial functional changes that were profound but reversible.
Collapse
Affiliation(s)
- Zarazuela Zolkipli-Cunningham
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Tomohiro Nakayama
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Charlotte M. Hirsch
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
44
|
Simões JLB, Bagatini MD. Purinergic Signaling of ATP in COVID-19 Associated Guillain-Barré Syndrome. J Neuroimmune Pharmacol 2021; 16:48-58. [PMID: 33462776 PMCID: PMC7813171 DOI: 10.1007/s11481-020-09980-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Declared as a global public health emergency, coronavirus disease 2019 (COVID-19) is presented as a disease of the respiratory tract, although severe cases can affect the entire organism. Several studies have shown neurological symptoms, ranging from dizziness and loss of consciousness to cerebrovascular and neurodegenerative diseases. In this context, Guillain-Barré syndrome, an immune-mediated inflammatory neuropathy, has been closely associated with critical cases of infection with "severe acute respiratory syndrome of coronavirus 2" (SARS-CoV-2), the etiological agent of COVID-19. Its pathophysiology is related to a generalized inflammation that affects the nervous system, but neurotropism was also revealed by the new coronavirus, which may increase the risk of neurological sequel, as well as the mortality of the disease. Thus, considering the comorbidities that SARS-CoV-2 infection can promote, the modulation of purinergic signaling can be applied as a potential therapy. In this perspective, given the role of adenosine triphosphate (ATP) in neural intercommunication, the P2X7 receptor (P2X7R) acts on microglia cells and its inhibition may be able to reduce the inflammatory condition of neurodegenerative diseases. Finally, alternative measures to circumvent the reality of the COVID-19 pandemic need to be considered, given the severity of critical cases and the viral involvement of multiple organs.
Collapse
Affiliation(s)
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| |
Collapse
|
45
|
Lv ZY, Yang YQ, Yin LM. Role of Purinergic Signaling in Acupuncture Therapeutics. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:645-659. [PMID: 33641652 DOI: 10.1142/s0192415x21500294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acupuncture is a therapeutic treatment that is well recognized in many countries. However, the initiation mechanisms of acupuncture are not well understood. Purinergic signaling has been considered a key signaling pathway in acupuncture in recent years. Acupuncture-induced ATP is mainly produced by mast cells and fibroblasts, and ATP is gradually hydrolyzed into adenosine. ATP and adenosine further participate in the process of acupuncture information transmission to the nervous and immune systems through specific purine receptors. Acupuncture initiates analgesia via the down-regulation of the expression of P2 receptors or up-regulation of the expression of adenosine A1 receptors on nerve fibers. ATP also promotes the proliferation of immune cells through P2 receptors and A3 receptors, causing inflammation. In contrast, adenosine activates A2 receptors, promotes the production and infiltration of immunosuppressive cells, and causes an anti-inflammatory response. In summary, we described the role of purinergic signaling as a general signaling pathway in the initiation of acupuncture and the influence of purinergic signaling on the neuroimmune network to lay the foundation for future systematic research on the mechanisms of acupuncture therapeutics.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P. R. China.,Shanghai Innovation Center of Traditional Chinese Medicine, Health Service, Shanghai 201203, P. R. China
| |
Collapse
|
46
|
Illes P, Xu GY, Tang Y. Purinergic Signaling in the Central Nervous System in Health and Disease. Neurosci Bull 2020; 36:1239-1241. [PMID: 33146814 DOI: 10.1007/s12264-020-00602-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, 04107, Germany
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
47
|
Song W, Tang Y, Wei L, Zhang C, Song D, Li X, Jiang S. Protective effect of CD73 inhibitor α, β-methylene ADP against amyloid-β-induced cognitive impairment by inhibiting adenosine production in hippocampus. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
49
|
Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neurosci Bull 2020; 36:1242-1258. [PMID: 32895896 DOI: 10.1007/s12264-020-00573-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting evidence suggests that the ATP-gated P2X7 receptor contributes to increased hyperexcitability in the brain. While increased expression of P2X7 in the hippocampus and cortex following status epilepticus and during epilepsy has been repeatedly demonstrated, the cell type-specific expression of P2X7 and its expression in extra-hippocampal brain structures remains incompletely explored. In this study, P2X7 expression was visualized by using a transgenic mouse model overexpressing P2X7 fused to the fluorescent protein EGFP. The results showed increased P2X7-EGFP expression after status epilepticus induced by intra-amygdala kainic acid and during epilepsy in different brain regions including the hippocampus, cortex, striatum, thalamus and cerebellum, and this was most evident in microglia and oligodendrocytes. Co-localization of P2X7-EGFP with cell type-specific markers was not detected in neurons or astrocytes. These data suggest that P2X7 activation is a common pathological hallmark across different brain structures, possibly contributing to brain inflammation and neurodegeneration following acute seizures and during epilepsy.
Collapse
|
50
|
Modulatory Roles of ATP and Adenosine in Cholinergic Neuromuscular Transmission. Int J Mol Sci 2020; 21:ijms21176423. [PMID: 32899290 PMCID: PMC7503321 DOI: 10.3390/ijms21176423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
A review of the data on the modulatory action of adenosine 5’-triphosphate (ATP), the main co-transmitter with acetylcholine, and adenosine, the final ATP metabolite in the synaptic cleft, on neuromuscular transmission is presented. The effects of these endogenous modulators on pre- and post-synaptic processes are discussed. The contribution of purines to the processes of quantal and non-quantal secretion of acetylcholine into the synaptic cleft, as well as the influence of the postsynaptic effects of ATP and adenosine on the functioning of cholinergic receptors, are evaluated. As usual, the P2-receptor-mediated influence is minimal under physiological conditions, but it becomes very important in some pathophysiological situations such as hypothermia, stress, or ischemia. There are some data demonstrating the same in neuromuscular transmission. It is suggested that the role of endogenous purines is primarily to provide a safety factor for the efficiency of cholinergic neuromuscular transmission.
Collapse
|