1
|
Li L, Barash U, Ilan N, Farhoud M, Zhang X, Vlodavsky I, Li JP. A New Synthesized Dicarboxylated Oxy-Heparin Efficiently Attenuates Tumor Growth and Metastasis. Cells 2024; 13:211. [PMID: 38334603 PMCID: PMC10854774 DOI: 10.3390/cells13030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors that support tumor growth. Heparanase expression is upregulated in human carcinomas, sarcomas, and hematological malignancies, correlating with increased tumor metastasis, vascular density, and shorter postoperative survival of cancer patients, and encouraging the development of heparanase inhibitors as anti-cancer drugs. Among these are heparin/HS mimetics, the only heparanase-inhibiting compounds that are being evaluated in clinical trials. We have synthesized dicarboxylated oxy-heparins (DCoxHs) containing three carboxylate groups per split residue (DC-Hep). The resulting lead compound (termed XII) was upscaled, characterized, and examined for its effectiveness in tumor models. Potent anti-tumorigenic effects were obtained in models of pancreatic carcinoma, breast cancer, mesothelioma, and myeloma, yielding tumor growth inhibition (TGI) values ranging from 21 to 70% and extending the survival time of the mice. Of particular significance was the inhibition of spontaneous metastasis in an orthotopic model of breast carcinoma following resection of the primary tumor. It appears that apart from inhibition of heparanase enzymatic activity, compound XII reduces the levels of heparanase protein and inhibits its cellular uptake and activation. Heparanase-dependent and -independent effects of XII are being investigated. Collectively, our pre-clinical studies with compound XII strongly justify its examination in cancer patients.
Collapse
Affiliation(s)
- Li Li
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China;
| | - Uri Barash
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Malik Farhoud
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Xiao Zhang
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden;
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 3525422, Israel; (U.B.); (N.I.); (M.F.)
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
2
|
Locatelli M, Rottoli D, Mahmoud R, Abbate M, Corna D, Cerullo D, Tomasoni S, Remuzzi G, Zoja C, Benigni A, Macconi D. Endothelial Glycocalyx of Peritubular Capillaries in Experimental Diabetic Nephropathy: A Target of ACE Inhibitor-Induced Kidney Microvascular Protection. Int J Mol Sci 2023; 24:16543. [PMID: 38003732 PMCID: PMC10671403 DOI: 10.3390/ijms242216543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; (M.L.); (D.R.); (R.M.); (M.A.); (D.C.); (D.C.); (S.T.); (G.R.); (C.Z.); (D.M.)
| | | |
Collapse
|
3
|
Kayal Y, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2)- a new player essential for pancreatic acinar cell differentiation. Cell Death Dis 2023; 14:465. [PMID: 37491420 PMCID: PMC10368643 DOI: 10.1038/s41419-023-05990-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Heparanase 2 (Hpa2, HPSE2) is a close homolog of heparanase. Hpa2, however, lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase enzymatic activity. Mutations of HPSE2 were identified in patients diagnosed with urofacial syndrome (UFS), a rare genetic disorder that exhibits abnormal facial expression and bladder voiding dysfunction, leading to renal damage and eventually renal failure. In order to reveal the role of HPSE2 in tissue homeostasis, we established a conditional Hpa2-KO mouse. Interestingly, the lack of Hpa2 was associated with a marked decrease in the expression of key pancreatic transcription factors such as PTF1, GATA6, and Mist1. This was associated with a two-fold decrease in pancreas weight, increased pancreatic inflammation, and profound morphological alterations of the pancreas. These include massive accumulation of fat cells, possibly a result of acinar-to-adipocyte transdifferentiation (AAT), as well as acinar-to-ductal metaplasia (ADM), both considered to be pro-tumorigenic. Furthermore, exposing Hpa2-KO but not wild-type mice to a carcinogen (AOM) and pancreatic inflammation (cerulein) resulted in the formation of pancreatic intraepithelial neoplasia (PanIN), lesions that are considered to be precursors of invasive ductal adenocarcinoma of the pancreas (PDAC). These results strongly support the notion that Hpa2 functions as a tumor suppressor. Moreover, Hpa2 is shown here for the first time to play a critical role in the exocrine aspect of the pancreas.
Collapse
Affiliation(s)
- Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
4
|
Cao J, Ding C, Huang J, Chen Y, Chen Y. PULMONARY VASCULAR ENDOTHELIAL GLYCOCALYX DEGRADATION CONTRIBUTES TO ACUTE LUNG INJURY IN EXPERIENCING HEATSTROKE. Shock 2023; 59:966-972. [PMID: 37040184 DOI: 10.1097/shk.0000000000002130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ABSTRACT Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. The vascular endothelial structures of the lungs were examined using electron microscopy. The concentration of Evans blue dye in the lungs and arterial blood gas were assessed. An enzyme-linked immunosorbent assay was used to quantify the plasma concentration of heparan sulfate proteoglycan. The expression of glypican-1 and syndecan-1 in pulmonary vessels was measured using immunofluorescence. Western blots were used to detect the expression of TNF-α, IL-6, and vascular endothelial biomarkers in the rat lungs. Pulmonary apoptosis was assessed using a TUNEL (terminal dUTP nick end labeling) assay, and the concentrations of malondialdehyde were measured. Results: Glycocalyx shedding aggravated lung injuries. Severe histopathological damage was observed, and indexes of lung function deviated from abnormal ranges. In addition, pulmonary vascular endothelial cells were disrupted. Compared with the HS group, the plasma concentration of heparan sulfate proteoglycan significantly increased in the HPSE group ( P < 0.05). The expression of glypican-1 and syndecan-1 decreased, and the extravasation of Evans blue dye increased ( P < 0.01). Endothelial biomarker expression increased in the lung tissue, whereas occludin expression decreased. Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Chengjia Ding
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Jieen Huang
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Yanzhu Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Yi Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| |
Collapse
|
5
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Gu Y, Peng L, Ding W, Wang Y, Zeng X. An ultrasensitive FRET-based fluorescent low molecular weight heparin nanoprobe for quantifying heparanase activity. Talanta 2023; 254:124207. [PMID: 36549136 DOI: 10.1016/j.talanta.2022.124207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Heparanase (HPA) is a multifaceted endo-β-glucuronidase, and its dysregulation facilitates cancer metastasis. Developing techniques for fast and sensitively monitoring HPA enzymatic activity is crucial for searching for molecular therapies targeting HPA. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based nanoprobe AuNCs-LMWH-AuNRs, with AuNCs@GSH-cys and AuNRs/end-NH2/side-SiO2 attached to the non-reducing terminus and reducing terminus of low molecular weight heparin (LMWH), respectively. AuNCs@GSH-cys exhibited an absolute quantum yield of 1.1%. The absorption spectra of AuNRs/end-NH2/side-SiO2 (825 nm for maximum longitudinal absorption) and the emission spectra of AuNCs@GSH-cys (824 nm for maximum emission) were precisely overlapping, further enhancing the efficiency of FRET. In the presence of HPA, the LMWH nanoprobe exhibited an ultrasensitive response with excitation/emission wavelength (lambda (ex) = 560 nm, lambda (em) = 824 nm). The probe presented a wide linear dynamic detection range (LDR) of 0.125 ng/μL - 0.01 μg/μL in vitro with a limit of detection (LODs) of 82.15 pM (0.43 pg/μL). The excellent selectivity and good fluorescence turn-on efficiency of the probe made it possible for one-step detection of cellular heparanase activity. High throughput screening of HPA inhibitors also can be accomplished using the highly efficient LMWH nanoprobe.
Collapse
Affiliation(s)
- Yayun Gu
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Lizhong Peng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Weihua Ding
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong Province, 518172, China
| | - Xuhui Zeng
- Medical School, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
7
|
Knani I, Yanku Y, Gross-Cohen M, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of human sarcoma. Matrix Biol 2022; 113:22-38. [PMID: 36122821 DOI: 10.1016/j.matbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
The pro-tumorigenic properties of heparanase are well documented and established. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is not entirely clear. In carcinomas, Hpa2 is thought to attenuate tumor growth, possibly by inhibiting heparanase enzymatic activity. Here, we examine the role of Hpa2 in sarcoma, a group of rare tumors of mesenchymal origin, accounting for approximately 1% of all malignant tumors. Consistently, we found that overexpression of Hpa2 attenuates tumor growth while Hpa2 gene silencing results in bigger tumors. Mechanistically, attenuation of tumor growth by Hpa2 was associated with increased tumor stress conditions, involving ER stress, hypoxia, and JNK phosphorylation, leading to increased apoptotic cell death. In addition, overexpression of Hpa2 induces the expression of the p53 family member, p63 which, in sarcoma, functions to attenuate tumor growth. Moreover, we show that Hpa2 profoundly reduces stem cell characteristics of the sarcoma cells (stemness), most evident by failure of Hpa2 cells to grow as spheroids typical of stem cells. Likewise, expression of CD44, a well-established stem cell marker, was prominently decreased in Hpa2 cells. CD44 is also a cell surface receptor for hyaluronic acid (HA), a nonsulfated glycosaminoglycan that is enriched in connective tissues. Reduced expression of CD44 by Hpa2 may thus represent impaired cross-talk between Hpa2 and the extracellular matrix. Clinically, we found that Hpa2 is expressed by leiomyosarcoma tumor biopsies. Interestingly, nuclear localization of Hpa2 was associated with low-stage tumors. This finding opens a new direction in Hpa2 research.
Collapse
Affiliation(s)
- Ibrahim Knani
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yifat Yanku
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
8
|
Macrophages Upregulate Estrogen Receptor Expression in the Model of Obesity-Associated Breast Carcinoma. Cells 2022; 11:cells11182844. [PMID: 36139419 PMCID: PMC9496942 DOI: 10.3390/cells11182844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) and obesity are two heterogeneous conditions with a tremendous impact on health. BC is the most commonly diagnosed neoplasm and the leading cause of cancer-related mortality among women, and the prevalence of obesity in women worldwide reaches pandemic proportions. Obesity is a significant risk factor for both incidence and worse prognosis in estrogen receptor positive (ER+) BC. Yet, the mechanisms underlying the association between excess adiposity and increased risk/therapy resistance/poorer outcome of ER+, but not ER−negative (ER−), BC are not fully understood. Tumor-promoting action of obesity, predominantly in ER + BC patients, is often attributed to the augmented production of estrogen in ‘obese’ adipose tissue. However, in addition to the estrogen production, expression levels of ER represent a key determinant in hormone-driven breast tumorigenesis and therapy response. Here, utilizing in vitro and in vivo models of BC, we show that macrophages, whose adverse activation by obesogenic substances is fueled by heparanase (extracellular matrix-degrading enzyme), are capable of upregulating ER expression in tumor cells, in the setting of obesity-associated BC. These findings underscore a previously unknown mechanism through which interplay between cellular/extracellular elements of obesity-associated BC microenvironment influences estrogen sensitivity—a critical component in hormone-related cancer progression and resistance to therapy.
Collapse
|
9
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
10
|
Luan J, Zhou Y, Wang X, Ming A, Liu Y, Yuan Y, Liang J, Zhang L. Single-cell RNA sequencing analysis of liver reveals the enhanced entry and release abilities of human adenovirus F41, partially explaining acute hepatitis in children. J Infect 2022; 85:334-363. [PMID: 35700865 PMCID: PMC9188117 DOI: 10.1016/j.jinf.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Junwen Luan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yixuan Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Annan Ming
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuwen Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junhan Liang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
11
|
CREB3 Plays an Important Role in HPSE-Facilitated HSV-1 Release in Human Corneal Epithelial Cells. Viruses 2022; 14:v14061171. [PMID: 35746643 PMCID: PMC9227461 DOI: 10.3390/v14061171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023] Open
Abstract
Herpes simplex virus type-1 (HSV-1) exploits several host factors to enhance its replication and release from infected cells. It induces the production of host enzyme heparanase (HPSE) to aid in egress. While the mechanism by which HPSE assists in viral release is well-characterized, other host factors that are recruited along with HPSE for viral release are less well understood. In this study, we identify cyclic-AMP-responsive element-binding protein3 (CREB3) as a key player in HPSE-facilitated HSV-1 egress. When CREB3 is transiently upregulated in human corneal epithelial cells, HSV-1 release from the infected cells is correspondingly enhanced. This activity is linked to HPSE expression such that HPSE-transfected corneal epithelial (HCE) cells more highly express CREB3 than wild-type cells while the cells knocked out for HPSE show very little CREB3 expression. CREB3-transfected HCE cells showed significantly higher export of HPSE upon infection than wild-type cells. Our data suggests that coat protein complex II (COPII), which mediates HPSE trafficking, is also upregulated via a CREB3-dependent pathway during HSV-1 infection. Finally, the co-transfection of CREB3 and HPSE in HCE cells shows the highest viral release compared to either treatment alone, establishing CREB3 as a key player in HPSE-facilitated HSV-1 egress.
Collapse
|
12
|
Autism, heparan sulfate and potential interventions. Exp Neurol 2022; 353:114050. [DOI: 10.1016/j.expneurol.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
13
|
Tang WQ, Hei Y, Lin J. Heparanase-1 is downregulated in chemoradiotherapy orbital rhabdomyosarcoma and relates with tumor growth as well as angiogenesis. Int J Ophthalmol 2022; 15:31-39. [PMID: 35047353 DOI: 10.18240/ijo.2022.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the role of heparanase-1 (HPSE-1) in orbital rhabdomyosarcoma (RMS), and to investigate the feasibility of HPSE-1 targeted therapy for RMS. METHODS Immunohistochemistry was performed to analyze HPSE-1 expression in 51 cases of orbital RMS patients (including 28 cases of embryonal RMS and 23 cases of alveolar RMS), among whom there were 27 treated and 24 untreated with preoperative chemoradiotherapy. In vitro, studies were conducted to examine the effect of HPSE-1 silencing on RMS cell proliferation and tube formation of human umbilical vein endothelial cells (HUVECs). RD cells (an RMS cell line) and HUVECs were infected with HPSE-1 shRNA lentivirus at a multiplicity of infection (MOI) of 10 and 30 separately. Real-time PCR and Western blot were applied to detect the mRNA and protein expression levels of HPSE-1. Cell viability of treated or control RD cells was evaluated by cell counting kit-8 (CCK-8) assay. Matrigel tube formation assay was used to evaluate the effect of HPSE-1 RNAi on the tube formation of HUVECs. RESULTS Immunohistochemistry showed that the expression rate of HPSE-1 protein was 92.9% in orbital embryonal RMS and 91.3% in orbital alveolar RMS. Tissue from alveolar orbital RMS did not show relatively stronger staining than that from the embryonal orbital RMS. However, despite the types of RMS, comparing the cases treated chemoradiotherapy with those untreated, we have observed that chemoradiotherapy resulted in weaker staining in patients' tissues. The expression levels of HPSE-1 declined significantly in both the mRNA and protein levels in HPSE-1 shRNA transfected RD cells. The CCK-8 assay showed that lentivirus-mediated HPSE-1 silencing resulted in significantly reduced RD cells viability in vitro. Silencing HPSE-1 expression also inhibited VEGF-induced tube formation of HUVECs in Matrigel. CONCLUSION HPSE-1 silencing may be a promising therapy for the inhibition of orbital RMS progression.
Collapse
Affiliation(s)
- Wei-Qiang Tang
- Department of Ophthalmology, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
| | - Yan Hei
- Department of Ophthalmology, the Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Lin
- Department of Clinical Laboratory, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
14
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
15
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
16
|
The HPSE Gene Insulator-A Novel Regulatory Element That Affects Heparanase Expression, Stem Cell Mobilization, and the Risk of Acute Graft versus Host Disease. Cells 2021; 10:cells10102523. [PMID: 34685503 PMCID: PMC8534152 DOI: 10.3390/cells10102523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/30/2023] Open
Abstract
The HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs. Our results indicate that this region exhibits HPSE regulatory activity. SNP substitutions lead to modulation of a unique DNA-protein complex that affects insulator activity. Analysis of interactions between enhancer and insulator SNPs revealed that rs4693608 has a major effect on HPSE expression and the risk of post-transplantation acute graft versus host disease (GVHD). The C alleles of insulator SNPs rs4364254 and rs4426765 modify the activity of the HPSE enhancer, resulting in altered HPSE expression and increased risk of acute GVHD. Moreover, rs4426765 correlated with HPSE expression in activated mononuclear cells, as well as with CD3 levels and lymphocyte counts following G-CSF mobilization. rs4363084 and rs28649799 were found to be associated with CD34+ levels. Our study provides new insight into the mechanism of HPSE gene regulation and its impact on normal and pathological processes in the hematopoietic system.
Collapse
|
17
|
Liu J, Knani I, Gross-Cohen M, Hu J, Wang S, Tang L, Ilan N, Yang S, Vlodavsky I. Role of heparanase 2 (Hpa2) in gastric cancer. Neoplasia 2021; 23:966-978. [PMID: 34343822 PMCID: PMC8349917 DOI: 10.1016/j.neo.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
We report that gastric cancer patients exhibiting high levels of heparanase 2 (Hpa2) survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to overexpress Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. These beneficial effects were found to associate with increased phosphorylation of AMP-activated protein kinase (AMPK) that play an instrumental role in cell metabolism and is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, possibly leading to attenuation of gastric tumorigenesis.
Heparanase is highly implicated in tumor metastasis due to its capacity to cleave heparan sulfate and, consequently, remodel the extracellular matrix underlying epithelial and endothelial cells. In striking contrast, only little attention was given to its close homolog, heparanase 2 (Hpa2), possibly because it lacks heparan sulfate-degrading activity typical of heparanase. We subjected sections of gastric carcinoma to immunostaining and correlated Hpa2 immunoreactivity with clinical records, including tumor grade, stage and patients' status. We over-expressed Hpa2 in gastric carcinoma cell lines and examined their tumorigenic properties in vitro and in vivo. We also evaluated the expression of Hpa2 by gastric carcinoma cells following inhibition of the proteasome, leading to proteotoxic stress, and the resulting signaling responsible for Hpa2 gene regulation. Here, we report that gastric cancer patients exhibiting high levels of Hpa2 survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to over-express Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. This was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), a kinase that is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, and AMPK was found to induce the expression of Hpa2, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, leading to attenuation of gastric tumorigenesis. These results indicate that high levels of Hpa2 in some tumors are due to stress conditions that tumors often experience due to their high rates of cell proliferation and high metabolic demands. This increase in Hpa2 levels by the stressed tumors appears critically important for patient outcomes.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ibrahim Knani
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Neta Ilan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel.
| |
Collapse
|
18
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
19
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
20
|
Margulis I, Naroditsky I, Gross-Cohen M, Ilan N, Vlodavsky I, Doweck I. A Pro-Tumorigenic Effect of Heparanase 2 (Hpa2) in Thyroid Carcinoma Involves Its Localization to the Nuclear Membrane. Front Oncol 2021; 11:645524. [PMID: 33959505 PMCID: PMC8093622 DOI: 10.3389/fonc.2021.645524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Activity of the endo-beta-glucuronidase heparanase, capable of cleaving heparan sulfate (HS), is most often elevated in many types of tumors, associating with increased tumor metastasis and decreased patients' survival. Heparanase is therefore considered to be a valid drug target, and heparanase inhibitors are being evaluated clinically in cancer patients. Heparanase 2 (Hpa2) is a close homolog of heparanase that gained very little attention, likely because it lacks HS-degrading activity typical of heparanase. The role of Hpa2 in cancer was not examined in detail. In head and neck cancer, high levels of Hpa2 are associated with decreased tumor cell dissemination to regional lymph nodes and prolonged patients' survival, suggesting that Hpa2 functions to attenuate tumor growth. Here, we examined the role of Hpa2 in normal thyroid tissue and in benign thyroid tumor, non-metastatic, and metastatic papillary thyroid carcinoma (PTC) utilizing immunostaining in correlation with clinicopathological parameters. Interestingly, we found that Hpa2 staining intensity does not significantly change in the transition from normal thyroid gland to benign, non-metastatic, or metastatic thyroid carcinoma. Remarkably, we observed that in some biopsies, Hpa2 is accumulating on the membrane (envelop) of the nucleus and termed this cellular localization NM (nuclear membrane). Notably, NM localization of Hpa2 occurred primarily in metastatic PTC and was associated with an increased number of positive (metastatic) lymph nodes collected at surgery. These results describe for the first time unrecognized localization of Hpa2 to the nuclear membrane, implying that in PTC, Hpa2 functions to promote tumor metastasis.
Collapse
Affiliation(s)
- Itai Margulis
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
21
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
22
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Kayal Y, Singh P, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates the growth of pancreatic carcinoma. Matrix Biol 2021; 98:21-31. [PMID: 33839221 DOI: 10.1016/j.matbio.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
While the pro-tumorigenic properties of the ECM-degrading heparanase enzyme are well documented, the role of its close homolog, heparanase 2 (Hpa2), in cancer is largely unknown. We examined the role of Hpa2 in pancreatic cancer, a malignancy characterized by a dense fibrotic ECM associated with poor response to treatment and bad prognosis. We show that pancreatic ductal adenocarcinoma (PDAC) patients that exhibit high levels of Hpa2 survive longer than patients with low levels of Hpa2. Strikingly, overexpression of Hpa2 in pancreatic carcinoma cells resulted in a most prominent decrease in the growth of tumors implanted orthotopically and intraperitoneally, whereas Hpa2 silencing resulted in bigger tumors. We further found that Hpa2 enhances endoplasmic reticulum (ER) stress response and renders cells more sensitive to external stress, associating with increased apoptosis. Interestingly, we observed that ER stress induces the expression of Hpa2, thus establishing a feedback loop by which Hpa2 enhances ER stress that, in turn, induces Hpa2 expression. This leads to increased apoptosis and attenuated tumor growth. Altogether, Hpa2 emerges as a powerful tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Singh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
24
|
Gross-Cohen M, Feld S, Arvatz G, Ilan N, Vlodavsky I. Elucidating the Consequences of Heparan Sulfate Binding by Heparanase 2. Front Oncol 2021; 10:627463. [PMID: 33585253 PMCID: PMC7879983 DOI: 10.3389/fonc.2020.627463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Unlike the intense research effort devoted to exploring the significance of heparanase in human diseases, very little attention was given to its close homolog, heparanase 2 (Hpa2). The emerging role of Hpa2 in a rare autosomal recessive congenital disease called urofacial syndrome (UFS), clearly indicates that Hpa2 is not a pseudogene but rather a gene coding for an important protein. Hpa2 lacks the heparan sulfate (HS)-degrading activity typical of heparanase, yet exhibits high affinity to HS, affinity that is 10-fold higher than that of heparanase. The consequences of this high-affinity interaction of Hpa2 with plasma membrane HSPG has not been explored yet. Here, we used highly purified Hpa2 protein to examine this aspect. We provide evidence that cells adhere to and spread on dishes coated with Hpa2. We also show that cell migration is attenuated markedly by exogenous addition of Hpa2 to primary and transformed cells, a function that agrees with the anti-cancer properties of Hpa2. Interestingly, we found that exogenous addition of Hpa2 also disrupts the morphology of cell colonies, resulting in cell scattering. This implies that under certain conditions and experimental settings, Hpa2 may exhibit pro-tumorigenic properties. We further developed a panel of anti-Hpa2 monoclonal antibodies (mAb) and show that these properties of Hpa2 are prevented by some of the newly-developed mAb, thus providing new molecular tools to better appreciate the significance of Hpa2 in health and disease.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sari Feld
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gil Arvatz
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
25
|
Zhang GL, Gutter-Kapon L, Ilan N, Batool T, Singh K, Digre A, Luo Z, Sandler S, Shaked Y, Sanderson RD, Wang XM, Li JP, Vlodavsky I. Significance of host heparanase in promoting tumor growth and metastasis. Matrix Biol 2020; 93:25-42. [PMID: 32534153 PMCID: PMC7704762 DOI: 10.1016/j.matbio.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth and metastasis. We have utilized mice over-expressing (Hpa-tg) heparanase to reveal the role of host heparanase in tumor initiation, growth and metastasis. While in wild type mice tumor development in response to DMBA carcinogenesis was restricted to the mammary gland, Hpa-tg mice developed tumors also in their lungs and liver, associating with reduced survival of the tumor-bearing mice. Consistently, xenograft tumors (lymphoma, melanoma, lung carcinoma, pancreatic carcinoma) transplanted in Hpa-tg mice exhibited accelerated tumor growth and shorter survival of the tumor-bearing mice compared with wild type mice. Hpa-tg mice were also more prone to the development of metastases following intravenous or subcutaneous injection of tumor cells. In some models, the growth advantage was associated with infiltration of heparanase-high host cells into the tumors. However, in other models, heparanase-high host cells were not detected in the primary tumor, implying that the growth advantage in Hpa-tg mice is due to systemic factors. Indeed, we found that plasma from Hpa-tg mice enhanced tumor cell migration and invasion attributed to increased levels of pro-tumorigenic factors (i.e., RANKL, SPARC, MIP-2) in the plasma of Hpa-Tg vs. wild type mice. Furthermore, tumor aggressiveness and short survival time were demonstrated in wild type mice transplanted with bone marrow derived from Hpa-tg but not wild type mice. These results were attributed, among other factors, to upregulation of pro-tumorigenic (i.e., IL35+) and downregulation of anti-tumorigenic (i.e., IFN-γ+) T-cell subpopulations in the spleen, lymph nodes and blood of Hpa-tg vs. wild type mice and their increased infiltration into the primary tumor. Collectively, our results emphasize the significance of host heparanase in mediating the pro-tumorigenic and pro-metastatic interactions between the tumor cells and the host tumor microenvironment, immune cells and systemic factors.
Collapse
Affiliation(s)
- Gan-Lin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Lilach Gutter-Kapon
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Tahira Batool
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Kailash Singh
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Andreas Digre
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Zhengkang Luo
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Stellan Sandler
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Yuval Shaked
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-Min Wang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jin-Ping Li
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel.
| |
Collapse
|