1
|
Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol 2014; 26:149-60. [PMID: 24637201 DOI: 10.1016/j.conb.2014.02.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 01/01/2023]
Abstract
Cholinergic actions are critical for normal cortical cognitive functions. The release of acetylcholine (ACh) in neocortex and the impact of this neuromodulator on cortical computations exhibit remarkable spatiotemporal precision, as required for the regulation of behavioral processes underlying attention and learning. We discuss how the organization of the cholinergic projections to the cortex and their release properties might contribute to this specificity. We also review recent studies suggesting that the modulatory influences of ACh on the properties of cortical neurons can have the necessary temporal dynamic range, emphasizing evidence of powerful interneuron subtype-specific effects. We discuss areas that require further investigation and point to technical advances in molecular and genetic manipulations that promise to make headway in understanding the neural bases of cholinergic modulation of cortical cognitive operations.
Collapse
Affiliation(s)
- William Muñoz
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States
| | - Bernardo Rudy
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States.
| |
Collapse
|
2
|
Voisin AN, Drolet G, Mouginot D. Intrinsic properties of the sodium sensor neurons in the rat median preoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2012; 303:R834-42. [PMID: 22874426 DOI: 10.1152/ajpregu.00260.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The essential role of the median preoptic nucleus (MnPO) in the integration of chemosensory information associated with the hydromineral state of the rat relies on the presence of a unique population of sodium (Na+) sensor neurons. Little is known about the intrinsic properties of these neurons; therefore, we used whole cell recordings in acute brain slices to determine the electrical fingerprints of this specific neural population of rat MnPO. The data collected from a large sample of neurons (115) indicated that the Na+ sensor neurons represent a majority of the MnPO neurons in situ (83%). These neurons displayed great diversity in both firing patterns induced by transient depolarizing current steps and rectifying properties activated by hyperpolarizing current steps. This diversity of electrical properties was also present in non-Na+ sensor neurons. Subpopulations of Na+ sensor neurons could be distinguished, however, from the non-Na+ sensor neurons. The firing frequency was higher in Na+ sensor neurons, showing irregular spike discharges, and the amplitude of the time-dependent rectification was weaker in the Na+ sensor neurons than in non-Na+ sensor neurons. The diversity among the electrical properties of the MnPO neurons contrasts with the relative function homogeneity (Na+ sensing). However, this diversity might be correlated with a variety of direct synaptic connections linking the MnPO to different brain areas involved in various aspects of the restoration and conservation of the body fluid homeostasis.
Collapse
Affiliation(s)
- Aurore N Voisin
- Axe Neurosciences du Centre de recherche du CHUQ, Université Laval, Québec, QC, Canada
| | | | | |
Collapse
|
3
|
Kalmbach A, Hedrick T, Waters J. Selective optogenetic stimulation of cholinergic axons in neocortex. J Neurophysiol 2012; 107:2008-19. [PMID: 22236708 DOI: 10.1152/jn.00870.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.
Collapse
Affiliation(s)
- Abigail Kalmbach
- Department of Physiology, Feinberg School of Medicine, Northwestern Univ., Chicago, IL 60611, USA
| | | | | |
Collapse
|
4
|
M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. J Neurosci 2009; 29:9888-902. [PMID: 19657040 DOI: 10.1523/jneurosci.1366-09.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ACh release into the rodent prefrontal cortex is predictive of successful performance of cue detection tasks, yet the cellular mechanisms underlying cholinergic modulation of cortical function are not fully understood. Prolonged ("tonic") muscarinic ACh receptor (mAChR) activation increases the excitability of cortical pyramidal neurons, whereas transient ("phasic") mAChR activation generates inhibitory and/or excitatory responses, depending on neuron subtype. These cholinergic effects result from activation of "M1-like" mAChRs (M1, M3, and M5 receptors), but the specific receptor subtypes involved are not known. We recorded from cortical pyramidal neurons from wild-type mice and mice lacking M1, M3, and/or M5 receptors to determine the relative contribution of M1-like mAChRs to cholinergic signaling in the mouse prefrontal cortex. Wild-type neurons in layer 5 were excited by tonic mAChR stimulation, and had biphasic inhibitory followed by excitatory, responses to phasic ACh application. Pyramidal neurons in layer 2/3 were substantially less responsive to tonic and phasic cholinergic input. Cholinergic effects were largely absent in neurons from mice lacking M1 receptors, but most were robust in neurons lacking M3, M5, or both M3 and M5 receptors. The exception was tonic cholinergic suppression of the afterhyperpolarization in layer 5 neurons, which was absent in cells lacking either M1 or M3 receptors. Finally, we confirm a role for M1 receptors in behavior by demonstrating cue detection deficits in M1-lacking mice. Together, our results demonstrate that M1 receptors facilitate cue detection behaviors and are both necessary and sufficient for most direct effects of ACh on pyramidal neuron excitability.
Collapse
|
5
|
Abstract
Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the output of neocortical pyramidal neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | |
Collapse
|
6
|
Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 2000. [PMID: 10627582 DOI: 10.1523/jneurosci.20-01-00066.2000] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic control of the activity of human cerebral cortical circuits has long been thought to be accounted for by the interaction of acetylcholine (ACh) with muscarinic receptors. Here we report the discovery of functional nicotinic receptors (nAChRs) in interneurons of the human cerebral cortex and discuss the physiological and clinical implications of these findings. The whole-cell mode of the patch-clamp technique was used to record responses triggered by U-tube application of the nonselective agonist ACh and of the alpha7-nAChR-selective agonist choline to interneurons visualized by means of infrared-assisted videomicroscopy in slices of the human cerebral cortex. Choline induced rapidly desensitizing whole-cell currents that, being sensitive to blockade by methyllycaconitine (MLA; 50 nM), were most likely subserved by an alpha7-like nAChR. In contrast, ACh evoked slowly decaying whole-cell currents that, being sensitive to blockade by dihydro-beta-erythroidine (DHbetaE; 10 microM), were most likely subserved by an alpha4beta2-like nAChR. Application of ACh (but not choline) to the slices also triggered GABAergic postsynaptic currents (PSCs). Evidence is provided that ACh-evoked PSCs are the result of activation of alpha4beta2-like nAChRs present in preterminal axon segments and/or in presynaptic terminals of interneurons. Thus, nAChRs can relay inhibitory and/or disinhibitory signals to pyramidal neurons and thereby modulate the activity of neuronal circuits in the human cerebral cortex. These mechanisms, which appear to be retained across species, can account for the involvement of nAChRs in cognitive functions and in certain neuropathological conditions.
Collapse
|
7
|
Yajeya J, de la Fuente Juan A, Bajo VM, Riolobos AS, Heredia M, Criado JM. Muscarinic activation of a non-selective cationic conductance in pyramidal neurons in rat basolateral amygdala. Neuroscience 1999; 88:159-67. [PMID: 10051197 DOI: 10.1016/s0306-4522(98)00210-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, a cationic membrane conductance activated by the acetylcholine agonist carbachol was characterized in vitro in neurons of the basolateral amygdala. Extracellular perfusion of the K+ channel blockers Ba2+ and Cs+ or loading of cells with cesium acetate did not affect the carbachol-induced depolarization. Similarly, superfusion with low-Ca2+ solution plus Ba2+ and intracellular EGTA did not affect the carbachol-induced depolarization, suggesting a Ca2+-independent mechanism. On the other hand, the carbachol-induced depolarization was highly sensitive to changes in extracellular K+ or Na+. When the K+ concentration in the perfusion medium was increased from 4.7 to 10 mM, the response to carbachol increased in amplitude. In contrast, lowering the extracellular Na+ concentration from 143.2 to 29 mM abolished the response in a reversible manner. Results of coapplication of carbachol and atropine, pirenzepine or gallamine indicate that the carbachol-induced depolarization was mediated by muscarinic cholinergic receptors, but not the muscarinic receptor subtypes M1, M2 or M4, specifically. These data indicate that, in addition to the previously described reduction of a time- and voltage-independent K+ current (IKleak), a voltage- and time-dependent K+ current (IM), a slow Ca2+-activated K+ current (sIahp) and the activation of a hyperpolarization-activated inward rectifier K+ current (IQ), carbachol activated a Ca2+-independent non-selective cationic conductance that was highly sensitive to extracellular K+ and Na+ concentrations.
Collapse
Affiliation(s)
- J Yajeya
- Department of Physiology and Pharmacology, School of Medicine, University of Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Hasselmo ME, Wyble BP. Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res 1997; 89:1-34. [PMID: 9475612 DOI: 10.1016/s0166-4328(97)00048-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Free recall and recognition are simulated in a network model of the hippocampal formation, incorporating simplified simulations of neurons, synaptic connections, and the effects of acetylcholine. Simulations focus on modeling the effects of the acetylcholine receptor blocker scopolamine on human memory. Systemic administration of scopolamine is modeled by blockade of the cellular effects of acetylcholine in the model, resulting in memory impairments replicating data from studies on human subjects. This blockade of cholinergic effects impairs the encoding of new input patterns (as measured by delayed free recall), but does not impair the delayed free recall of input patterns learned before the blockade. The impairment is selective to the free recall but not the recognition of items encoded under the influence of scopolamine. In the model, scopolamine blocks strengthening of recurrent connections in region CA3 to form attractor states for new items (encoding impaired) but allows recurrent excitation to drive the network into previously stored attractor states (retrieval spared). Neuron populations representing items (individual words) have weaker recurrent connections than neuron populations representing experimental context. When scopolamine further weakens the strength of recurrent connections it selectively prevents the subsequent reactivation of item attractor states by context input (impaired free recall) without impairing the subsequent reactivation of context attractor states by item input (spared recognition). This asymmetry in the strength of attractor states also allows simulation of the list-strength effect for free recall but not recognition. Simulation of a paired associate learning paradigm predicts that scopolamine should greatly enhance proactive interference due to retrieval of previously encoded associations during storage of new associations.
Collapse
Affiliation(s)
- M E Hasselmo
- Department of Psychology, Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
9
|
Yajeya J, de la Fuente Juan A, Merchan MA, Riolobos AS, Heredia M, Criado JM. Cholinergic responses of morphologically and electrophysiologically characterized neurons of the basolateral complex in rat amygdala slices. Neuroscience 1997; 78:731-43. [PMID: 9153654 DOI: 10.1016/s0306-4522(96)00614-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrophysiological properties, the response to cholinergic agonists and the morphological characteristics of neurons of the basolateral complex were investigated in rat amygdala slices. We have defined three types of cells according to the morphological characteristics and the response to depolarizing pulses. Sixty-six of the recorded cells (71%) responded with two to three action potentials, the second onwards having less amplitude and longer duration (burst). In a second group, consisting of 21 cells (22%), the response to depolarization was a train of spikes, all with the same amplitude (multiple spike). Finally, seven neurons (7%) showed a single action potential (single spike). Burst response and multiple-spike neurons respond to the cholinergic agonist carbachol (10-20 microM) with a depolarization that usually attained the level of firing. This effect was accompanied by decreased or unchanged input membrane resistance and was blocked by atropine (1.5 microM). The depolarizing response to superfusion with carbachol occurred even when synaptic transmission was blocked by tetrodotoxin, indicating a direct effect of carbachol. Similarly, the depolarization by carbachol was still present when the M-type conductance was blocked by 2 mM Ba2+. The carbachol-induced depolarization was prevented by superfusion with tetraethylammonium (5 mM). Injection of biocytin into some of the recorded cells and subsequent morphological reconstruction showed that "burst" cells have piriform or oval cell bodies with four or five main dendritic trunks; spines are sparse or absent on primary dendrites but abundant on secondary and tertiary dendrites. This cellular type corresponds to a pyramidal morphology. The "multiple-spike" neurons have oval or fusiform somata with four or five thick primary dendritic trunks that leave the soma in opposite directions; they have spiny secondary and tertiary dendrites. Finally, neurons which discharge with a "single spike" to depolarizing pulses are round with four or five densely spiny dendrites, affording these neurons a mossy appearance. The results indicate that most of the amygdaloid neurons respond to carbachol with a depolarization. This effect was concomitant with either decrease or no change in the membrane input resistance and was not blocked by the addition of Ba2+, an M-current blocker, indicating that a conductance pathway other than K+ is involved in the response to carbachol.
Collapse
Affiliation(s)
- J Yajeya
- Dep. de Fisiología y Farmacologia, Facultad de Medicina, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Traub RD, Miles R, Buzsáki G. Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol 1992; 451:653-72. [PMID: 1403830 PMCID: PMC1176181 DOI: 10.1113/jphysiol.1992.sp019184] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. We used simulations of the in vitro CA3 region of the hippocampus to analyse the 5 Hz population oscillations recorded experimentally in carbachol. 2. A simulation model of the in vitro CA3 region was constructed with 1000 pyramidal neurones and 200 inhibitory neurones (100 producing fast inhibitory postsynaptic potentials (IPSPs) and 100 producing slow IPSPs of delayed onset). Each neurone contained nineteen soma-dendritic compartments. Pyramidal neurones contained six voltage- and/or calcium-dependent ionic currents, whose kinetics were consistent with voltage-clamp data. The connectivity and waveform of unitary synaptic events for excitatory and fast inhibitory synapses were consistent with dual intracellular recordings. This network was shown to generate previously described network oscillations, including synchronized bursts recorded in the presence of GABAA blockers, and synchronized synaptic potentials observed during partial blockade of GABAA inhibition. 3. The model generated 5 Hz oscillations as recorded in carbachol under the following conditions: (a) excitatory synaptic conductance was within a limited range; (b) there was blockade of fast and slow IPSPs (consistent with the experimental lack of effect of bicuculline and phaclofen on carbachol oscillations and the known depression of IPSPs by acetylcholine); (c) the after hyperpolarization (AHP) conductance was reduced (consistent with the known pharmacology of carbachol); (d) the apical dendrites of the pyramidal cells were depolarized, as suggested by the carbachol-induced depolarization of pyramidal neurones. Each oscillation was associated in pyramidal cells with a burst of action potentials riding on a depolarizing wave. The N-methyl-D-aspartate (NMDA) type of excitatory synapse was not necessary for the oscillations to occur. 4. Progressive reduction of excitatory synaptic strength led to an oscillation of the same frequency, with bursts riding on smaller EPSPs (consistent with the experiment). Further reduction of excitatory synaptic strength abolished the population oscillation by uncoupling the neurones. When excitatory synaptic conductance was too large, population oscillations were attenuated as the cells switched from a bursting mode to a repetitively firing mode. 5. Increasing the AHP conductance prolonged the interburst interval as expected. Inclusion of slow IPSPs exerted a similar effect. 6. When fast IPSPs were included, an oscillation with different characteristics emerged: a 10 Hz oscillation that was gated by compound GABAA IPSPs. On any oscillatory wave, few pyramidal neurones fired, and the firing of individual neurones was irregular.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R D Traub
- IBM Research Division, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
| | | | | |
Collapse
|
11
|
Wheal HV. Membrane electrophysiology of epileptiform activity in the hippocampus. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1990; 50:6-13. [PMID: 1711270 DOI: 10.1007/978-3-7091-9104-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several different types of Na+ and Ca++ channels in the membrane of neurones provide the driving force for excitation. Whilst some of these may be activated by the transmembrane voltage or ionic concentrations, others are mediated by neurotransmitters and neuromodulators. The role of these ionic mechanisms in epileptiform activity are discussed, with particular reference to the involvement of the NMDA receptor mediated channel. Multiple K+ and Cl- mediated mechanisms provide the stabilizing influence on the electrophysiological behavior of the cells. Loss or reduction in activity of one or more of these conductances may lead to the expression of epileptiform activity. The role of the extracellular concentration of K+ in burst firing of populations of cells is discussed. The examples are primarily chosen from studies of the hippocampus in animal models of epilepsy, however wherever possible experiments on human tissue have been discussed. These studies on the membrane and synaptic mechanisms that contribute to epileptiform activity provide us with the necessary insights to allow the development of new methods for controlling such activity.
Collapse
Affiliation(s)
- H V Wheal
- Department of Neurophysiology, University of Southampton, U.K
| |
Collapse
|