1
|
Hindes MT, McElligott AM, Best OG, Ward MP, Selemidis S, Miles MA, Nturubika BD, Gregory PA, Anderson PH, Logan JM, Butler LM, Waugh DJ, O'Leary JJ, Hickey SM, Thurgood LA, Brooks DA. Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer. Cancer Lett 2025; 611:217441. [PMID: 39755364 DOI: 10.1016/j.canlet.2025.217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis. This review considers glucose and lipid metabolism in CLL and prostate cancer, exploring their roles in healthy and malignant states and during disease progression. In CLL, lipid metabolism supports cell survival and migration, with aggressive disease characterised by increased fatty acid oxidation and altered sphingolipids. Richter's transformation and aggressive lymphoma, however, exhibit a metabolic shift towards increased glycolysis. Similarly, prostate cell metabolism is unique, relying on citrate production in the healthy state and undergoing metabolic reprogramming during malignant transformation. Early-stage prostate cancer cells increase lipid synthesis and uptake, and decrease glycolysis, whereas metastatic cells re-adopt glucose metabolism, likely driven by interactions with the tumour microenvironment. Genetic drivers including TP53 and ATM mutations connect metabolic alterations to disease severity in these two malignancies. The bone microenvironment supports the metabolic demands of these malignancies, serving as an initiation niche for CLL and a homing site for prostate cancer metastases. By comparing these malignancies, this review underscores the importance of metabolic plasticity in cancer progression and highlights how CLL and prostate cancer may be models of circulating and solid tumours more broadly. The metabolic phenotypes throughout cancer cell transformation and metastasis, and the microenvironment in which these processes occur, present opportunities for interventions that could disrupt metastatic processes and improve patient outcomes.
Collapse
Affiliation(s)
- Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Anthony M McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Bukuru D Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David J Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
3
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol 2024; 201:104438. [PMID: 38977145 DOI: 10.1016/j.critrevonc.2024.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, UK
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
4
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Wang B, Pei J, Xu S, Liu J, Yu J. System analysis based on glutamine catabolic-related enzymes identifies GPT2 as a novel immunotherapy target for lung adenocarcinoma. Comput Biol Med 2023; 165:107415. [PMID: 37657356 DOI: 10.1016/j.compbiomed.2023.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND In recent years, targeting glutamine metabolism has gained attention as a promising therapeutic approach. Glutamine catabolic-related enzymes play a crucial role in modulating glutamine metabolism and influencing immune responses in the tumor immune microenvironment (TME). However, current literature on the function of glutamine catabolic enzymes in lung adenocarcinoma (LUAD) is limited. METHODS We validated the glutamine dependency of LUAD cells in vitro, followed by transcriptome data to identify differentially expressed genes (DEGs), with transcriptome and single-cell data analysis utilized to explore the role of such genes within the tumor immune microenvironment. We performed employed subcutaneous injection of lewis lung carcinoma cells in C57BL/6 mice to confirm the role of candidate genes in tumor growth and anti-tumor immunity. RESULTS Our study revealed that glutamine is essential for the growth of LUAD cells. Subsequently, we identified four DEGs - glutamate pyruvate transaminase 1 (GPT1), glutamate pyruvate transaminase 2 (GPT2), glutamic-oxaloacetic transaminase 1 (GOT1), and glutamic-oxaloacetic transaminase 2 (GOT2) - in LUAD patients, which were highly expressed in tumor tissue and associated with an immunosuppressive TME. Single-cell sequencing analysis detected high expression levels of GOT1 and GOT2 in immune and stromal cell subpopulations, while GPT1 and GPT2 showed relatively lower expression. Based on the lower immune score and lower expression in immune and stromal cells, we validated the role of GPT2 in vivo for modulating the TME and tumor growth. Inhibition of GPT2 resulted in suppressed tumor growth and increased the expression of CD4 and CD8. Additionally, GPT2 inhibitors induced a stronger antitumor immunity when used in combination with anti-programmed cell death ligand 1. CONCLUSION This study is the first to show the critical role of glutamine catabolic-related enzymes in the TME, and identified GPT2 as a promising therapeutic target for inhibiting tumor growth and improving anti-tumour immune responses for LUAD. Additional studies will be required to define the roles glutamine catabolic-related enzymes play in LUAD.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
7
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
9
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
10
|
Vecchio E, Caiazza C, Mimmi S, Avagliano A, Iaccino E, Brusco T, Nisticò N, Maisano D, Aloisio A, Quinto I, Renna M, Divisato G, Romano S, Tufano M, D’Agostino M, Vigliar E, Iaccarino A, Mignogna C, Andreozzi F, Mannino GC, Spiga R, Stornaiuolo M, Arcucci A, Mallardo M, Fiume G. Metabolites Profiling of Melanoma Interstitial Fluids Reveals Uridine Diphosphate as Potent Immune Modulator Capable of Limiting Tumor Growth. Front Cell Dev Biol 2021; 9:730726. [PMID: 34604232 PMCID: PMC8486041 DOI: 10.3389/fcell.2021.730726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Teresa Brusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Chiara Mignogna
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
11
|
Kubicka A, Matczak K, Łabieniec-Watała M. More Than Meets the Eye Regarding Cancer Metabolism. Int J Mol Sci 2021; 22:9507. [PMID: 34502416 PMCID: PMC8430985 DOI: 10.3390/ijms22179507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not "give up" on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.
Collapse
Affiliation(s)
- Anna Kubicka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| | - Magdalena Łabieniec-Watała
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| |
Collapse
|
12
|
Salazar J, Le A. The Heterogeneity of Liver Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:127-136. [PMID: 34014539 DOI: 10.1007/978-3-030-65768-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary liver cancer is the fourth leading cause of cancer death around the world. Histologically, it can be divided into two major groups, hepatocellular carcinoma (75% of all liver cancer) and intrahepatic cholangiocarcinoma (15% of all liver cancer) [1, 2]. Primary liver cancer usually happens in liver disease or cirrhosis patients [1], and the risk factors for developing HCC depend on the etiology [3] and the country of provenance [1]. There is an urgent need for an accurate diagnostic test given the high proportion of false positives and false negatives for alpha-fetoprotein (AFP), a common HCC biomarker [4]. Due to often being diagnosed in advanced stages, HCCrelated deaths per year have doubled since 1999 [3]. With the use of metabolomics technologies [5], the aberrant metabolism characteristics of cancer tissues can be discovered and exploited for the new biomarkers and new therapies to treat HCC [6, 7].
Collapse
Affiliation(s)
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
13
|
Li T, Copeland C, Le A. Glutamine Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:17-38. [PMID: 34014532 DOI: 10.1007/978-3-030-65768-0_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a fundamental process for all cellular functions. For decades, there has been growing evidence of a relationship between metabolism and malignant cell proliferation. Unlike normal differentiated cells, cancer cells have reprogrammed metabolism in order to fulfill their energy requirements. These cells display crucial modifications in many metabolic pathways, such as glycolysis and glutaminolysis, which include the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and the pentose phosphate pathway (PPP) [1]. Since the discovery of the Warburg effect, it has been shown that the metabolism of cancer cells plays a critical role in cancer survival and growth. More recent research suggests that the involvement of glutamine in cancer metabolism is more significant than previously thought. Glutamine, a nonessential amino acid with both amine and amide functional groups, is the most abundant amino acid circulating in the bloodstream [2]. This chapter discusses the characteristic features of glutamine metabolism in cancers and the therapeutic options to target glutamine metabolism for cancer treatment.
Collapse
Affiliation(s)
- Ting Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
14
|
Park JK, Coffey NJ, Limoges A, Le A. The Heterogeneity of Lipid Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:39-56. [PMID: 34014533 DOI: 10.1007/978-3-030-65768-0_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The study of cancer cell metabolism has traditionally focused on glycolysis and glutaminolysis. However, lipidomic technologies have matured considerably over the last decade and broadened our understanding of how lipid metabolism is relevant to cancer biology [1-3]. Studies now suggest that the reprogramming of cellular lipid metabolism contributes directly to malignant transformation and progression [4, 5]. For example, de novo lipid synthesis can supply proliferating tumor cells with phospholipid components that comprise the plasma and organelle membranes of new daughter cells [6, 7]. Moreover, the upregulation of mitochondrial β-oxidation can support tumor cell energetics and redox homeostasis [8], while lipid-derived messengers can regulate major signaling pathways or coordinate immunosuppressive mechanisms [9-11]. Lipid metabolism has, therefore, become implicated in a variety of oncogenic processes, including metastatic colonization, drug resistance, and cell differentiation [10, 12-16]. However, whether we can safely and effectively modulate the underlying mechanisms of lipid metabolism for cancer therapy is still an open question.
Collapse
Affiliation(s)
- Joshua K Park
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan J Coffey
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Limoges
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
15
|
Camelo F, Le A. The Intricate Metabolism of Pancreatic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:77-88. [PMID: 34014535 DOI: 10.1007/978-3-030-65768-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, approximately 95% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC), which are the most aggressive form and the fourth leading cause of cancer death with extremely poor prognosis [1]. Poor prognosis is primarily attributed to the late diagnosis of the disease when patients are no longer candidates for surgical resection [2]. Cancer cells are dependent on the oncogenes that allow them to proliferate limitlessly. Thus, targeting the expression of known oncogenes in pancreatic cancer has been shown to lead to more effective treatment [3]. This chapter discusses the complexity of metabolic features in pancreatic cancers. In order to comprehend the heterogeneous nature of cancer metabolism fully, we need to take into account the close relationship between cancer metabolism and genetics. Gene expression varies tremendously, not only among different types of cancers but also within the same type of cancer among different patients. Cancer metabolism heterogeneity is often prompted and perpetuated not only by mutations in oncogenes and tumor-suppressor genes but also by the innate diversity of the tumor microenvironment. Much effort has been focused on elucidating the genetic alterations that correlate with disease progression and treatment response [4, 5]. However, the precise mechanisms by which tumor metabolism contributes to cancer growth, survival, mobility, and aggressiveness represent a functional readout of tumor progression (Fig. 1).
Collapse
Affiliation(s)
- Felipe Camelo
- MD Program, Weill Cornell Medicine, New York, NY, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
16
|
Quinones A, Le A. The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:59-76. [PMID: 34014534 DOI: 10.1007/978-3-030-65768-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) develops on glial cells and is the most common as well as the deadliest form of brain cancer. As in other cancers, distinct combinations of genetic alterations in GBM subtypes induce a diversity of metabolic phenotypes, which explains the variability of GBM sensitivity to current therapies targeting its reprogrammed metabolism. Therefore, it is becoming imperative for cancer researchers to account for the temporal and spatial heterogeneity within this cancer type before making generalized conclusions about a particular treatment's efficacy. Standard therapies for GBM have shown little success as the disease is almost always lethal; however, researchers are making progress and learning how to combine therapeutic strategies most effectively. GBMs can be classified initially into two subsets consisting of primary and secondary GBMs, and this categorization stems from cancer development. GBM is the highest grade of gliomas, which includes glioma I (low proliferative potential), glioma II (low proliferative potential with some capacity for infiltration and recurrence), glioma III (evidence of malignancy), and glioma IV (GBM) (malignant with features of necrosis and microvascular proliferation). Secondary GBM develops from a low-grade glioma to an advanced-stage cancer, while primary GBM provides no signs of progression and is identified as an advanced-stage glioma from the onset. The differences in prognosis and histology correlated with each classification are generally negligible, but the demographics of individuals affected and the accompanying genetic/metabolic properties show distinct differentiation [3].
Collapse
Affiliation(s)
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
17
|
Sazeides C, Le A. Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:189-204. [PMID: 34014544 DOI: 10.1007/978-3-030-65768-0_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment (TME), play an important role in cancer initiation, progression, and metastasis. Recent findings have demonstrated that the TME not only provides physical support for cancer cells but also directs cell-to-cell interactions (in this case, the interaction between cancer cells and CAFs). As cancer progresses, the CAFs also coevolve, transitioning from an inactivated state to an activated state. The elucidation and understanding of the interaction between cancer cells and CAFs will pave the way for new cancer therapies [1-3].
Collapse
Affiliation(s)
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
18
|
Tan J, Le A. The Heterogeneity of Breast Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:89-101. [PMID: 34014536 DOI: 10.1007/978-3-030-65768-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in screening, therapy, and surveillance that have improved patient survival rates, breast cancer is still the most commonly diagnosed cancer and the second leading cause of cancer mortality among women [1]. Breast cancer is a highly heterogeneous disease rooted in a genetic basis, influenced by extrinsic stimuli, and reflected in clinical behavior. The diversity of breast cancer hormone receptor status and the expression of surface molecules have guided therapy decisions for decades; however, subtype-specific treatment often yields diverse responses due to varying tumor evolution and malignant potential. Although the mechanisms behind breast cancer heterogeneity is not well understood, available evidence suggests that studying breast cancer metabolism has the potential to provide valuable insights into the causes of these variations as well as viable targets for intervention.
Collapse
Affiliation(s)
- Jessica Tan
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
19
|
Targeting Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:205-214. [PMID: 34014545 DOI: 10.1007/978-3-030-65768-0_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although cancer has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) [1, 2] is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [3, 4] but also dependent on angiogenesis [5-8], inflammation [9, 10], and the supporting roles of cancer-associated fibroblasts (CAFs) [11-13]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [14], many studies have aimed to uncover the cross talk between cancer cells and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like "metabolic parasites" to take up the high-energy metabolites, such as lactate, ketone bodies, free fatty acids, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [15, 16]. This chapter provides an overview of the metabolic coupling between CAFs and cancer cells to further define the therapeutic options to disrupt the CAF-cancer cell interactions.
Collapse
|
20
|
Kirsch BJ, Chang SJ, Betenbaugh MJ, Le A. Non-Hodgkin Lymphoma Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:103-116. [PMID: 34014537 DOI: 10.1007/978-3-030-65768-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of lymphoid neoplasms with different biological characteristics. About 90% of all lymphomas in the United States originate from B lymphocytes, while the remaining originate from T cells [1]. The treatment of NHLs depends on the neoplastic histology and stage of the tumor, which will indicate whether radiotherapy, chemotherapy, or a combination is the best suitable treatment [2]. The American Cancer Society describes the staging of lymphoma as follows: Stage I is lymphoma in a single node or area. Stage II is when that lymphoma has spread to another node or organ tissue. Stage III is when it has spread to lymph nodes on two sides of the diaphragm. Stage IV is when cancer has significantly spread to organs outside the lymph system. Radiation therapy is the traditional therapeutic route for localized follicular and mucosa-associated lymphomas. Chemotherapy is utilized for the treatment of large-cell lymphomas and high-grade lymphomas [2]. However, the treatment of indolent lymphomas remains problematic as the patients often have metastasis, for which no standard approach exists [2].
Collapse
Affiliation(s)
- Brian James Kirsch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael James Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Anne Le
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA. .,Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Jung JG, Le A. Metabolism of Immune Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:173-185. [PMID: 34014543 DOI: 10.1007/978-3-030-65768-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) is a complex biological structure surrounding tumor cells and includes blood vessels, immune cells, fibroblasts, adipocytes, and extracellular matrix (ECM) [1, 2]. These heterogeneous surrounding structures provide nutrients, metabolites, and signaling molecules to provide a cancer-friendly environment. The metabolic interplay between immune cells and cancer cells in the TME is a key feature not only for understanding tumor biology but also for discovering cancer cells' vulnerability. As cancer immunotherapy to treat cancer patients and the use of metabolomics technologies become more and more common [3], the importance of the interplay between cancer cells and immune cells in the TME is emerging with respect to not only cell-to-cell interactions but also metabolic pathways. This interaction between immune cells and cancer cells is a complex and dynamic process in which immune cells act as a determinant factor of cancer cells' fate and vice versa. In this chapter, we provide an overview of the metabolic interplay between immune cells and cancer cells and discuss the therapeutic opportunities as a result of this interplay in order to define targets for cancer treatment. It is important to understand and identify therapeutic targets that interrupt this cancerpromoting relationship between cancer cells and the surrounding immune cells, allowing for maximum efficacy of immune checkpoint inhibitors as well as other genetic and cellular therapies.
Collapse
Affiliation(s)
- Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
22
|
Antonio MJ, Zhang C, Le A. Different Tumor Microenvironments Lead to Different Metabolic Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:137-147. [PMID: 34014540 DOI: 10.1007/978-3-030-65768-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The beginning of the twenty-first century offered new advances in cancer research, including new knowledge about the tumor microenvironment (TME). Because TMEs provide the niches in which cancer cells, fibroblasts, lymphocytes, and immune cells reside, they play a crucial role in cancer cell development, differentiation, survival, and proliferation. Throughout cancer progression, the TME constantly evolves, causing cancer cells to adapt to the new conditions. The heterogeneity of cancer, evidenced by diverse proliferation rates, cellular structures, metabolisms, and gene expressions, presents challenges for cancer treatment despite the advances in research. This chapter discusses how different TMEs lead to specific metabolic adaptations that drive cancer progression.
Collapse
Affiliation(s)
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
23
|
Zarisfi M, Nguyen T, Nedrow JR, Le A. The Heterogeneity Metabolism of Renal Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:117-126. [PMID: 34014538 DOI: 10.1007/978-3-030-65768-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to data from the American Cancer Society, cancer is one of the deadliest health problems globally. Annually, renal cell carcinoma (RCC) causes more than 100,000 deaths worldwide [1-4], posing an urgent need to develop effective treatments to increase patient survival outcomes. New therapies are expected to address a major factor contributing to cancer's resistance to standard therapies: oncogenic heterogeneity. Gene expression can vary tremendously among different types of cancers, different patients of the same tumor type, and even within individual tumors; various metabolic phenotypes can emerge, making singletherapy approaches insufficient. Novel strategies targeting the diverse metabolism of cancers aim to overcome this obstacle. Though some have yielded positive results, it remains a challenge to uncover all of the distinct metabolic profiles of RCC. In the quest to overcome this obstacle, the metabolic oriented research focusing on these cancers has offered freshly new perspectives, which are expected to contribute heavily to the development of new treatments.
Collapse
Affiliation(s)
- Mohammadreza Zarisfi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tu Nguyen
- University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessie R Nedrow
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
24
|
Bose S, Zhang C, Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:3-15. [PMID: 34014531 PMCID: PMC9639450 DOI: 10.1007/978-3-030-65768-0_1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].
Collapse
Affiliation(s)
- Sminu Bose
- Division of Hematology and Oncology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|