1
|
Moreno RJ, Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2024:S0889-1591(24)00649-4. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
2
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
3
|
Sergio I, Varricchio C, Patel SK, Del Gaizo M, Russo E, Orlando A, Peruzzi G, Ferrandino F, Tsaouli G, Coni S, Peluso D, Besharat ZM, Campolo F, Venneri MA, Del Bufalo D, Lai S, Indraccolo S, Minuzzo S, La Starza R, Bernardini G, Screpanti I, Campese AF, Felli MP. Notch3-regulated microRNAs impair CXCR4-dependent maturation of thymocytes allowing maintenance and progression of T-ALL. Oncogene 2024; 43:2535-2547. [PMID: 38907003 DOI: 10.1038/s41388-024-03079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Martina Del Gaizo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Orlando
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York NY, USA
| | | | | | - Georgia Tsaouli
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Peluso
- Ph.D School of Applied Medical-Surgical Sciences, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Lai
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Indraccolo
- Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Sonia Minuzzo
- Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Roberta La Starza
- Hematology Section, Department of Medicine and Surgery, and S. Maria Della Misericordia Hospital Perugia, CREO, Perugia, Italy
| | | | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Patel SK, Zhdanovskaya N, Sergio I, Cardinale A, Rosichini M, Varricchio C, Pace E, Capalbo C, Locatelli F, Macone A, Velardi E, Palermo R, Felli MP. Thymic-Epithelial-Cell-Dependent Microenvironment Influences Proliferation and Apoptosis of Leukemic Cells. Int J Mol Sci 2024; 25:1412. [PMID: 38338689 PMCID: PMC10855934 DOI: 10.3390/ijms25031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.
Collapse
Affiliation(s)
- Sandesh Kumar Patel
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 12631 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00161 Roma, Italy;
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
5
|
Canevarolo RR, Cury NM, Yunes JA. The Expression and Activation of the NF-κB Pathway Correlate with Methotrexate Resistance and Cell Proliferation in Acute Lymphoblastic Leukemia. Genes (Basel) 2023; 14:1880. [PMID: 37895229 PMCID: PMC10606671 DOI: 10.3390/genes14101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although its prognosis continually improves with time, a significant proportion of patients still relapse from the disease because of the leukemia's resistance to therapy. Methotrexate (MTX), a folic-acid antagonist, is a chemotherapy agent commonly used against ALL and as an immune-system suppressant for rheumatoid arthritis that presents multiple and complex mechanisms of action and resistance. Previous studies have shown that MTX modulates the nuclear factor kappa B (NF-κB) pathway, an important family of transcription factors involved in inflammation, immunity, cell survival, and proliferation which are frequently hyperactivated in ALL. Using a gene set enrichment analysis of publicly available gene expression data from 161 newly diagnosed pediatric ALL patients, we found the Tumor necrosis factor α (TNF-α) signaling pathway via NF-κB to be the most enriched Cancer Hallmark in MTX-poor-responder patients. A transcriptomic analysis using a panel of ALL cell lines (six B-cell precursor acute lymphoblastic leukemia and seven T-cell acute lymphoblastic leukemia) also identified the same pathway as differentially enriched among MTX-resistant cell lines, as well as in slowly dividing cells. To better understand the crosstalk between NF-κB activity and MTX resistance, we genetically modified the cell lines to express luciferase under an NF-κB-binding-site promoter. We observed that the fold change in NF-κB activity triggered by TNF-α (but not MTX) treatment correlated with MTX resistance and proliferation across the lines. At the individual gene level, NFKB1 expression was directly associated with a poorer clinical response to MTX and with both an increased TNF-α-triggered NF-κB activation and MTX resistance in the cell lines. Despite these results, the pharmacological inhibition (using BAY 11-7082 and parthenolide) or stimulation (using exogenous TNF-α supplementation) of the NF-κB pathway did not alter the MTX resistance of the cell lines significantly, evidencing a complex interplay between MTX and NF-κB in ALL.
Collapse
Affiliation(s)
| | - Nathalia Moreno Cury
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
| | - José Andrés Yunes
- Centro de Pesquisa Boldrini, Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil; (R.R.C.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil
| |
Collapse
|
6
|
Liu S, Chen Y, Li T, Qiao L, Yang Q, Rong W, Liu Q, Wang W, Song J, Wang X, Liu Y. Effects of 17α-Methyltestosterone on the Transcriptome and Sex Hormones in the Brain of Gobiocypris rarus. Int J Mol Sci 2023; 24:ijms24043571. [PMID: 36834982 PMCID: PMC9966397 DOI: 10.3390/ijms24043571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
17α-Methyltestosterone (MT), a synthetic environmental endocrine disruptor with androgenic effects, has been shown to disrupt the reproductive system and inhibit germ cell maturation in Gobiocypris rarus. To further investigate the regulation of gonadal development by MT through the hypothalamic-pituitary-gonadal (HPG) axis, G. rarus were exposed to 0, 25, 50, and 100 ng/L of MT for 7, 14, and 21 days. We analyzed its biological indicators, gonadotropin-releasing hormone (GnRH), gonadotropins, reproduction-related gene expression, and brain tissue transcriptome profiles. We found a significant decrease in the gonadosomatic index (GSI) in G. rarus males exposed to MT for 21 days compared to the control group. GnRH, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels, as well as the expressions of the gnrh3, gnrhr1, gnrhr3, fshβ, and cyp19a1b genes, were significantly reduced in the brains of both male and female fish when exposed to 100 ng/L MT for 14 days compared to the controls. Therefore, we further constructed four RNA-seq libraries from 100 ng/L MT-treated groups of male and female fish, obtaining 2412 and 2509 DEGs in male and female brain tissue, respectively. Three common pathways were observed to be affected in both sexes after exposure to MT, namely, nicotinate and nicotinamide metabolism, focal adhesion, and cell adhesion molecules. Furthermore, we found that MT affected the PI3K/Akt/FoxO3a signaling pathway through the upregulation of foxo3 and ccnd2, and the downregulation of pik3c3 and ccnd1. Therefore, we hypothesize that MT interferes with the levels of gonadotropin-releasing hormone (GnRH, FSH, and LH) in G. rarus brains through the PI3K/Akt/FoxO3a signaling pathway, and affects the expression of key genes in the hormone production pathway (gnrh3, gnrhr1 and cyp19a1b) to interfere with the stability of the HPG axis, thus leading to abnormal gonadal development. This study provides a multidimensional perspective on the damaging effects of MT on fish and confirms that G. rarus is a suitable model animal for aquatic toxicology.
Collapse
|
7
|
Stanley P, Tanwar A. Regulation of myeloid and lymphoid cell development by O-glycans on Notch. Front Mol Biosci 2022; 9:979724. [PMID: 36406268 PMCID: PMC9672378 DOI: 10.3389/fmolb.2022.979724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 10/06/2023] Open
Abstract
Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY, United States
| | | |
Collapse
|
8
|
Wang Y, Zheng J, Wang X, Yang P, Zhao D. Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Front Immunol 2022; 13:1012048. [PMID: 36341376 PMCID: PMC9630648 DOI: 10.3389/fimmu.2022.1012048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous pathogen of viral bronchiolitis and pneumonia in children younger than 2 years of age, which is closely associated with recurrent wheezing and airway hyperresponsiveness (AHR). Alveolar macrophages (AMs) located on the surface of the alveoli cavity are the important innate immune barrier in the respiratory tract. AMs are recognized as recruited airspace macrophages (RecAMs) and resident airspace macrophages (RAMs) based on their origins and roaming traits. AMs are polarized in the case of RSV infection, forming two macrophage phenotypes termed as M1-like and M2-like macrophages. Both M1 macrophages and M2 macrophages are involved in the modulation of inflammatory responses, among which M1 macrophages are capable of pro-inflammatory responses and M2 macrophages are capable of anti-proinflammatory responses and repair damaged tissues in the acute and convalescent phases of RSV infection. Polarized AMs affect disease progression through the alteration of immune cell surface phenotypes as well as participate in the regulation of T lymphocyte differentiation and the type of inflammatory response, which are closely associated with long-term AHR. In recent years, some progress have been made in the regulatory mechanism of AM polarization caused by RSV infection, which participates in acute respiratory inflammatory response and mediating AHR in infants. Here we summarized the role of RSV-infection-mediated AM polarization associated with AHR in infants.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pu Yang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| |
Collapse
|
9
|
Shichkin VP, Felli MP, Screpanti I, Antica M. Editorial: Thymus function and aging: A focus on thymic epithelial cells. Front Immunol 2022; 13:1003490. [PMID: 36059545 PMCID: PMC9429806 DOI: 10.3389/fimmu.2022.1003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentin P. Shichkin
- OmniFarma, Kyiv, Ukraine
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| |
Collapse
|
10
|
Rosichini M, Catanoso M, Screpanti I, Felli MP, Locatelli F, Velardi E. Signaling Crosstalks Drive Generation and Regeneration of the Thymus. Front Immunol 2022; 13:920306. [PMID: 35734178 PMCID: PMC9207182 DOI: 10.3389/fimmu.2022.920306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging. Impaired thymic function increases the risk of infections and tumor antigen escape due to a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic approaches that can promote the renewal of the thymus have the potential to restore immune competence in patients. Previous work has documented the importance of the crosstalk between thymocytes and thymic epithelial cells in establishing correct architecture and function of thymic epithelium. This crosstalk is relevant not only during thymus organogenesis, but also to promote the recovery of its function after injuries. In this review, we will analyze the signals involved in the crosstalk between TECs and hematopoietic cells. We will focus in particular on how signals from T-cells can regulate TEC function and discuss the relevance of these pathways in restoring thymic function and T-cell immunity in experimental models, as well as in the clinical setting.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Enrico Velardi,
| |
Collapse
|
11
|
Del Gaizo M, Sergio I, Lazzari S, Cialfi S, Pelullo M, Screpanti I, Felli MP. MicroRNAs as Modulators of the Immune Response in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:829. [PMID: 35055013 PMCID: PMC8776227 DOI: 10.3390/ijms23020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.
Collapse
Affiliation(s)
- Martina Del Gaizo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy;
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
12
|
Ganther S, Radaic A, Malone E, Kamarajan P, Chang NYN, Tafolla C, Zhan L, Fenno JC, Kapila YL. Treponema denticola dentilisin triggered TLR2/MyD88 activation upregulates a tissue destructive program involving MMPs via Sp1 in human oral cells. PLoS Pathog 2021; 17:e1009311. [PMID: 34255809 PMCID: PMC8301614 DOI: 10.1371/journal.ppat.1009311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/23/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Nai-Yuan Nicholas Chang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christian Tafolla
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - J. Christopher Fenno
- Department of Biological and Material Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
13
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Li Z, Zhang Q, Su H, Li HY, Cao G, Xu JK, Wang JL, Niu CZ, Zhang F, Yang J, Chen W. miR-5191 acts as a tumor suppressor in salivary adenoid cystic carcinoma by targeting Notch-2. Oral Dis 2021; 28:1871-1881. [PMID: 33694237 DOI: 10.1111/odi.13841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study sought to investigate the effect of miR-5191 on proliferation, invasion and metastasis in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS The differential expression level of miR-5191 between 5 primary tumor and adjacent non-neoplastic samples, and in two SACC cell lines was detected by quantitative real-time PCR. Cell proliferation, invasion, and migration were performed, followed by luciferase reporter assay and western analysis. The effect of miR-5191 on cell proliferation and apoptosis was evaluated by cell growth and apoptosis assay. The function of miR-5191 in SACC tumorigenesis and metastasis in vivo was investigated by nude mice experiment. The associations between miR-5191/Notch-2 expression and clinicopathological features were analyzed. RESULTS miR-5191 was downregulated in primary tumor tissues and SACC-LM cells. By targeting Notch-2, miR-5191 expression level affected the migration, invasion, and proliferation of SACC cells. Overexpression of miR-5191 inhibited the expression levels of Notch-2, followed by the decreased expression of c-Myc, Bcl-2, Hes-1, Hey-1, and Cyclin D1. In vivo, miR-5191 overexpression suppressed the SACC tumorigenesis and pulmonary metastasis in mice. In SACC patients, higher expression of miR-5191 was related to better prognoses and lower possibility of metastasis. CONCLUSIONS miR-5191 acts as a tumor suppressor in SACC by targeting Notch-2.
Collapse
Affiliation(s)
- Zhi Li
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Su
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Hu-Yue Li
- Faculty of Computer Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Cao
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Jin-Ke Xu
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Jun-Lan Wang
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Chun-Zi Niu
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Disease, Department of Prosthodontics, Nanjing Medical University, Nanjing, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Stomatology, Jinling Hospital, Jinling Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
de Araújo Moreira MDR, Sales-Campos H, Fontanari C, Galvão Meireles AF, Borges Prado MK, Zoccal KF, Sorgi CA, Tefé da Silva C, Groppo M, Faccioli LH. The ethanolic extract of Terminalia argentea Mart. & Zucc. bark reduces the inflammation through the modulation of cytokines and nitric oxide mediated by the downregulation of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113150. [PMID: 32730887 DOI: 10.1016/j.jep.2020.113150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. & Zucc. (Combretaceae), popularly known as "capitão do campo", is native from the Brazilian cerrado, which is used in folk medicine to treat inflammatory diseases. AIM OF THE STUDY We aimed to investigate the anti-inflammatory effects, toxicity and mechanisms of action regarding the use of the hydroalcoholic extract of T. argentea bark. MATERIALS AND METHODS Toxicity was determinate in vitro using the macrophage lineage J774.1 without LPS. Cells were treated with 0.5; 2; 8; 32 and 125 μg/mL of the plant extract. Cell viability was assessed by MTT colorimetric assay. The production of nitrite and cytokines was also determined in the supernatants. A NF-κB reporter assay using RAW macrophages was employed to elucidate the impact of the plant extract on the expression of such molecule. In mice, toxicity was assessed by orally given an intermediate to high concentration of the plant extract on a single dose (1000 or 5000 mg/kg) or low and intermediate doses (300 or 1000 mg/kg) twice daily for 14 days. Blood samples were collected for biochemical analysis. The anti-inflammatory activity was assessed using the air-pouch model with or without pre-inoculation with the inflammatory stimuli LPS (0.5 μg/mL), followed by treatment with plant extract at 5, 60 or 300 mg/kg administered in the air pouch (subcutaneous injection). After 4 h, mice were euthanized and the air pouches washed with 2 mL heparinized PBS (10 IU/mL). Then, the local production in the air pouch wash of cytokines, total proteins and leukocytes was assessed. RESULTS No signals of toxicity were observed either in cells or mice. Regardless the concentration used in vitro, the extract exhibited a significant anti-inflammatory activity, as perceived by the reduction of the inflammatory cytokines IL-1β, TNF-α and IL-6 and nitrites on cell supernatants. This was concomitant with a downregulation in NF-κB and elevated levels of IL-10. In mice, similar effects were observed, especially when the plant extract was given at 300 mg/kg, inhibiting the release of IL-1β, TNF-α, IL-6 and proteins, as well as increasing the release of IL-10. CONCLUSIONS Altogether, our results demonstrated that the hydroalcoholic extract of T. argentea bark has anti-inflammatory activity without inducing toxicity in cells or living animals. This activity seems to be chiefly influenced by a downregulation in NF-κB, inflammatory cytokines and production of nitrite along with augmented concentration of IL-10.
Collapse
Affiliation(s)
| | - Helioswilton Sales-Campos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Caroline Fontanari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Alyne Fávero Galvão Meireles
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Morgana Kelly Borges Prado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Karina Furlani Zoccal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos Artério Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Liubomirski Y, Ben-Baruch A. Notch-Inflammation Networks in Regulation of Breast Cancer Progression. Cells 2020; 9:cells9071576. [PMID: 32605277 PMCID: PMC7407628 DOI: 10.3390/cells9071576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the Notch family and chronic inflammation were each separately demonstrated to have prominent malignancy-supporting roles in breast cancer. Recent investigations indicate that bi-directional interactions that exist between these two pathways promote the malignancy phenotype of breast tumor cells and of their tumor microenvironment. In this review article, we demonstrate the importance of Notch-inflammation interplays in malignancy by describing three key networks that act in breast cancer and their impacts on functions that contribute to disease progression: (1) Cross-talks of the Notch pathway with myeloid cells that are important players in cancer-related inflammation, focusing mainly on macrophages; (2) Cross-talks of the Notch pathway with pro-inflammatory factors, exemplified mainly by Notch interactions with interleukin 6 and its downstream pathways (STAT3); (3) Cross-talks of the Notch pathway with typical inflammatory transcription factors, primarily NF-κB. These three networks enhance tumor-promoting functions in different breast tumor subtypes and act in reciprocal manners, whereby Notch family members activate inflammatory elements and vice versa. These characteristics illustrate the fundamental roles played by Notch-inflammation interactions in elevating breast cancer progression and propose that joint targeting of both pathways together may provide more effective and less toxic treatment approaches in this disease.
Collapse
|
17
|
Reichrath J, Reichrath S. A Snapshot of the Molecular Biology of Notch Signaling: Challenges and Promises. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:1-7. [DOI: 10.1007/978-3-030-36422-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|