1
|
Lv J, Zheng K, Jiang C, Yang J, Peng X, Ye H, Zhang Y. Evaluating the diagnostic performance of [ 18F]ALF-NOTA-FAPI-04 PET/CT in gastric cancer: a comparative study with [ 18F]FDG PET/CT. Eur Radiol 2024:10.1007/s00330-024-11219-z. [PMID: 39604653 DOI: 10.1007/s00330-024-11219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE To compare the diagnostic value of [18F]ALF-NOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT) and 18F-fluorodeoxyglucose (FDG) PET/CT in gastric cancer. METHODS This single-center retrospective analysis included 65 patients with gastric cancer who received both [18F]FDG and [18F]ALF-NOTA-FAPI-04 PET/CT for initial staging or restaging. Histopathological manifestations, typical imaging manifestations, follow-up imaging, and comprehensive clinical assessment were used as reference criteria. The uptakes of [18F]FDG and [18F]ALF-NOTA-FAPI-04 PET were compared using the Wilcoxon signed-rank test. McNemar's test was employed to compare the diagnostic performance of the two imaging techniques. RESULTS A total of 65 patients were included (26 male and 39 female; mean age, 54.03 ± 10.41 years), Among them, 10 were newly diagnosed, 46 underwent radical gastrectomy, and 9 received only chemotherapy prior to the study. Compared with [18F]FDG PET/CT, [18F]ALF-NOTA-FAPI-04 PET/CT showed higher sensitivity in primary or recurrent tumors (100% vs. 64.52%, p < 0.001)), lymph node metastases (88.89% vs. 38.89%, p = 0.006), distant metastases (91.18% vs. 50%, p < 0.001). From the semi-quantitative evaluation, the Maximum standardized uptake value (SUVmax) and target-to-background ratio of [18F]ALF-NOTA-FAPI-04 PET/CT were significantly higher than that of [18F]FDG PET/CT in primary or recurrent tumors, lymph node metastases, and distant metastases (all p < 0.001). CONCLUSION Our study results indicate that [18F]ALF-NOTA-FAPI-04 PET/CT outperforms [18F]FDG PET/CT in the detection of primary or recurrent tumors, lymph node metastasis, and distant metastasis in gastric cancer. KEY POINTS Question Early diagnosis and precise staging of gastric cancer are crucial for patient prognosis; however, current imaging techniques still face significant limitations. Findings [18F]ALF-NOTA-FAPI-04 PET/CT demonstrated significantly higher sensitivity than [18F]FDG PET/CT in detecting primary or recurrent tumors and metastases in patients with gastric cancer. Clinical relevance [18F]ALF-NOTA-FAPI-04 PET/CT is an advanced imaging diagnostic technique that significantly enhances the diagnostic accuracy for gastric cancer and its metastatic lesions. This technology provides robust support for clinical decision-making, thereby improving the management of patients with gastric cancer.
Collapse
Affiliation(s)
- Jinghui Lv
- Department of Nuclear Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kai Zheng
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengzhi Jiang
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Yang
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiang Peng
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Ye
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Yanyin Zhang
- Department of PET-CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
2
|
Deininger K, Korf P, Lauber L, Grimm R, Strecker R, Steinacker J, Lisson CS, Mühling BM, Schmidtke-Schrezenmeier G, Rasche V, Speidel T, Glatting G, Beer M, Beer AJ, Thaiss W. From Phantoms to Patients: Improved Fusion and Voxel-Wise Analysis of Diffusion-Weighted Imaging and FDG-Positron Emission Tomography in Positron Emission Tomography/Magnetic Resonance Imaging for Combined Metabolic-Diffusivity Index (cDMI). Diagnostics (Basel) 2024; 14:1787. [PMID: 39202275 PMCID: PMC11353375 DOI: 10.3390/diagnostics14161787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) opens new possibilities in multimodal multiparametric (m2p) image analyses. But even the simultaneous acquisition of positron emission tomography (PET) and magnetic resonance imaging (MRI) does not guarantee perfect voxel-by-voxel co-registration due to organs and distortions, especially in diffusion-weighted imaging (DWI), which would be, however, crucial to derive biologically meaningful information. Thus, our aim was to optimize fusion and voxel-wise analyses of DWI and standardized uptake values (SUVs) using a novel software for m2p analyses. Using research software, we evaluated the precision of image co-registration and voxel-wise analyses including the rigid and elastic 3D registration of DWI and [18F]-Fluorodeoxyglucose (FDG)-PET from an integrated PET/MR system. We analyzed DWI distortions with a volume-preserving constraint in three different 3D-printed phantom models. A total of 12 PET/MR-DWI clinical datasets (bronchial carcinoma patients) were referenced to the T1 weighted-DIXON sequence. Back mapping of scatterplots and voxel-wise registration was performed and compared to the non-optimized datasets. Fusion was rated using a 5-point Likert scale. Using the 3D-elastic co-registration algorithm, geometric shapes were restored in phantom measurements; the measured ADC values did not change significantly (F = 1.12, p = 0.34). Reader assessment showed a significant improvement in fusion precision for DWI and morphological landmarks in the 3D-registered datasets (4.3 ± 0.2 vs. 4.6 ± 0.2, p = 0.009). Most pronounced differences were noted for the chest wall (p = 0.006), tumor (p = 0.007), and skin contour (p = 0.014). Co-registration increased the number of plausible ADC and SUV combinations by 25%. The volume-preserving elastic 3D registration of DWI significantly improved the precision of fusion with anatomical sequences in phantom and clinical datasets. The research software allowed for a voxel-wise analysis and visualization of [18F]FDG-PET/MR data as a "combined diffusivity-metabolic index" (cDMI). The clinical value of the optimized PET/MR biomarker can thus be tested in future PET/MR studies.
Collapse
Affiliation(s)
| | - Patrick Korf
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | - Leonard Lauber
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
| | - Robert Grimm
- Siemens Healthineers AG, 91052 Erlangen, Germany
| | | | - Jochen Steinacker
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Catharina S. Lisson
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Bernd M. Mühling
- Section Thoracic and Vascular Surgery, Department of Cardiac and Thoracic Surgery, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Volker Rasche
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Tobias Speidel
- Experimental Cardiovascular Imaging (ExCaVI), Department of Internal Medicine II, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
| | - Gerhard Glatting
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- Center for Translational Imaging (MoMAN), Ulm University, 89081 Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Core Facility PET/MR, Medical Faculty, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
3
|
Szabó A, Emri M, Tóth Z, Fajtai D, Donkó T, Petneházy Ö, Kőrösi D, Repa I, Takács A, Kisiván T, Gerencsér Z, Ali O, Turbók J, Bóta B, Gömbös P, Romvári R, Kovács M. Measurement of hepatic glucose ( 18F-fluorodeoxyglucose) uptake with positron emission tomography-magnetic resonance imaging in fumonisin B intoxicated rabbit bucks. Sci Rep 2024; 14:18213. [PMID: 39107361 PMCID: PMC11303394 DOI: 10.1038/s41598-024-68210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Rabbit bucks (bodyweight 5 kg) underwent dietary intoxication with fumonisin B series mycotoxins (FB1 + FB2 + FB3, 15 mg/kg diet) for 14 days to test the applicability of positron emission tomography-magnetic resonance (PET MR) hybrid imaging in characterizing experimentally induced mild hepatotoxicosis. 18F-fluorodeoxyglucose (18F-FDG) radiotracer-aided imaging was performed before and after FBs administration on identical animals, and at both time points, blood was sampled for haematology and clinical chemistry. Kinetic PET image analysis revealed time-activity curves with uptake maxima below 1 min in the liver, renal cortex, portal vein, lung and coarctatio aortae. In the frame of static PET image analysis, based on the standardized uptake value (SUV), the so-called metabolic liver volume (MLV, liver volume defined by over 0.9 × average liver SUV) and the total liver glycolysis (TLG, MLV multiplied by the SUVmean) were calculated. Mycotoxicosis increased total liver glycolysis (p < 0.04) after 14 days and liver tissue TLG inhomogeneity was minimal. Pearson correlation between TLG and alkaline phosphatase (ALP) was positive (0.515), while negative with LDH and AST (- 0.721 and - 0.491, respectively). Results indicate a slight hepatic mycotoxin effect and significantly increased glucose uptake intensity, which has been sensitively detected with molecular imaging (18F-FDG PET MRI) in the rabbit model.
Collapse
Affiliation(s)
- András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary.
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary.
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Zoltán Tóth
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Dániel Fajtai
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Tamás Donkó
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Örs Petneházy
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Dénes Kőrösi
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Imre Repa
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Alíz Takács
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Tímea Kisiván
- Medicopus Healthcare Provider and Public Nonprofit Ltd, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Zsolt Gerencsér
- Department of Animal Breeding, Institute of Animal Sciences, Hungarian University of Agricultural and Life Sciences, Kaposvár, Hungary
| | - Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
| | - Janka Turbók
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- National Food Chain Safety Office, Animal Health Directorate, Animal Health Diagnostic Laboratory, Kaposvár, Hungary
| | - Brigitta Bóta
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Patrik Gömbös
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
| | - Róbert Romvári
- Department of Animal Breeding, Institute of Animal Sciences, Hungarian University of Agricultural and Life Sciences, Kaposvár, Hungary
| | - Melinda Kovács
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| |
Collapse
|
4
|
Anil A, Raheja R, Gibu D, Raj AS, Spurthi S. Uncovering the Links Between Dietary Sugar and Cancer: A Narrative Review Exploring the Impact of Dietary Sugar and Fasting on Cancer Risk and Prevention. Cureus 2024; 16:e67434. [PMID: 39310400 PMCID: PMC11415310 DOI: 10.7759/cureus.67434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Over the last several years, the scientific community has grown concerned about the relationship between dietary sugar intake and cancer development. The main causes of concern are the increasing intake of processed foods rich in sugar and the rising incidence of cancer cases. This study aims to uncover the complex relationship between sugar consumption and cancer development and its progression, with a particular focus on investigating whether fasting can protect against this condition. Our review provides a detailed discussion of the molecular aspects of the sugar-cancer relationship and an analysis of the existing literature. It explains how sugar affects cell signaling, inflammation, and hormonal pathways associated with the development of cancer. We also explored the new role of fasting in the prevention of cancer and its impact on cancer patients. This encompasses fasting-triggered autophagy, metabolic alterations, and possible health benefits, which form the major concern of this paper. Thus, by deepening the knowledge of these relations and providing the results of the analysis accompanied by concise and meaningful illustrations to facilitate the understanding of the data, we open the door to the further development of ideas to minimize the rates of cancer and improve overall well-being.
Collapse
Affiliation(s)
- Ashik Anil
- Pharmacology and Therapeutics, East Point Hospital and Research Centre, Bangalore, IND
| | - Ronak Raheja
- Hematology and Medical Oncology, Manipal Hospitals, Bangalore, IND
| | - Diya Gibu
- Biotechnology, SRM Institute of Science and Technology, Chennai, IND
| | - Aravind S Raj
- General Practice, Amrita Institute of Medical Science, Kochi, IND
| | - S Spurthi
- Immuno-Oncology Research, KLE University, Bangalore, IND
| |
Collapse
|
5
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Petranović Ovčariček P, Calderoni L, Campenni A, Fanti S, Giovanella L. Molecular imaging of thyroid and parathyroid diseases. Expert Rev Endocrinol Metab 2024; 19:317-333. [PMID: 38899737 DOI: 10.1080/17446651.2024.2365776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Molecular imaging of thyroid and parathyroid diseases has changed in recent years due to the introduction of new radiopharmaceuticals and new imaging techniques. Accordingly, we provided an clinicians-oriented overview of such techniques and their indications. AREAS COVERED A review of the literature was performed in the PubMed, Web of Science, and Scopus without time or language restrictions through the use of one or more fitting search criteria and terms as well as through screening of references in relevant selected papers. Literature up to and including December 2023 was included. Screening of titles/abstracts and removal of duplicates was performed and the full texts of the remaining potentially relevant articles were retrieved and reviewed. EXPERT OPINION Thyroid and parathyroid scintigraphy remains integral in patients with thyrotoxicosis, thyroid nodules, differentiated thyroid cancer and, respectively, hyperparathyroidism. In the last years positron-emission tomography with different tracers emerged as a more accurate alternative in evaluating indeterminate thyroid nodules [18F-fluorodeoxyglucose (FDG)], differentiated thyroid cancer [124I-iodide, 18F-tetrafluoroborate, 18F-FDG] and hyperparathyroidism [18F-fluorocholine]. Other PET tracers are useful in evaluating relapsing/advanced forms of medullary thyroid cancer (18F-FDOPA) and selecting patients with advanced follicular and medullary thyroid cancers for theranostic treatments (68Ga/177Ga-somatostatin analogues).
Collapse
Affiliation(s)
- Petra Petranović Ovčariček
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Letizia Calderoni
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Campenni
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Nuclear Medicine, University of Messina, Messina, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Giovanella
- Department of Nuclear Medicine, Gruppo Ospedaliero Moncucco, Lugano, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Mallapura H, Tanguy L, Mahfuz S, Bylund L, Långström B, Halldin C, Nag S. Advancements in Microfluidic Cassette-Based iMiDEV™ Technology for Production of L-[ 11C]Methionine and [ 11C]Choline. Pharmaceuticals (Basel) 2024; 17:250. [PMID: 38399466 PMCID: PMC10891588 DOI: 10.3390/ph17020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microfluidic technology is a highly efficient technique used in positron emission tomography (PET) radiochemical synthesis. This approach enables the precise control of reactant flows and reaction conditions, leading to improved yields and reduced synthesis time. The synthesis of two radiotracers, L-[11C]methionine and [11C]choline, was performed, using a microfluidic cassette and an iMiDEVTM module by employing a dose-on-demand approach for the synthesis process. We focused on optimizing the precursor amounts and radiosynthesis on the microfluidic cassette. L-[11C]methionine and [11C]choline were synthesized using a microreactor filled with a suitable resin for the radiochemical reaction. Trapping of the [11C]methyl iodide, its reaction, and solid-phase extraction purification were performed on a microreactor, achieving radiochemical yields of >80% for L-[11C]methionine and >60% for [11C]choline (n = 3). The total synthesis time for both the radiotracers was approximately 20 min. All quality control tests complied with the European Pharmacopeia standards. The dose-on-demand model allows for real-time adaptation to patient schedules, making it suitable for preclinical and clinical settings. Precursor optimization enhanced the cost efficiency without compromising the yield. The importance of dose-on-demand synthesis and optimized precursor utilization to produce L-[11C]methionine and [11C]choline was emphasized in this study. The results demonstrated the feasibility of dose-on-demand adaptations for clinical applications with reduced precursor quantities and high radiochemical yields.
Collapse
Affiliation(s)
- Hemantha Mallapura
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; (H.M.); (S.M.); (C.H.)
| | - Laurent Tanguy
- Business Unit Nuclear Medicine, PMB-Alcen, Route des Michels CD56, F-13790 Peynier, France;
| | - Samin Mahfuz
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; (H.M.); (S.M.); (C.H.)
| | - Lovisa Bylund
- Department of Radiopharmacy, Karolinska University Hospital, SE-17176 Stockholm, Sweden;
| | - Bengt Långström
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden;
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; (H.M.); (S.M.); (C.H.)
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; (H.M.); (S.M.); (C.H.)
| |
Collapse
|
8
|
Li X, Zhang W. Clinical application of real-time PET/CT guided targeted retroperitoneal masses biopsy in diagnosing malignant tumors. BMC Cancer 2023; 23:829. [PMID: 37670264 PMCID: PMC10481464 DOI: 10.1186/s12885-023-11334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVE To explore the feasibility, safety, and clinical application value based on the fusion image of 18 F-FDG PET/CT, for guiding retroperitoneal puncture biopsy technology and to determine the diagnosis of retroperitoneal masses in diagnosing malignant tumors. METHODS From March 2019 to January 2023, 42 patients underwent 18 F-FDG PET/CT imaging and were found to have retroperitoneal lesions that required definite diagnosis; 22 were male, 20 were female, and the average age was(59.17 ± 13.23) years. According to the fused 18 F-FDG PET/CT tomographic image, the target point with the highest metabolic activity, the safest, and expected maximum sample size was selected. CT scans were acquired with the same machine and fused with 18 F-FDG PET, guiding the puncture biopsy needle to approach the expected target zone, enabling timely delivery of pathological and immunohistochemical examination of the biopsy. Success rate, total examination time, biopsy operation time, complications, CT radiation dose, pathological, and immunohistochemical results were recorded. RESULTS All 42 patients were sampled successfully with the successful rate being 100%. The site of sampling of 42 patients accurately targeted the highest metabolic activity, the safest, and the expected maximum sample size. All 42 patients received clear diagnosis (25 cases of malignant tumors and cases of 17 benign tissues). 15 cases of patients had a change in clinical diagnosis, accounting for 35.7% of all patients, and affecting subsequent treatment plans. The average total examination time for patients was (41.3 ± 7.3) minutes, and the biopsy operation time was (29.1 ± 8.7) minutes. The effective radiation dose generated by the entire examination generated by CT guidance was (2.0 ± 0.5) mSv; no severe complications occurred in the patients. CONCLUSION Real-time-guided retroperitoneal puncture biopsy based on 18 F-FDG PET/CT fusion image is safe, accurate, and feasible, and can provide patients of retroperitoneal mass with clear pathological diagnosis and immunohistochemical evaluation.
Collapse
Affiliation(s)
- Xiaomin Li
- Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Longcheng Street NO.99, 030032 Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanchun Zhang
- Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Longcheng Street NO.99, 030032 Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
9
|
Guglielmo P, Alongi P, Baratto L, Abenavoli E, Buschiazzo A, Celesti G, Conte M, Filice R, Gorica J, Jonghi-Lavarini L, Lanzafame H, Laudicella R, Librando M, Linguanti F, Mattana F, Miceli A, Olivari L, Piscopo L, Romagnolo C, Santo G, Vento A, Volpe F, Evangelista L. Head-to-Head Comparison of FDG and Radiolabeled FAPI PET: A Systematic Review of the Literature. Life (Basel) 2023; 13:1821. [PMID: 37763225 PMCID: PMC10533171 DOI: 10.3390/life13091821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
FAPI-based radiopharmaceuticals are a novel class of tracers, mainly used for PET imaging, which have demonstrated several advantages over [18F]FDG, especially in the case of low-grade or well-differentiated tumors. We conducted this systematic review to evaluate all the studies where a head-to-head comparison had been performed to explore the potential utility of FAPI tracers in clinical practice. FAPI-based radiopharmaceuticals have shown promising results globally, in particular in detecting peritoneal carcinomatosis, but studies with wider populations are needed to better understand all the advantages of these new radiopharmaceuticals.
Collapse
Affiliation(s)
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Lucia Baratto
- Department of Radiology, Division of Pediatric Radiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA;
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Ambra Buschiazzo
- Nuclear Medicine Division, Santa Croce and Carle Hospital, 12100 Cuneo, Italy;
| | - Greta Celesti
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (M.L.)
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (J.G.)
| | - Rossella Filice
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.F.); (R.L.)
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (J.G.)
| | - Lorenzo Jonghi-Lavarini
- Department of Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Helena Lanzafame
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.F.); (R.L.)
| | - Maria Librando
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (M.L.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCSS, 20141 Milan, Italy;
| | - Alberto Miceli
- Nuclear Medicine Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Laura Olivari
- Nuclear Medicine Unit, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy;
| | - Leandra Piscopo
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy; (L.P.); (F.V.)
| | - Cinzia Romagnolo
- Department of Nuclear Medicine, “Ospedali Riuniti” Hospital, 60126 Ancona, Italy;
| | - Giulia Santo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Vento
- Nuclear Medicine Department, ASP 1-P.O. San Giovanni di Dio, 92100 Agrigento, Italy;
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy; (L.P.); (F.V.)
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
10
|
Piscopo L, Zampella E, Pellegrino S, Volpe F, Nappi C, Gaudieri V, Fonti R, Vecchio SD, Cuocolo A, Klain M. Diagnosis, Management and Theragnostic Approach of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:3483. [PMID: 37444593 DOI: 10.3390/cancers15133483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) constitute an ideal target for radiolabeled somatostatin analogs. The theragnostic approach is able to combine diagnosis and therapy by the identification of a molecular target that can be diagnosed and treated with the same radiolabeled compound. During the last years, advances in functional imaging with the introduction of somatostatin analogs and peptide receptor radionuclide therapy, have improved the diagnosis and treatment of GEP-NENs. Moreover, PET/CT imaging with 18F-FDG represents a complementary tool for prognostic evaluation of patients with GEP-NENs. In the field of personalized medicine, the theragnostic approach has emerged as a promising tool in diagnosis and management of patients with GEP-NENs. The aim of this review is to summarize the current evidence on diagnosis and management of patients with GEP-NENs, focusing on the theragnostic approach.
Collapse
Affiliation(s)
- Leandra Piscopo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, 80131 Naples, Italy
| |
Collapse
|
11
|
Song Y, Meng X, Cao Z, Zhao W, Zhang Y, Guo R, Zhou X, Yang Z, Li N. Harmonization of standard uptake values across different positron emission tomography/computed tomography systems and different reconstruction algorithms: validation in oncology patients. EJNMMI Phys 2023; 10:19. [PMID: 36920590 PMCID: PMC10017904 DOI: 10.1186/s40658-023-00540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND EQ.PET is a software package that overcomes the reconstruction-dependent variation of standard uptake values (SUV). In this study, we validated the use of EQ.PET for harmonizing SUVs between different positron emission tomography/computed tomography (PET/CT) systems and reconstruction algorithms. METHODS In this retrospective study, 49 patients with various cancers were scanned on a Biograph mCT (mCT) or Gemini TF 16 (Gemini) after [18F]FDG injections. Three groups of patient data were collected: Group 1, patients scanned on mCT or Gemini with data reconstructed using two parameters; Group 2, patients scanned twice on different PET scanners (interval between two scans, 68.9 ± 41.4 days); and Group 3, patients scanned twice using mCT with data reconstructed using different algorithms (interval between two scans, 109.5 ± 60.6 days). The SUVs of the lesions and background were measured, and the tumor-to-background ratios (TBRs) were calculated. In addition, the consistency between the two reconstruction algorithms and confounding factors were evaluated. RESULTS In Group 1, the consistency of SUV and TBR between different reconstruction algorithms improved when the EQ.PET filter was applied. In Group 2, by comparing ΔSUV, ΔSUV%, ΔTBR, and ΔTBR% with and without the EQ.PET, the results showed significant differences (P < 0.05). In Group 3, Bland-Altman analysis of ΔSUV with EQ.PET showed an improved consistency relative to that without EQ.PET. CONCLUSIONS EQ.PET is an efficient tool to harmonize SUVs and TBRs across different reconstruction algorithms. Patients could benefit from the harmonized SUV, ΔSUV, and ΔSUV% for therapy responses and follow-up evaluations.
Collapse
Affiliation(s)
- Yufei Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhen Cao
- Siemens Healthineers Ltd., Shanghai, China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
12
|
Zheng W, Liu L, Feng Y, Wang L, Chen Y. Comparison of 68 Ga-FAPI-04 and fluorine-18-fluorodeoxyglucose PET/computed tomography in the detection of ovarian malignancies. Nucl Med Commun 2023; 44:194-203. [PMID: 36472415 PMCID: PMC9907692 DOI: 10.1097/mnm.0000000000001653] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Currently, fluorine-18-fluorodeoxyglucose ( 18 F-FDG) is the most frequently used diagnostical radiotracer for PET/computed tomography (PET/CT) in ovarian malignancies. However, 18 F-FDG has some limitations. The fibroblast activation protein inhibitor (FAPI) previously demonstrated highly promising results in studies on various tumor entities and 68 Ga-labeled FAPI presents a promising alternative to 18 F-FDG. This study aimed to compare the performance of 68 Ga-FAPI and 18 F-FDG PET/CT for imaging of ovarian malignancies. METHODS A total of 27 patients were included in this retrospective study conducted at the Affiliated Hospital of Southwest Medical University between June 2020 and February 2022. The 18 F-FDG and 68 Ga-FAPI uptakes of tumors, lymph nodes, and distant metastases were quantified using the maximum standardized uptake values, and the tumor-to-background ratios were also evaluated and calculated by using the Wilcoxon signed-rank test. RESULTS Twenty-one patients with suspected ( n = 11) and previously treated ovarian malignancies ( n = 10) were in statistical analysis finally. For detecting tumors, 68 Ga-FAPI PET/CT was more sensitive than 18 F-FDG PET/CT [14 of 14 (100%) vs. 11 of 14 (78%)], lymph node metastases [75 of 75 (100%) vs. 60 of 75 (80%)] and superior to 18 F-FDG PET/CT in terms of the peritoneal and pleural metastases [9 of 9 (100%) vs. 5 of 9 (56%)]. For four of the newly diagnosed patients ( n = 11), 68 Ga-FAPI PET/CT upstaged the clinical stage compared to 18 F-FDG PET/CT. CONCLUSION 68 Ga-FAPI PET/CT has superior potential in the detection of ovarian cancers, especially in peritoneal carcinomatosis. 68 Ga-FAPI PET/CT may be a promising supplement for staging and follow-up of ovarian malignancies.
Collapse
Affiliation(s)
- Wenlu Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Macau
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Lin Liu
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province
- Institute of Nuclear Medicine, Southwest Medical University
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
13
|
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, Wu Z, Liu J, Li B, Wu H, Cheng Z, Wang S, Zhang Y, Xu B, Li S, Shi H. Expert consensus on oncological [ 18F]FDG total-body PET/CT imaging (version 1). Eur Radiol 2022; 33:615-626. [PMID: 35751696 DOI: 10.1007/s00330-022-08960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfendong Road, Guangzhou, 510060, China
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Abdella AEF, Elshafey KI, Sherif MF, Nagy HA. Diagnostic performance of PET/CT in primary malignant bone tumors. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nowadays, PET/CT plays a substantial role in the diagnosis of different types of tumor by its ability to provide combined functional and anatomic imaging in the same session. The purpose of this study is to evaluate the added value of PET/CT in staging and re-staging of primary malignant bone tumors.
Results
Out of the studied 40 patients, 7 patients were referred for primary staging of different types of histologically proven primary malignant bone tumors, their FDG-PET/CT studies yielded additional diagnostic information in 28.6% of them. Thirty three patients were referred either for assessment of treatment response or for follow-up to detect any viable lesions; FDG-PET/CT was more sensitive and specific than CT in follow-up and assessment of treatment response with PET/CT sensitivity 94.4%, specificity 86.7%, and total accuracy 90.9% and CT sensitivity 88.2%, specificity 81.2%, and total accuracy 84.8%.
Conclusions
PET/CT was an accurate imaging modality in evaluation of primary malignant bone tumors regarding tumor staging, assessment of therapeutic response and detection of metastatic disease as compared to CT.
Collapse
|
15
|
Boriani L, Zamparini E, Albrizio M, Serani F, Ciani G, Marconi L, Vommaro F, Greggi T, Fanti S, Nanni C. Spine Infections: the role of Fluorodeoxyglucose Positron Emission Tomography (FDG PET) in the context of the actual diagnosis guideline. Curr Med Imaging 2021; 18:216-230. [PMID: 34530718 PMCID: PMC9241079 DOI: 10.2174/1573405617666210916121046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Spondylodiscitis is an infectious process that requires numerous health care professionals to be clearly diagnosed and eventually successfully treated. It implies a variety of microbiological agents and conditions; during the diagnostic workup, it is difficult to correctly identify them, and the clinician has to rapidly choose the correct treatment to avoid permanent injuries to the patient. In this context, we conducted a review to better understand the most suitable use of Positron Emission Tomography with 18-Fluoro-deossi-glucose (FDG PET) in a patient suspected of spondylodiscitis, based on current guidelines and literature.. We wanted to review the role of FDG PET in the spondylodiscitis diagnosis and follow up in the context of the current guidelines.
Collapse
Affiliation(s)
- Luca Boriani
- Spine Deformity Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna. Italy
| | - Eleonora Zamparini
- Infection Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna. Italy
| | - Mauro Albrizio
- Head of service- Muscuoloskeletal Radiology, Nottingham University Hospitals. 0
| | - Francesca Serani
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna. Italy
| | - Giovanni Ciani
- Spine Deformity Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna. Italy
| | - Lorenzo Marconi
- Infection Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna. Italy
| | - Francesco Vommaro
- Spine Deformity Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna. Italy
| | - Tiziana Greggi
- Spine Deformity Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna. Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna. Italy
| | - Cristina Nanni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna. Italy
| |
Collapse
|
16
|
Cimini A, Ricci M, Gigliotti PE, Pugliese L, Chiaravalloti A, Danieli R, Schillaci O. Medical Imaging in the Diagnosis of Schistosomiasis: A Review. Pathogens 2021; 10:pathogens10081058. [PMID: 34451522 PMCID: PMC8401107 DOI: 10.3390/pathogens10081058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is one of the most important parasitic diseases and it is endemic in tropical and subtropical areas. Clinical and laboratory data are fundamental for the diagnosis of schistosomiasis, but diagnostic imaging techniques such as x-rays, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) may be helpful in the evaluation of disease severity and complications. In this context, the aim of this review is to explore the actual role of diagnostic imaging in the diagnosis of schistosomiasis, underlining advantages and drawbacks providing information about the utilization of diagnostic imaging techniques in this context. Furthermore, we aim to provide a useful guide regarding imaging features of schistosomiasis for radiology and nuclear medicine physicians of non-endemic countries: in fact, in the last years non-endemic countries have experienced important flows of migrants from endemic areas, therefore it is not uncommon to face cases of this disease in daily practice.
Collapse
Affiliation(s)
- Andrea Cimini
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Correspondence: ; Tel.: +39-(06)-20902467
| | - Maria Ricci
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
| | - Paola Elda Gigliotti
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
| | - Luca Pugliese
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Department of Radiology, San Giovanni Calibita Fatebenefratelli Hospital, Via di Ponte di Quattro Capi 39, 00186 Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Nuclear Medicine Section, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Nuclear Medicine Section, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
17
|
Okazaki T, Yokoyama K, Tsuchiya J, Honda T, Ishikawa Y, Kirimura S, Miyazaki Y, Tateishi U. SMARCA4-deficient thoracic tumor detected by [ 18F]FDG PET/CT. Eur J Hybrid Imaging 2021; 5:8. [PMID: 34181162 PMCID: PMC8218169 DOI: 10.1186/s41824-021-00102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background SMARCA4-deficient thoracic tumor (SMARCA4-DTT) is a distinct entity of undifferentiated thoracic malignancies newly introduced in 2015. Due to its unique clinical characteristic with aggressive thoracic tumor mostly observed in heavy smoker man with emphysema, with poor prognosis, many physicians are becoming increasingly aware of the disease; however, reports on 2-deoxy-2-[18F] fluoroglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) have been limited; thus, this disease is not yet widely known to nuclear medicine clinicians. As a first step in discussing the usefulness of [18F]FDG PET/CT for this disease, we present a case in which [18F]FDG PET/CT played a clinically important role. Case A 74-year-old heavy smoker man with an anamnesis of severe emphysema characterized by pleural thickening and abnormal enhancement in CT underwent 18F-FDG PET/CT for further examination. [18F]FDG-avid pleural nodules infiltrating into the chest wall were detected and pathologically diagnosed as SMARCA4-DTT with biopsy. Conclusion SMARCA4-deficient thoracic tumor should be considered in a [18F]FDG-avid aggressive thoracic tumor in heavy smoker men with emphysema.
Collapse
Affiliation(s)
- Tsubasa Okazaki
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Jyunichi Tsuchiya
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Ishikawa
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|