1
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
2
|
Malla R, Kumari S, Ganji SP, Srilatha M, Nellipudi HR, Nagaraju GP. Reactive oxygen species of tumor microenvironment: Harnessing for immunogenic cell death. Biochim Biophys Acta Rev Cancer 2024; 1879:189154. [PMID: 39019409 DOI: 10.1016/j.bbcan.2024.189154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The tumor microenvironment (TME) is a dynamic and complex system that undergoes continuous changes in its network architecture, notably affecting redox homeostasis. These alterations collectively shape a diverse ecosystem actively supporting tumor progression by influencing the cellular and molecular components of the TME. Despite the remarkable clinical advancements in cancer immunotherapy, its spectrum of clinical utility is limited by the altered TME and inadequate tumor immunogenicity. Recent studies have revealed that some conventional and targeted therapy strategies can augment the efficacy of immunotherapy even in patients with less immunogenic solid tumors. These strategies provoke immunogenic cell death (ICD) through the ROS-dependent liberation of damage-associated molecular patterns (DAMPs). These DAMPs recognize and bind with Pattern Recognition Receptors (PRRs) on immune cells, activating and maturing defense cells, ultimately leading to a robust antitumor immune response. The present review underscores the pivotal role of redox homeostasis in orchestrating the transition of TME from a cold to a hot phenotype and the ROS-ICD axis in immune response induction. Additionally, it provides up-to-date insights into strategies that leverage ROS generation to induce ICD. The comprehensive analysis aims to develop ROS-based effective cancer immunotherapies for less immunogenic tumors.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Swapna Priya Ganji
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Benencia F, Alaniz LD, McCall KD. Editorial: Toll-like receptor expression in transformed cells: role in tumor development and cancer therapies. Front Immunol 2024; 15:1478431. [PMID: 39238644 PMCID: PMC11375609 DOI: 10.3389/fimmu.2024.1478431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, United States
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA. CIT NOBA (UNNOBA-UNSADA-CONICET), Junín, Argentina
| | - Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, United States
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
4
|
Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: Recent evidence and perspectives. Phytother Res 2024; 38:2892-2930. [PMID: 38577989 DOI: 10.1002/ptr.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Atherosclerotic cardiovascular disease remains a preeminent cause of morbidity and mortality globally. The onset of atherosclerosis underpins the emergence of ischemic cardiovascular diseases, including coronary heart disease (CHD). Its pathogenesis entails multiple factors such as inflammation, oxidative stress, apoptosis, vascular endothelial damage, foam cell formation, and platelet activation. Furthermore, it triggers the activation of diverse signaling pathways including Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), NF-E2-related factor 2/antioxidant response element (Nrf2/ARE), the Notch signaling pathway, peroxisome proliferator-activated receptor (PPAR), nucleotide oligo-structural domain-like receptor thermoprotein structural domain-associated protein 3 (NLRP3), silencing information regulator 2-associated enzyme 1 (Sirt1), nuclear transcription factor-κB (NF-κB), Circular RNA (Circ RNA), MicroRNA (mi RNA), Transforming growth factor-β (TGF-β), and Janus kinase-signal transducer and activator of transcription (JAK/STAT). Over recent decades, therapeutic approaches for atherosclerosis have been dominated by the utilization of high-intensity statins to reduce lipid levels, despite significant adverse effects. Consequently, there is a growing interest in the development of safer and more efficacious drugs and therapeutic modalities. Traditional Chinese medicine (TCM) offers a vital strategy for the prevention and treatment of cardiovascular diseases. Numerous studies have detailed the mechanisms through which TCM active ingredients modulate signaling molecules and influence the atherosclerotic process. This article reviews the signaling pathways implicated in the pathogenesis of atherosclerosis and the advancements in research on TCM extracts for prevention and treatment, drawing on original articles from various databases including Google Scholar, Medline, CNKI, Scopus, and Pubmed. The objective is to furnish a reference for the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xulong Zhang
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
5
|
Liu JF, Zou B, Xiang C, Yan HC. Comprehensive bioinformatics analysis unveils THEMIS2 as a carcinogenic indicator related to immune infiltration and prognosis of thyroid cancer. Sci Rep 2024; 14:8156. [PMID: 38589421 PMCID: PMC11001958 DOI: 10.1038/s41598-024-58943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of this study was to identify biomarkers associated with the initiation and prognosis of thyroid cancer and elucidate the underlying pathogenic mechanisms. We obtained expression profiles and clinical information from the Cancer Genome Atlas (TCGA)-THCA and three datasets (GSE53157, GSE82208, and GSE76039). The three microarray datasets were combined using Perl and the sva package in R and termed 'merged dataset'. Weighted gene co-expression network analysis (WGCNA) identified 15 gene co-expression modules in the merged dataset and 235 hub genes. Venn diagram analysis revealed 232 overlapping genes between the merged and THCA datasets. Overlapping genes were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The least absolute shrinkage and selection operator (LASSO) regression identified THEMIS2 as a candidate hub gene. Cox, Kaplan-Meier (K-M) survival and gene set enrichment analysis (GSEA) confirmed the correlation of THEMIS2 with overall survival, its enrichment in immunologic processes, and its association with the p53 and JAK-STAT signaling pathways. Its expression was positively correlated with those of immune checkpoints and the infiltration level of immune cells. Receiver operating characteristic curve (ROC) analysis confirmed that THEMIS2, a diagnostic biomarker, could distinguish between tumor and normal specimens. The nomogram (ROC or DCA) model containing THEMIS2, age, and stage predicted favourable prognoses. Thus, THEMIS2 was a biomarker of immune infiltration and prognosis in thyroid cancer.
Collapse
Affiliation(s)
- Jun-Feng Liu
- Head and Neck Breast Department, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Bing Zou
- Breast and Nail Surgery, Feicheng City People's Hospital, Feicheng, 271600, Shandong, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| | - Hai-Chao Yan
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Ren SM, Chang JB, Liu RQ, Jin GY. The novel selective TLR7 agonist GY101 suppresses colon cancer growth by stimulating immune cells. Eur J Pharmacol 2024; 967:176383. [PMID: 38311281 DOI: 10.1016/j.ejphar.2024.176383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Toll-like receptor (TLR) 7, a transmembrane signal transduction receptor expressed on the surface of endosomes, has become an attractive target for antiviral and cancer immunotherapies. TLR7 can induce signal transduction by recognizing single-stranded RNA or its analogs, leading to the release of cytokines such as IL-6, IL-12, TNF-α and type-I IFN. Activation of TLR7 helps to enhance immunogenicity and immune memory by stimulating immune cells. Herein, we identified a novel selective TLR7 agonist, GY101, and determined its ability to activate TLR7. In summary, in vitro, compound GY101 significantly induced the secretion of IL-6, IL-12, TNF-α and IFN-γ in mouse splenic lymphocytes; in vivo, peritumoral injection of GY101 significantly suppressed colon cancer CT26, as well as poorly immunogenic B16-F10 and 4T1 cancer cell-derived tumor growth by activating the infiltration of lymphocytes and polarization of M2-like macrophages into M1-like macrophages. These results demonstrate that GY101, as a potent TLR7 agonist, holds great potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Su-Mei Ren
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jun-Biao Chang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Rui-Qi Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Guang-Yi Jin
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China; Shenzhen Conjugenix Pharmaceutical Technology Company, China.
| |
Collapse
|
7
|
Xu Y, Wang J, He Z, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. A review on the effect of COX-2-mediated mechanisms on development and progression of gastric cancer induced by nicotine. Biochem Pharmacol 2024; 220:115980. [PMID: 38081368 DOI: 10.1016/j.bcp.2023.115980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Smoking is a documented risk factor for cancer, e.g., gastric cancer. Nicotine, the principal tobacco alkaloid, would exert its role of contribution to gastric cancer development and progression through nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-ARs), which then promote cancer cell proliferation, migration and invasion. As a key isoenzyme in conversion of arachidonic acid to prostaglandins, cyclooxygenase-2 (COX-2) has been demonstrated to have a wide range of effects in carcinogenesis and tumor development. At present, many studies have reported the effect of nicotine on gastric cancer by binding to nAChR, as well as indirectly stimulating β-AR to mediate COX-2-related pathways. This review summarizes these studies, and also proposes more potential COX-2-mediated mechanisms. These events might contribute to the growth and progression of gastric cancer exposed to nicotine through tobacco smoke or cigarette substitutes. Also, this review article has therefore the potential not only to make a significant contribution to the treatment and prognosis of gastric cancer for smokers but also to the clinical application of COX-2 antagonists. In addition, this work also discusses the considerable challenges of this field with special reference to the future perspective of COX-2-mediated mechanisms in development and progression of gastric cancer induced by nicotine.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Juan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
8
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Zheng X, Hu N, Liu J, Zhao K, Li H, Wang J, Zhang M, Zhang L, Song L, Lyu Y, Cui M, Ding L, Wang J. Cervicovaginal microbiota disorder combined with the change of cytosine phosphate guanine motif- toll like receptor 9 axis was associated with cervical cancerization. J Cancer Res Clin Oncol 2023; 149:17371-17381. [PMID: 37843556 DOI: 10.1007/s00432-023-05453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Convincing studies demonstrated that cervicovaginal microbiota disorder and toll-like receptor 9 (TLR9) high expression were related to cervical carcinogenesis. However, the effects of cervicovaginal microbiota integration TLR9 in cervical cancerization are unclear. Based on the biological basis that unmethylated cytosine-phosphate-guanine (CpG) motifs of bacteria could activate TLR9, we explored the effects of cervicovaginal microbiota disorder and CpG motif-TLR9 axis change in cervical carcinogenesis. METHODS A total of 341 participants, including 124 normal cervical (NC), 90 low-grade cervical intraepithelial neoplasia (CIN1), 78 high-grade cervical intraepithelial neoplasia (CIN2/3) and 49 squamous cervical cancer (SCC), diagnosed by pathology were enrolled in the study. Here, metagenomic shotgun sequencing was used to reveal cervicovaginal microbiota characteristics, and TLR9 protein was detected by western blotting. RESULTS Our results showed that the diversity of cervicovaginal microbiota gradually increased along with the poor development of cervical lesions, showing the abundance of Lactobacillus crispatus and Lactobacillus iners decreased, while the abundance of pathogenic bacteria gradually increased. The level of TLR9 expression was gradually increased with cervicovaginal microbiota diversity increasing, the abundance of Lactobacillus decreasing, and we found a positive correlation dependency relationship (r = 0.384, P = 0.002) between TLR9 and GTCGTT motif content. Stratified analysis based on HPV16 infection, we found that the characteristics of cervicovaginal microbiota and increased TLR9 expression were also closely related to HPV16 infection. CONCLUSIONS Cervicovaginal microbiota dysbiosis might lead to the CpG motif increased, which was closely associated with TLR9 high expression, and ultimately might promote the progression of cervical lesions.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Nan Hu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Jiamin Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Kailu Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Huimin Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Jiahao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Mingxuan Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Le Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Meng Cui
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China.
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
10
|
Zhang W, Liu X, Cao S, Zhang Q, Chen X, Luo W, Tan J, Xu X, Tian J, Saw PE, Luo B. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. ACS NANO 2023; 17:14424-14441. [PMID: 37498878 DOI: 10.1021/acsnano.2c12498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High expression of programmed death ligand 1 (PD-L1) and strong immune evasion ability of the tumor microenvironment (TME) are maintained through mutual regulation between different immune and stromal cells, which causes obstructions for cancer immunotherapy, especially immunosuppressive M2-like phenotype tumor-associated macrophages (TAMs). Repolarization of TAMs to the M1-like phenotype could secrete proinflammatory cytokines and reverse the immunosuppressive state of the TME. However, we found that reactive oxygen species (ROS) generated by repolarized TAMs could be a double-edged sword: ROS cause a stronger suppressive effect on CD8 T cells through an increased proportion of apoptotic regulatory T (Treg) cells. Thus, simply repolarizing TAMs while ignoring the suppressed function of T cells is insufficient for generating adequate antitumor immunity. Accordingly, we engineered multifunctional redox-responsive nanoplatform NPs (M+C+siPD-L1) with Toll-like receptor agonist (M), catalase (C), and siPD-L1 encased for coregulation of both TAMs and T cells to maximize cancer immunotherapy. Our results demonstrated that NPs (M+C+siPD-L1) showed superior biocompatibility and intratumor accumulation. For in vitro experiments, NPs (M+C+siPD-L1) simultaneously repolarized TAMs to the M1-like phenotype, hydrolyzed extra ROS, knocked down the expression of PD-L1 on tumor cells, and rescued the function of CD8 T cells suppressed by Treg cells. In both orthotopic Hepa1-6 and 4T1 tumor-bearing mouse models, NPs (M+C+siPD-L1) could effectively evoke active systemic antitumor immunity and inhibit tumor growth. The combination of repolarizing TAMs, hydrolyzing extra ROS, and knocking down the expression of PD-L1 proves to be a synergistic approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenyue Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaodi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojiang Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wanrong Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
11
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Fan J, Ding Y, Huang H, Xiong S, He L, Guo J. High expression of ABCF1 is an independent predictor of poor prognosis in bladder cancer. BMC Urol 2023; 23:37. [PMID: 36932399 PMCID: PMC10022215 DOI: 10.1186/s12894-023-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
ABCF1, a member of the ATP-binding cassette (ABC) transporter family, is involved in the malignant progression of tumors. However, the role of ABCF1 in bladder cancer is poorly understood. In our study, we explored the differential expression of ABCF1 in bladder cancer and normal bladder tissues based on bioinformatic analysis and immunohistochemical results. GSEA was performed to ascertain the potential related signaling pathways of ABCF1. The relationship between ABCF1 expression and bladder cancer progression was analyzed using the GSE13507 dataset. In addition, the differential expression of ABCF1 in the cell lines was verified by quantitative real-time polymerase chain reaction (qRT‒PCR) and Western blotting. ABCF1 was upregulated in bladder cancer, and the high expression of ABCF1 was closely related to sex (P = 0.00056), grade (P = 0.00049), T stage (P = 0.00007), and N stage (P = 0.0076). High expression of ABCF1 was correlated with poor overall survival in bladder cancer patients (P < 0.001). In addition, univariate and multivariate Cox regression analyses showed that high ABCF1 expression was an independent factor for poor prognosis in bladder cancer patients. Therefore, ABCF1 expression is closely related to the progression of bladder cancer and can be used as a potential indicator of poor prognosis and a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- JiaWen Fan
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Ding
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - HaoXuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - ShiDa Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang He
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Chang Z, Li H. KLF9 deficiency protects the heart from inflammatory injury triggered by myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:177-185. [PMID: 36815257 PMCID: PMC9968950 DOI: 10.4196/kjpp.2023.27.2.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023]
Abstract
The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Zhihong Chang
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China
| | - Hongkun Li
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China,Correspondence Hongkun Li, E-mail:
| |
Collapse
|
14
|
Imran KM, Ganguly A, Paul T, Powar M, Vlaisavljevich E, Cho CS, Allen IC. Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses. Int J Hyperthermia 2023; 40:2244206. [PMID: 37580047 PMCID: PMC10430775 DOI: 10.1080/02656736.2023.2244206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the treatment of cancer. This includes histotripsy, which is a noninvasive, non-ionizing, non-thermal ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy has the potential to shift the local tumor microenvironment from immunologically 'cold' to 'hot'. This is associated with the production of damage associated molecular patterns, the release of a selection of proinflammatory mediators, and the induction of inflammatory forms of cell death in cells just outside of the treatment zone. In addition to the induction of this innate immune response, histotripsy can also improve engagement of the adaptive immune system and promote systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a limited number of accessible tumors could be a means of maximizing responsiveness to systemic immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical studies are still necessary to verify the presence and repeatability of these phenomena in human patients. As this technology nears regulatory approval for clinical use, it is our expectation that the insights and immunomodulatory mechanisms summarized in this review will serve as directional guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.
Collapse
Affiliation(s)
- Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Manali Powar
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, USA
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
15
|
Vaseghi G, Ghasemi A, Laher I, Alaei H, Dana N, Naji esfahani H, Javanmard SH. Morphine upregulates Toll-like receptor 4 expression and promotes melanomas in mice. Immunopharmacol Immunotoxicol 2022; 45:347-354. [DOI: 10.1080/08923973.2022.2145967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - HojjatAllah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Song X, Greiner-Tollersrud OK, Zhou H. Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer. Dig Dis Sci 2022; 67:3543-3556. [PMID: 34505256 DOI: 10.1007/s10620-021-07245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that oral microbiota play an important role in the esophageal cancer (EC) initiation and progression, suggesting that oral microbiota is a new risk factor for EC. The composition of the microbes inhabiting the oral cavity could be perturbed with continuous factors such as smoking, alcohol consumption, and inflammation. The microbial alteration involves the decrease of beneficial species and the increase of pathogenic species. Experimental evidences suggest a significant role of oral commensal organisms in protecting hosts against EC. By contrast, oral pathogens, especially Porphyromonas gingivalis and Fusobacterium nucleatum, give rise to the risk for developing EC through their pro-inflammatory and pro-tumorigenic activities. The presences of oral dysbiosis, microbial biofilm, and periodontitis in EC patients are found to be associated with invasive cancer phenotypes and poor prognosis. The mechanism of oral bacteria in EC progression is complex, which involves a combination of cytokines, chemokines, oncogenic signaling pathways, cell surface receptors, the degradation of extracellular matrix, and cell apoptosis. From a clinical perspective, good oral hygiene, professional oral care, and rational use of antibiotics bring positive impacts on oral microbial balance, thus helping individuals reduce the risk of EC, inhibiting postoperative complications among EC patients, and improving the efficiency of chemoradiotherapy. However, current oral hygiene practices mainly focus on the oral bacteria-based predictive and preventive purposes. It is still far from implementing microbiota-dependent regulation as a therapy for EC. Further explorations are needed to render oral microbiota a potential target for treating EC.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.,Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Ole K Greiner-Tollersrud
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
18
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Lin G, Yang Y, Feng Q, Zhan F, Sun C, Niu Y, Li G. Prognostic implication and immunotherapy response prediction of a costimulatory molecule signature in kidney renal clear cell carcinoma. Immunogenetics 2022; 74:285-301. [PMID: 35119508 DOI: 10.1007/s00251-021-01246-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 01/13/2023]
Abstract
Costimulatory molecules were considered to be promising and important targets in immunotherapy for various cancers. The present study was intended for generating a costimulatory molecule signature in kidney renal clear cell carcinoma (KIRC), to investigate prognostic implication, elucidate immune atlas, and predict immunotherapy response. All the KIRC samples from the TCGA were randomly divided into the training dataset and the testing dataset in the ratio of 7:3. The Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify 7 key costimulatory molecules which were associated with prognosis and construct a costimulatory molecule prognostic index (CMsPI), which was validated by internal and external datasets and an independent cohort. Patients in the high-CMsPI group had high mortality. Mutation analysis showed the most common mutational genes and variant types. Immune analysis demonstrated CD8+ T cells were infiltrated at a high level in the high-CMsPI group. In combination of analysis of the immune relevant gene signature and the biomarkers of immunotherapy, we may infer there were more dysfunctional CD8+ T cells in the high-CMsPI group, and the patients of this group were less sensitive to immunotherapy. A nomogram was constructed, and the concordance index was 0.77 (95% CI: 0.74-0.79). Three key signaling pathways were identified to facilitate tumor progression. The CMsPI can be regarded as a promising biomarker for predicting individual prognosis and assessing immunotherapy response in KIRC patients.
Collapse
Affiliation(s)
- Gaoteng Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Yuanyuan Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China.,Department of Urology, Dezhou People's Hospital, Dezhou, 253000, Shandong, China
| | - Qingfu Feng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Fangfang Zhan
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351106, China
| | - Chuangxin Sun
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China.
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
20
|
Jeong H, Lee SY, Seo H, Kim DH, Lee D, Kim BJ. Potential of Mycobacterium tuberculosis chorismate mutase (Rv1885c) as a novel TLR4-mediated adjuvant for dendritic cell-based cancer immunotherapy. Oncoimmunology 2022; 11:2023340. [PMID: 35083095 PMCID: PMC8786331 DOI: 10.1080/2162402x.2021.2023340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For clinical application by dendritic cell (DC)-based cancer immunotherapy, a proper adjuvant system to elicit a strong anticancer immune response is needed. Here, we investigated the potential of chorismate mutase (TBCM, Rv1885c), a putative Mycobacterium tuberculosis (TB) virulence factor, as an immunoadjuvant in DC-based tumor immunotherapy. First, we found that TBCM functionally activated DCs by upregulating costimulatory molecules, increasing the secretion of proinflammatory cytokines, enhancing migration and inducing the Th1-type immune response in a dose-dependent manner via TLR4-mediated signaling. In addition, subcutaneous injection of TBCM-activated DCs loaded with cell lysates led to reduced tumor mass, enhanced mouse survival and lowered tumor incidence in lung carcinoma (LLC) cell-bearing mice. This is mainly mediated by functional cytotoxic T lymphocyte-mediated oncolytic activity and inhibition of cancer proliferation- and metastasis-related genes. Moreover, TBCM-induced DCs can also generate memory CD4 T cells and exert long-term tumor prevention effects. In conclusion, our findings suggest that TBCM (Rv1885c), a novel TLR4 agonist, could be used as an immunoadjuvant for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 Four Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 Four Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Duhyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| |
Collapse
|
21
|
Che P, Jiang S, Zhang W, Zhu H, Hu D, Wang D. A comprehensive gene expression profile analysis of prostate cancer cells resistant to paclitaxel and the potent target to reverse resistance. Hum Exp Toxicol 2022; 41:9603271221129854. [PMID: 36165000 DOI: 10.1177/09603271221129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Paclitaxel resistance is the major clinical obstacle in the chemotherapy of prostate cancer (PCa), but the resistant mechanism is less investigated.Purpose: To establish two paclitaxel-resistant PCa cells, provide a comprehensive gene expression profile analysis of resistant cells and the potential target to reverse resistance.Methods: Two Paclitaxel-resistant PCa cells (PC3/PR, LNcap/PR) were established by gradually increasing drug concentration. MTT and transwell assays were performed to detect drug sensitivity, cell proliferation and migration abilities. RNA-Sequencing (RNA-seq) and bioinformatic analyses were performed to identify abnormally expressed genes (AEGs) in resistant cells, and annotate the biological functions of AEGs. The role of the candidate AEG, TLR-4, on the resistant phenotypes was further investigated.Results: The resistance index of resistant cells was 2-3, and they showed a slower proliferation and increased migration ability. 4741 AEGs were screened out (Log2fold change absolute: log2FC(abs) > 1) in the resistant cells, and they were enriched in 2'-5'-oligoadenylate synthetase activity and chemical carcinogenesis. A number of AEGs, CCND2, IGFBP3, FOS, SHH, ZEB2, and members of FGF, FGFR and WNT families were also identified to be involved in cancer- and resistant phenotype-related processes. Finally, TLR-4 was validated significantly increased in resistant cells, and knockdown of TLR-4 increased drug-sensitivity, inhibited the proliferation and migration abilities.Conclusions: The study provided a comprehensive gene expression profile of paclitaxel-resistant PCa cells, and TLR-4 could be a potential target to reverse paclitaxel resistance.
Collapse
Affiliation(s)
- Ping Che
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Surgery, Maternity and Child Health Hospital of Chongqing Hechuan, Chongqing, China
| | - Shihao Jiang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang Zhang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huixuan Zhu
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daorong Hu
- Department of Urology, 573428People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Delin Wang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
23
|
Guney Eskiler G, Deveci Özkan A. The relationship between the efficacy of talazoparib and the functional toll-like receptors 3 and 9 in triple negative breast cancer. Mol Immunol 2021; 141:280-286. [PMID: 34906906 DOI: 10.1016/j.molimm.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by inhibiting the repair of DNA strand breaks binding to PARP and regulate immune cells functions. Toll-like receptors (TLRs) mediate the tumor microenvironment through the modulation of proinflammatory cytokines and chemokines. In this context, this study addressed the relationship between the efficacy of talazoparib (TAL) as a PARPi and the activation of TLR3 or TLR9 by Polyinosinic:polycytidylic acid (Poly I:C) or CpG oligodeoxynucleotides (CpG-ODN) stimulation, respectively in triple negative breast cancer (TNBC). TAL alone and the combination of TAL with Poly I:C or CpG-ODN induced cell death were analyzed by water-soluble tetrazolium salt 1 (WST-1), Annexin V analysis, acridine orange staining and mRNA levels of caspase-3 and caspase-8 in HCC1937 and HCC1937-R (TAL resistant) TNBC cells. Additionally, the expression of TLR3, TLR9 and interferon regulatory factor 7 (IRF7) was observed with immunofluorescence staining and western blot analysis. Our findings showed that TAL induced TLR3 and TLR9 activation and acted in synergy with TLR3 and TLR9 agonists in TNBC cells. The stimulation of TLR3 or TLR9 and TAL treatment caused significantly more apoptosis in TNBC cells through the over-expression of caspase-3 and caspase-8. Additionally, TAL combined with Poly I:C or CpG-ODN more increased TLR3, TLR9 and IRF7 protein levels in HCC1937 cells and treatment with TAL and Poly I:C had greater potential for overcoming TAL resistance. In conclusion, the combination of PARPi with TLR agonists may be a new therapeutic combined strategy for the effective immunotherapy of TNBC.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Asuman Deveci Özkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
24
|
Regulation of TLR4 signaling through the TRAF6/sNASP axis by reversible phosphorylation mediated by CK2 and PP4. Proc Natl Acad Sci U S A 2021; 118:2107044118. [PMID: 34789577 DOI: 10.1073/pnas.2107044118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of invading pathogens by Toll-like receptors (TLRs) activates innate immunity through signaling pathways that involved multiple protein kinases and phosphatases. We previously demonstrated that somatic nuclear autoantigenic sperm protein (sNASP) binds to TNF receptor-associated factor 6 (TRAF6) in the resting state. Upon TLR4 activation, a signaling complex consisting of TRAF6, sNASP, interleukin (IL)-1 receptor-associated kinase 4, and casein kinase 2 (CK2) is formed. CK2 then phosphorylates sNASP to release phospho-sNASP (p-sNASP) from TRAF6, initiating downstream signaling pathways. Here, we showed that protein phosphatase 4 (PP4) is the specific sNASP phosphatase that negatively regulates TLR4-induced TRAF6 activation and its downstream signaling pathway. Mechanistically, PP4 is directly recruited by phosphorylated sNASP to dephosphorylate p-sNASP to terminate TRAF6 activation. Ectopic expression of PP4 specifically inhibited sNASP-dependent proinflammatory cytokine production and downstream signaling following bacterial lipopolysaccharide (LPS) treatment, whereas silencing PP4 had the opposite effect. Primary macrophages and mice infected with recombinant adenovirus carrying a gene encoding PP4 (Ad-PP4) showed significant reduction in IL-6 and TNF-α production. Survival of Ad-PP4-infected mice was markedly increased due to a better ability to clear bacteria in a sepsis model. These results indicate that the serine/threonine phosphatase PP4 functions as a negative regulator of innate immunity by regulating the binding of sNASP to TRAF6.
Collapse
|
25
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
26
|
Gonzalez I, Araya P, Schneider I, Lindner C, Rojas A. Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiol 2021; 16:1229-1238. [PMID: 34615380 DOI: 10.2217/fmb-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent, affecting 4.4 billion people globally. This pathogen is a risk factor in the pathogenesis of more than 75% of worldwide cases of gastric cancer. Pattern recognition receptors are essential in the innate immune response to H. pylori infection. They recognize conserved pathogen structures and myriad alarmins released by host cells in response to microbial components, cytokines or cellular stress, thus triggering a robust proinflammatory response, which is crucial in H. pylori-induced gastric carcinogenesis. In this review, we intend to highlight the main pattern recognition receptors involved in the recognition and host response to H. pylori, as well as the main structures recognized and the subsequent inflammatory response.
Collapse
Affiliation(s)
- Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Paulina Araya
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Ivan Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| |
Collapse
|
27
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
A Combined TLR7/TLR9/GATA3 Score Can Predict Prognosis in Biliary Tract Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091597. [PMID: 34573939 PMCID: PMC8469358 DOI: 10.3390/diagnostics11091597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biliary tract cancer (BTC) refers to a heterogenous group of epithelial malignancies arising along the biliary tree. The highly aggressive nature combined with its silent presentation contribute to the dismal prognosis of this tumor. Tumor-infiltrating immune cells (TIICs) are frequently present in BTC and there is growing evidence regarding their role as therapeutic targets. In this study, we analyzed the immune cell infiltration in BTC and developed a promising immune signature score to predict prognosis in BTC. Immunohistochemistry (IHC) was carried out on tissue microarray sections from 45 patients with resectable cholangiocarcinoma for the detection of 6-sulfoLacNAc+ monocytes (slanMo), BDCA-2+ plasmacytoid dendritic cells (pDC), CD8+ or CD4+T-lymphocytes, CD103+ cells, GATA3+ cells, Toll-like receptor (TLR) 3, 7 and 9-expressing cells as well as programmed cell death protein 1 and programmed cell death ligand 1 positive cells. Data from the IHC staining were analyzed and correlated with clinicopathological and survival data. High expression of TLR7, TLR9, and GATA3 was associated with improved overall survival (OS, Log-rank p < 0.05). In addition, TLR9 was associated with better disease-free survival (Log-rank p < 0.05). In the multivariate Cox proportional-hazards model for OS, the TLR/TLR9/GATA3 score was found to be an independent prognostic factor for OS (“Score 2” vs. “Score 0”: HR 11.17 95% CI 2.27–54.95, p < 0.01).
Collapse
|
29
|
Kong W, Zhao G, Chen H, Wang W, Shang X, Sun Q, Guo F, Ma X. Analysis of therapeutic targets and prognostic biomarkers of CXC chemokines in cervical cancer microenvironment. Cancer Cell Int 2021; 21:399. [PMID: 34321012 PMCID: PMC8317415 DOI: 10.1186/s12935-021-02101-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background The tumor microenvironment (TME) has received an increasing amount of attention. CXC chemokines can regulate immune cell transport and tumor cell activity to exert anti-tumor immunity. However, studies on the expression and prognosis of CXC chemokines in cervical cancer (CC) are more limited. Methods The study investigated the role of CXC chemokines in TME of CC by using public databases. Moreover, quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) of CXC chemokines were performed to further verify. Results The transcriptional levels of CXCL1/3/5/6/8/9/10/11/13/16/17 in CC tissues were significantly elevated while the transcriptional levels of CXCL12/14 were significantly reduced. We reached a consistent conclusion that the expression of CXCL9/10/11/13 was verified by quantitative real-time PCR and immunohistochemistry. Moreover, CC patients with low transcriptional levels of CXCL1/2/3/4/5/8 were significantly associated with longer overall survival (OS). The CCL family was related to CXC chemokines neighboring alteration. RELA, NFKB1, LCK and PAK2 were the key transcription factors and kinase targets of CXC chemokines, respectively. We also found there were significant correlations between the expression of CXCL9/10/11 and the infiltration of immune cells (CD8+ T cell, CD4+ T cell, neutrophils and dendritic cells). Conclusions In brief, we conducted a comprehensive analysis of CXC chemokines via clinical data and some online public databases. Our results may provide a new idea for the selection of immunotherapeutic targets and prognostic biomarkers for cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02101-9.
Collapse
Affiliation(s)
- Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, No 789 Suzhou Road, Ürümqi, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Ürümqi, China
| | - Haixia Chen
- Department of Pathology, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, China
| | - Weina Wang
- Department of Pathology, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, China
| | - Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, No 789 Suzhou Road, Ürümqi, China
| | - Qiannan Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, No 789 Suzhou Road, Ürümqi, China
| | - Fan Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, No 789 Suzhou Road, Ürümqi, China.
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, No 789 Suzhou Road, Ürümqi, China.
| |
Collapse
|
30
|
Lu JL, Xia QD, Sun Y, Xun Y, Hu HL, Liu CQ, Sun JX, Xu JZ, Hu J, Wang SG. Toll-Like Receptor 4 as a Favorable Prognostic Marker in Bladder Cancer: A Multi-Omics Analysis. Front Cell Dev Biol 2021; 9:651560. [PMID: 34141706 PMCID: PMC8204102 DOI: 10.3389/fcell.2021.651560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background The toll-like receptor 4 (TLR4) agonist, Bacille Calmette-Guérin, has exhibited gratifying effects in treating bladder cancer. The study aims to explore the expression pattern, prognostic value, and potential mechanism of TLR4 in bladder cancer. Methods The transcriptome file from the GSE13507 dataset in the Gene Expression Omnibus database and the promoter methylation file from the bladder cancer dataset in The Cancer Genome Atlas database were downloaded for analysis. The prognostic value of the TLRs was assessed by univariate Cox regression. Immunohistochemistry was applied to verify the expression of TLR4 in bladder cancer. The drug response is estimated through the R package “pRRophetic.” The CIBERSORT algorithm was carried out to estimate the infiltrating immune cells of samples. Gene Set Enrichment Analysis (GSEA) was performed to identify the pathways involved under varied TLR4 expression levels. Results TLR4 is decreased in tumor tissues compared with surrounding tumor tissues or normal tissue, which is also positively correlated to the overall survival rate (hazard ratio [HR] = 0.38) and cancer-specific survival rate (HR = 0.15) of patients with bladder cancer. Low expression of TLR4 is observed in tumors with malignant performance (high pathological grade, higher tumor stage, and progression). Patients with low TLR4 levels are more sensitive to gemcitabine rather than cisplatin. The promoter methylation level of TLR4 is positively associated with TLR4 expression (P < 0.001). The cg14629571 methylation site largely contributes to the overall methylation level. The CIBERSORT analysis shows that high TLR4 expression is associated with lower levels of plasma cells, M0 macrophages, and M1 macrophages. The GSEA results indicate that the TGF-β pathway and apoptosis are activated in high TLR4 bladder cancer, while G2M checkpoint and E2F targets pathways are enriched in low TLR4 bladder cancer. Conclusion This research discusses the abnormal expression and prognostic value of TLR4 in bladder cancer. The TLR4 expression can effectively predict oncological outcomes and drug sensitivity of bladder cancer patients. TLR4 is also associated with infiltrating immune cell variation and cancer pathway dysregulation. The results provide a novel prognostic marker and potential drug targets for bladder cancer.
Collapse
Affiliation(s)
- Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-Long Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Chen Y, Liu X, Guo Y, Wang J, Zhang D, Mei Y, Shi J, Tan W, Zheng JH. Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater 2021; 124:72-87. [PMID: 33561563 DOI: 10.1016/j.actbio.2021.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Drug delivery systems based on genetically engineered oncolytic bacteria have properties that cannot be achieved by traditional therapeutic interventions. Thus, they have attracted considerable attention in cancer therapies. Attenuated bacteria can specifically target and actively penetrate tumor tissues and play an important role in cancer suppression as the "factories" of diverse anticancer drugs. Over the past decades, several bacterial strains including Salmonella and Clostridium have been shown to effectively retard tumor growth and metastasis, and thus improve survival in preclinical models or clinical cases. In this review, we summarize the unique properties of oncolytic bacteria and their anticancer mechanisms and highlight the particular advantages compared with traditional strategies. With the current research progress, we demonstrate the potential value of oncolytic bacteria-based drug delivery systems for clinical applications. In addition, we discuss novel strategies of cancer therapies integrating oncolytic bacteria, which will provide hope to further improve and standardize the current regimens in the near future.
Collapse
|
32
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
34
|
Choi Y, Park C, Kwon D, Lee H, Hong S, Kim GY, Cha HJ, Kim DH, Kim S, Kim HS, Hwang HJ. Immunostimulatory effect of ethanol extract of Chondracanthus tenellus in RAW 264.7 macrophages in vitro. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Critical role of TLR4 in uncovering the increased rewarding effects of cocaine and ethanol induced by social defeat in male mice. Neuropharmacology 2020; 182:108368. [PMID: 33132187 DOI: 10.1016/j.neuropharm.2020.108368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Substance use disorders and social stress are currently associated with changes in the immune system response by which they induce a proinflammatory state in neurons and glial cells that eventually modulates the reward system. AIMS The aim of the present work was to assess the role of the immune TLR4 (Toll-like receptors 4) and its signaling response in the increased contextual reinforcing effects of cocaine and reinforcing effects of ethanol (EtOH) induced by social defeat (SD) stress. METHODS Adult male C57BL/6 J wild-type (WT) mice and mice deficient in TLR4 (TLR4-KO) were assigned to experimental groups according to stress condition (exploration or SD). Three weeks after the last SD, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg), while another set underwent EtOH 6% operant self-administration (SA). Several inflammatory molecules were analyzed in the hippocampus and the striatum. RESULTS SD induced higher vulnerability to the conditioned rewarding effects of cocaine only in defeated WT mice. Similarly, defeated WT mice exhibited higher 6% EtOH consumption, an effect that was not observed in the defeated TLR4-KO group. However, the motivation to obtain the drug was observed in both genotypes of defeated animals. Notably, a significant upregulation of the protein proinflammatory markers NFkBp-p65, IL-1β, IL-17 A and COX-2 were observed only in the defeated WT mice, but not in their defeated TLR4-KO counterparts. CONCLUSIONS These results suggest that TLR4 receptors mediate the neuroinflammatory response underlying the increase in the rewarding effects of cocaine and EtOH induced by social stress.
Collapse
|
36
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
37
|
Park C, HwangBo H, Lee H, Kim GY, Cha HJ, Choi SH, Kim S, Kim HS, Yun SJ, Kim WJ, Jeon YJ, Choi YH. The immunostimulatory effect of indole-6-carboxaldehyde isolated from Sargassum thunbergii (Mertens) Kuntze in RAW 264.7 macrophages. Anim Cells Syst (Seoul) 2020; 24:233-241. [PMID: 33029301 PMCID: PMC7473310 DOI: 10.1080/19768354.2020.1808529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indole-6-carboxaldehyde (I6CA), an indole derivative isolated from the marine brown algae Sargassum thunbergii, is known to have several beneficial effects, but no studies on immune regulation have been conducted. In this study, the immunomodulatory properties of I6CA on murine RAW 264.7 monocyte/macrophage cells were evaluated. As the concentration of I6CA increased, the morphology of RAW 264.7 cells changed to a typical active macrophage shape, and the phagocytic activity increased significantly. I6CA effectively enhanced the production and secretion of immunomodulatory mediators and cytokines due to increased expression of their respective genes. Additionally, I6CA markedly stimulated the expression of Toll-like receptor 4 (TLR4) and its adapter molecule, myeloid differentiation factor 88 (Myd88), and increased TLR4 complexed with Myd88. Furthermore, I6CA promoted the nuclear translocation of nuclear factor-kappa B (NF-κB) by increasing the degradation of the inhibitor of NF-κB-α. Meanwhile, similar trends were also found in lipopolysaccharide-treated cells as a positive control. Furthermore, molecular docking simulation showed that I6CA interacted with TLR4-myeloid differentiation 2 complex. Taken together, the results support the concept that I6CA may increase the activity of the TLR4/NF-κB signaling pathway in order to enhance the immunomodulatory activity of RAW 264.7 cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, Republic of Korea
| | - Hyun HwangBo
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|