1
|
Yan T, Ma Y, Song X, Hu B, Liu W, Chen Y, Liu X, Ding C, Kou Z, Ding X, Chen T, Zhu X. Associations between multi-metal joint exposure and decreased estimated glomerular filtration rate (eGFR) in solar greenhouse workers: A study of a unique farmer group. CHEMOSPHERE 2024; 366:143467. [PMID: 39368494 DOI: 10.1016/j.chemosphere.2024.143467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Solar greenhouse workers, a unique farmer group, have been reported to have a higher risk of chronic kidney disease (CKD) compared to the general population, possible due to exposure to multiple metals. OBJECTIVE This study aimed to investigate the associations between exposure to multiple metals and the estimated glomerular filtration rate (eGFR). METHODS A cross-sectional study was conducted in the Northwest China. Urine samples were tested for concentration of 14 metals, including chromium, manganese, iron et al. Blood creatinine was measured to calculate eGFR, which was to evaluate the kidney function. Linear model and the Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the associations between metals exposure and eGFR. RESULT The study included 281 solar greenhouse workers, with 128 (45.6%) males and 153 (54.4%) females. The highest median concentrations of metals were zinc (418.55 μg/L), strontium (368.77 μg/L), and iron (55.73 μg/L), respectively. The linear model analysis showed that urinary levels of copper and zinc were negatively associated with eGFR [β = -0.021, 95% CI (-0.048, -0.007); β = -0.018, 95% CI (-0.068, -0.005)] considering a false discovery rate. BKMR results indicated a significant overall negative effect of 14 metals exposure on the eGFR when all metal levels were above the 50th percentile compared to the median value. CONCLUSIONS The decrease in eGFR among solar greenhouse workers was related to mixed metal exposure. Reducing exposure to the metals of copper, zinc, and lead could effectively protects kidney function. Further prospective studies are needed to resolve concerns about reverse causality.
Collapse
Affiliation(s)
- Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China.
| | - Yetong Ma
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Song
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Binshuo Hu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Wu Liu
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Yonglan Chen
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China
| | - Zhenxia Kou
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Xiaowen Ding
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Tian Chen
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China.
| |
Collapse
|
2
|
Li W, Zhou J, Boon D, Fan T, Anneser E, Goodman JE, Prueitt RL. Nickel in ambient particulate matter and respiratory or cardiovascular outcomes: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123442. [PMID: 38278409 DOI: 10.1016/j.envpol.2024.123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Exposure to ambient particulate matter (PM) has been associated with respiratory and cardiovascular outcomes, and nickel has been more frequently associated with these outcomes than other metal constituents of ambient PM. Because of this, we evaluated whether the evidence to date supports causal relationships between exposure to nickel in ambient PM and respiratory or cardiovascular outcomes. We critically reviewed 38 studies in human populations published between 2012 and 2022. Although a large variety of respiratory and cardiovascular outcomes were examined, data were sparse for many. As a result, we focused our evaluation on seven respiratory outcomes and three cardiovascular outcomes that were each examined in ≥3 studies. Of these health outcomes, exposure to nickel in ambient PM has been statistically significantly associated with respiratory mortality, respiratory emergency hospital visits, asthma, lung function (i.e., forced expiratory volume in 1 s, forced vital capacity), cardiovascular mortality, and ischemic heart disease mortality. Studies of the health outcomes of focus are subject to multiple methodological limitations, primarily ecological fallacy (short-term exposure studies), exposure measurement error, confounding, model misspecification, and multiple comparisons issue. While some statistically significant associations were reported, they were not strong, precise, or consistent. Statistically significant findings for long-term exposure to nickel in PM were largely reported in studies that could not establish temporality, despite their cohort study design. Statistically significant findings for short-term exposure to nickel in PM were largely reported in studies that could establish temporality, although this cannot inform causal inference at the individual level due to the aggregate level data used. The biological plausibility of the associations is only supported at high concentrations not relevant to ambient exposures. Overall, the literature to date does not provide adequate support for a causal relationship between nickel in ambient PM and respiratory or cardiovascular outcomes.
Collapse
Affiliation(s)
- Wenchao Li
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Denali Boon
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Elyssa Anneser
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Julie E Goodman
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA
| | - Robyn L Prueitt
- Gradient, One Beacon St., 17th Floor, Boston, MA, 02108, USA.
| |
Collapse
|
3
|
Lasek-Bal A, Rybicki W, Student S, Puz P, Krzan A, Derra A. Direct Exposure to Outdoor Air Pollution Worsens the Functional Status of Stroke Patients Treated with Mechanical Thrombectomy. J Clin Med 2024; 13:746. [PMID: 38337439 PMCID: PMC10856015 DOI: 10.3390/jcm13030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Background The effect of air pollutants on the functional status of stroke patients in short-term follow-up is unknown. The aim of this study was to evaluate the effect of air pollution occurring in the stroke period and during hospitalization on the functional status of patients undergoing mechanical thrombectomy (MT). Methods Our study included stroke patients for which the individual-level exposure to ambient levels of O3, CO, SO2, NO2, PM2.5, and PM10 during the acute stroke period was assessed. The correlations between the air pollutants' concentration and the patients' functional state were analyzed. A total of 499 stroke patients (mean age: 70) were qualified. Results The CO concentration at day of stroke onset was found to be significant regarding the functional state of patients on the 10th day (OR 0.014 95% CI 0-0.908, p = 0.048). The parameters which increased the risk of death in the first 10 days were as follows: NIHSS (OR 1.27; 95% CI 1.15-1.42; p < 0.001), intracranial bleeding (OR 4.08; 95% CI 1.75-9.76; p = 0.001), and SO2 concentration on day 2 (OR 1.21; 95% CI 1.02-1.47; p = 0.03). The parameters which increased the mortality rate within 90 days include age (OR 1.07; 95% CI 1.02-1.13; p = 0.005) and NIHSS (OR 1.37; 95% CI 1.19-1.63; p < 0.001). Conclusions Exposure to air pollution with CO and SO2 during the acute stroke phase has adverse effects on the patients' functional status. A combination of parameters, such as neurological state, hemorrhagic transformation, and SO2 exposure, is unfavorable in terms of the risk of death during a hospitalization due to stroke. The risk of a worsened functional status of patients in the first month of stroke rises along with the increase in particulate matter concentrations within the first days of stroke.
Collapse
Affiliation(s)
- Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (P.P.); (A.K.)
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, 40-635 Katowice, Poland; (W.R.); (A.D.)
| | - Wiktor Rybicki
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, 40-635 Katowice, Poland; (W.R.); (A.D.)
| | - Sebastian Student
- Faculty of Automatic Control Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Przemysław Puz
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (P.P.); (A.K.)
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, 40-635 Katowice, Poland; (W.R.); (A.D.)
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (P.P.); (A.K.)
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, 40-635 Katowice, Poland; (W.R.); (A.D.)
| | - Aleksandra Derra
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, 40-635 Katowice, Poland; (W.R.); (A.D.)
| |
Collapse
|
4
|
Davis CD, Frazier C, Guennouni N, King R, Mast H, Plunkett EM, Quirk ZJ. Community Health Impacts From Natural Gas Pipeline Compressor Stations. GEOHEALTH 2023; 7:e2023GH000874. [PMID: 37915956 PMCID: PMC10616731 DOI: 10.1029/2023gh000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Compressor stations maintain pressure along natural gas pipelines to sustain gas flow. Unfortunately, they present human health concerns as they release chemical pollutants into the air, sometimes at levels higher than national air quality standards. Further, compressor stations are often placed in rural areas with higher levels of poverty and/or minority populations, contributing to environmental justice concerns. In this paper we investigate what chemical pollutants are emitted by compressor stations, the impacts of emitted pollutants on human health, and local community impacts. Based on the information gained from these examinations, we provide the following policy recommendations with the goal of minimizing harm to those affected by natural gas compressor stations: the Environmental Protection Agency (EPA) and relevant state agencies must increase air quality monitoring and data transparency; the EPA should direct more resources to monitoring programs specifically at compressor stations; the EPA should provide free indoor air quality monitoring to homes near compressor stations; the EPA needs to adjust its National Ambient Air Quality Standards to better protect communities and assess cumulative impacts; and decision-makers at all levels must pursue meaningful involvement from potentially affected communities. We find there is substantial evidence of negative impacts to strongly support these recommendations.
Collapse
Affiliation(s)
- Curtis D. Davis
- Virginia Scientist‐Community Interface
- Department of Civil and Environmental EngineeringUniversity of VirginiaCharlottesvilleVAUSA
| | - Clara Frazier
- Virginia Scientist‐Community Interface
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Nihal Guennouni
- Virginia Scientist‐Community Interface
- Virginia Institute of Marine ScienceWilliam and MaryWilliamsburgVAUSA
| | - Rachael King
- Virginia Scientist‐Community Interface
- Virginia Institute of Marine ScienceWilliam and MaryWilliamsburgVAUSA
| | - Hannah Mast
- Virginia Scientist‐Community Interface
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Emily M. Plunkett
- Virginia Scientist‐Community Interface
- Department of ChemistryVirginia TechBlacksburgVAUSA
| | - Zack J. Quirk
- Virginia Scientist‐Community Interface
- Department of Earth & Environmental SciencesUniversity of Michigan Ann ArborAnn ArborMIUSA
| |
Collapse
|
5
|
Zhang L, Fang B, Wang H, Zeng H, Wang N, Wang M, Wang X, Hao Y, Wang Q, Yang W. The role of systemic inflammation and oxidative stress in the association of particulate air pollution metal content and early cardiovascular damage: A panel study in healthy college students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121345. [PMID: 36841422 DOI: 10.1016/j.envpol.2023.121345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with adverse cardiovascular outcomes. However, the effects of toxic metals in PM2.5 on cardiovascular health remain unknown. To investigate the early cardiovascular effects of specific PM2.5 metal constituents at the personal level, we conducted a panel study on 45 healthy college students in Caofeidian, China. Personal exposure concentrations and cardiovascular effect markers were monitored simultaneously within one year in four study periods. Four linear mixed-effects models were used to analyze the relationship between personal exposure to PM2.5 and 15 metal fractions (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, and Pb) with soluble CD36 (sCD36), C-reactive protein (CRP), and oxidized low-density lipoprotein (OX-LDL) levels, heart rate, and blood pressure. The concentrations of most individual metals (Mn, Cu, Zn, As, Se, Mo, Cd, Sb and Pb) were the highest in winter. Meanwhile, there were significant differences in inflammatory (sCD36 and CRP) and oxidative stress (OX-LDL) markers in the serum of participants over the four seasons. In particular, the estimated effects of personal metal exposure (such as V, As, Se, Cd, and Pb) on sCD36 and pulse pressure (PP) levels were consistently significant across the four LME models. A significant mediating role of sCD36 was also found in the relationship between personal exposure to Zn and Cr and changes in PP levels. Our findings provide clues and potential mechanisms regarding the cardiovascular effects of specific toxic constituents of PM2.5 in healthy young adults.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, Henan, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Nan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - ManMan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
6
|
Zheng Y, Chen S, Chen Y, Li J, Xu B, Shi T, Yang Q. Association between PM2.5-bound metals and pediatric respiratory health in Guangzhou: An ecological study investigating source, health risk, and effect. Front Public Health 2023; 11:1137933. [PMID: 36969623 PMCID: PMC10033947 DOI: 10.3389/fpubh.2023.1137933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe adverse effects of 2.5-μm particulate matter (PM2.5) exposure on public health have become an increasing concern worldwide. However, epidemiological findings on the effects of PM2.5-bound metals on children's respiratory health are limited and inconsistent because PM2.5 is a complicated mixture.ObjectivesGiven the vulnerability of children's respiratory system, aim to pediatric respiratory health, this study evaluated the potential sources, health risks, and acute health effects of ambient PM2.5-bound metals among children in Guangzhou, China from January 2017 to December 2019.MethodsPotential sources of PM2.5-bound metals were detected using positive matrix factorization (PMF). A health risk assessment was conducted to investigate the inhalation risk of PM2.5-bound metals in children. The associations between PM2.5-bound metals and pediatric respiratory outpatient visits were examined with a quasi-Poisson generalized additive model (GAM).ResultsDuring 2017–2019, the daily mean concentrations of PM2.5 was 53.39 μg/m3, and the daily mean concentrations of PM2.5-bound metals range 0.03 ng/m3 [thorium (Th) and beryllium (Be)] from to 396.40 ng/m3 [iron (Fe)]. PM2.5-bound metals were mainly contributed by motor vehicles and street dust. PM2.5-bound arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr)(VI), nickel (Ni), and lead (Pb) were found to pose a carcinogenic risk (CR). A quasi-Poisson GAM was constructed that showed there were significant associations between PM2.5 concentrations and pediatric outpatient visits for respiratory diseases. PM2.5 was significantly associated with pediatric outpatient visits for respiratory diseases. Moreover, with a 10 μg/m3 increase in Ni, Cr(VI), Ni, and As concentrations, the corresponding pediatric outpatient visits for respiratory diseases increased by 2.89% (95% CI: 2.28–3.50%), acute upper respiratory infections (AURIs) increased by 2.74% (2.13–3.35%), influenza and pneumonia (FLU&PN) increased by 23.36% (20.09–26.72%), and acute lower respiratory infections (ALRIs) increased by 16.86% (15.16–18.60%), respectively.ConclusionsOur findings showed that PM2.5 and PM2.5-bound As, Cd, Co, Cr(VI), Ni, and Pb had adverse effects on pediatric respiratory health during the study period. New strategies are required to decrease the production of PM2.5 and PM2.5-bound metals by motor vehicles and to reduce levels of street dust to reduce children's exposure to these pollutants and thereby increase child health.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Sili Chen
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Chen
- Department of Anesthesiology, School of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Jingye Li
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Binhe Xu
- Department of Clinical Medicine, Basic Medicine College, Zunyi Medical University, Zunyi, China
| | - Tongxing Shi
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qiaoyuan Yang
| |
Collapse
|
7
|
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Y. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6813-6835. [PMID: 35612468 PMCID: PMC9178796 DOI: 10.1021/acs.est.2c01072] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.
Collapse
Affiliation(s)
- Julia C. Fussell
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Meredith Franklin
- Department
of Statistical Sciences, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - David C. Green
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Mats Gustafsson
- Swedish
National Road and Transport Research Institute (VTI), SE-581 95, Linköping, Sweden
| | - Roy M. Harrison
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, U.K.
- Department
of Environmental Sciences / Centre of Excellence in Environmental
Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - William Hicks
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Frank J. Kelly
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Franceska Kishta
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Mark R. Miller
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Ian S. Mudway
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Farzan Oroumiyeh
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Liza Selley
- MRC
Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge,CB2 1QR, U.K.
| | - Meng Wang
- University
at Buffalo, School of Public
Health and Health Professions, Buffalo, New York 14214, United States
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Ju S, Lim L, Ki YJ, Choi DH, Song H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part Fibre Toxicol 2022; 19:29. [PMID: 35449013 PMCID: PMC9026692 DOI: 10.1186/s12989-022-00472-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 01/16/2025] Open
Abstract
Background Epidemiological studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with the incidence of atherosclerosis, however, the underlying cellular and molecular mechanisms of atherosclerosis by PM exposure and the components that are mainly responsible for this adverse effect remain to be established. In this investigation, we evaluated the effects of ambient PM on vascular smooth muscle cell (VSMC) behavior. Furthermore, the effects of polycyclic aromatic hydrocarbons (PAHs), major components of PM, on VSMC migration and the underlying mechanisms were examined. Results VSMC migration was significantly increased by treatment with organic matters extracted from ambient PM. The total amount of PAHs contained in WPM was higher than that in SPM, leading to higher ROS generation and VSMC migration. The increased migration was successfully inhibited by treatment with the anti-oxidant, N-acetyl-cysteine (NAC). The levels of matrix metalloproteinase (MMP) 2 and 9 were significantly increased in ambient PM-treated VSMCs, with MMP9 levels being significantly higher in WPM-treated VSMCs than in those treated with SPM. As expected, migration was significantly increased in all tested PAHs (anthracene, ANT; benz(a)anthracene, BaA) and their oxygenated derivatives (9,10-Anthraquinone, AQ; 7,12-benz(a)anthraquinone, BAQ, respectively). The phosphorylated levels of focal adhesion kinase (FAK) and formation of the focal adhesion complex were significantly increased in ambient PM or PAH-treated VSMCs, and these effects were blocked by administration of NAC or α-NF, an inhibitor of AhR, the receptor that allows PAH uptake. Subsequently, the levels of phosphorylated Src and NRF, the downstream targets of FAK, were altered with a pattern similar to that of p-FAK. Conclusions PAHs, including oxy-PAHs, in ambient PM may have dual effects that lead to an increase in VSMC migration. One is the generation of oxidative stress followed by MMP upregulation, and the other is actin reorganization that results from the activation of the focal adhesion complex.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, 61452, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea.
| |
Collapse
|
9
|
Stojanovic N, Glisovic J, Abdullah OI, Belhocine A, Grujic I. Particle formation due to brake wear, influence on the people health and measures for their reduction: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9606-9625. [PMID: 34993797 DOI: 10.1007/s11356-021-17907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
For achieving the desired vehicle speed, the IC engine is very important, while for further vehicle speed maintaining and adaptation to road conditions, the braking system is important. With each brake's activation, wear products are forming, which are very harmful to the environment, because they can contain heavy metals. The braking working parameters (initial speed and braking pressure) are beside the achieved temperature in contact par, the most responsible, for particle formation and their release into the air. The particles forming can be divided by size on coarse, fine, and ultrafine particles, and which were observed in the paper. However, the greatest accent was placed on coarse and fine particles. For the determination of the composition of wear products, most often, laboratory tests were used. Particle composition greatly depends on the composition of brake pads, which can consist of about 30 components, and where some of these components have very unfavourable effects on people's health. So today, many researches are focused on finding such composition for brake pads, which will wear as less as possible, without disturbing the basic tribological properties. The conclusion of this paper shows that the applied materials for manufacturing the braking system are very important, as well as the construction, for the reduction of particle emission.
Collapse
Affiliation(s)
- Nadica Stojanovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Jasna Glisovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Oday I Abdullah
- Dept. of Energy Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Mechanics, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
- System Technologies and Engineering Design Methodology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Ali Belhocine
- Department of Mechanical Engineering, University of Sciences and the Technology of Oran, L.P 1505 El -MNAOUER, Usto, 31000, Oran, Algeria
| | - Ivan Grujic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
10
|
Wang S, Kaur M, Li T, Pan F. Effect of Different Pollution Parameters and Chemical Components of PM 2.5 on Health of Residents of Xinxiang City, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6821. [PMID: 34202054 PMCID: PMC8297198 DOI: 10.3390/ijerph18136821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The present study was planned to explore the pollution characteristics, health risks, and influence of atmospheric fine particulate matter (PM2.5) and its components on blood routine parameters in a typical industrial city (Xinxiang City) in China. In this study, 102 effective samples 28 (April-May), 19 (July-August), 27 (September-October), 28 (December-January) of PM2.5 were collected during different seasons from 2017 to 2018. The water-soluble ions and metal elements in PM2.5 were analyzed via ion chromatography and inductively coupled plasma-mass spectrometry. The blood routine physical examination parameters under different polluted weather conditions from January to December 2017 and 2018, the corresponding PM2.5 concentration, temperature, and relative humidity during the same period were collected from Second People's Hospital of Xinxiang during 2017-2018. Risk assessment was carried out using the generalized additive time series model (GAM). It was used to analyze the influence of PM2.5 concentration and its components on blood routine indicators of the physical examination population. The "mgcv" package in R.3.5.3 statistical software was used for modeling and analysis and used to perform nonparametric smoothing on meteorological indicators such as temperature and humidity. When Akaike's information criterion (AIC) value is the smallest, the goodness of fit of the model is the highest. Additionally, the US EPA exposure model was used to evaluate the health risks caused by different heavy metals in PM2.5 to the human body through the respiratory pathway, including carcinogenic risk and non-carcinogenic risk. The result showed that the air particulate matter and its chemical components in Xinxiang City were higher in winter as compared to other seasons with an overall trend of winter > spring > autumn > summer. The content of nitrate (NO3-) and sulfate (SO42-) ions in the atmosphere were higher in winter, which, together with ammonium, constitute the main components of water-soluble ions in PM2.5 in Xinxiang City. Source analysis reported that mobile pollution sources (coal combustion emissions, automobile exhaust emissions, and industrial emissions) in Xinxiang City during the winter season contributed more to atmospheric pollution as compared to fixed sources. The results of the risk assessment showed that the non-carcinogenic health risk of heavy metals in fine particulate matter is acceptable to the human body, while among the carcinogenic elements, the order of lifetime carcinogenic risk is arsenic (As) > chromium(Cr) > cadmium (Cd) > cobalt(Co) > nickel (Ni). During periods of haze pollution, the exposure concentration of PM2.5 has a certain lag effect on blood routine parameters. On the day when haze pollution occurs, when the daily average concentration of PM2.5 rises by 10 μg·m-3, hemoglobin (HGB) and platelet count (PLT) increase, respectively, by 9.923% (95% CI, 8.741-11.264) and 0.068% (95% CI, 0.067-0.069). GAM model analysis predicted the maximum effect of PM2.5 exposure concentration on red blood cell count (RBC) and PLT was reached when the hysteresis accumulates for 1d (Lag0). The maximum effect of exposure concentration ofPM2.5 on MONO is reached when the lag accumulation is 3d (Lag2). When the hysteresis accumulates for 6d (Lag5), the exposure concentration of PM2.5 has the greatest effect on HGB. The maximum cumulative effect of PM2.5 on neutrophil count (NEUT) and lymphocyte (LMY) was strongest when the lag was 2d (Lag1). During periods of moderate to severe pollution, the concentration of water-soluble ions and heavy metal elements in PM2.5 increases significantly and has a significant correlation with some blood routine indicators.
Collapse
Affiliation(s)
- Shuang Wang
- School of Environment, Henan Normal University, Xinxiang 453007, China;
| | - Mandeep Kaur
- Henan Key Laboratory of Earth System Science Observation and Modeling, Henan University, Jinming Campus, Kaifeng 475004, China; (M.K.); (T.L.)
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Tengfei Li
- Henan Key Laboratory of Earth System Science Observation and Modeling, Henan University, Jinming Campus, Kaifeng 475004, China; (M.K.); (T.L.)
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Feng Pan
- School of Environment, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
11
|
Combined exposure to heavy metals in PM 2.5 and pediatric asthma. J Allergy Clin Immunol 2020; 147:2171-2180.e13. [PMID: 33378689 DOI: 10.1016/j.jaci.2020.12.634] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Asthma is the most common chronic allergic disease in children; it affects more than 300 million people worldwide. Information on the association between exposure to ambient heavy metals and incidence of pediatric asthma is limited. OBJECTIVE We sought to evaluate the effects of heavy metals during pregnancy and infancy periods with asthma and identify a sensitive time window, clarifying the effect of ambient heavy metals on lung development. METHODS A total of 171,281 children, who were born from 2004 to 2011 in Taichung City, were followed until 2014. Concentrations of ambient heavy metals such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) were obtained from the Weather Research and Forecasting/Chem model, considering the top 75 emission sources in Taiwan. The distributed lag nonlinear model was used to investigate the relationship between combined exposure to heavy metals in 2.5 μm particulate matter and asthma in pregnant women and 1-year-old infants. RESULTS We identified 31,277 new asthma cases from the birth cohort. After adjustment for socioeconomic status, maternal age, maternal atopy, maternal anemia, and maternal kidney disease, distributed lag nonlinear model results revealed positive associations of asthma with exposure to Pb during gestational weeks 1 to 14 and 21 to 40, and 1 to 3 weeks after birth. Regarding the sensitivity analyses, coexposure to Pb and As, coexposure to Pb and Cd, and coexposure to Pb and Hg were positively associated with asthma onset as well. CONCLUSIONS Our study suggested that combined exposure to Pb with As, Cd, and Hg during early and late gestational weeks was associated with the incidence of pediatric asthma.
Collapse
|
12
|
Tian S, Li K, Møller P, Ying SC, Wang L, Li Z, Roursgaard M, Liang T. Assessment of reactive oxygen species production and genotoxicity of rare earth mining dust: Implications for public health and mining management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139759. [PMID: 32569908 DOI: 10.1016/j.scitotenv.2020.139759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Mining rare earth elements (REEs) can release large amounts of metal(loid)-rich dust, which can pose significant health risks to local residents. However, compared to other types of particulates, toxicity of mining dust has been largely overlooked. To provide experimental evidence on toxicity of REE mine dust, the study assessed the oxidative stress potential and genotoxicity of inhalable particles collected in a REE mining area, and associated toxicological response with source compositions. Both source types (i.e., mine and tailing area) and distances from source (i.e., industrial and residential areas) were considered when selecting the 44 sampling sites. The particle samples contained 2.3-3.5 folds higher concentrations of tested metal(loid)s than background concentrations in soil. Specially, elevated Fe, REEs, Cd, Pb were found. In spite of low cytotoxicity in lung epithelial A549 cells, there was increased cellular ROS production by of particle exposure. Samples with higher mining-originated source contributions (Provenance Index <0.3) had higher cellular ROS production (1.72 fold, 95%CI: 1.66-1.79 fold) than samples with lower mining contributions (1.58 fold, 95%CI: 1.52-1.65 fold). The factors soil (~46%), mine (~22%), and heavy metal (~20%) sources were recognized by source apportionment analysis as the main contributors to cellular ROS production; importantly, mine and heavy metal sources counted more in industrial samples. While samples generated genotoxicity, there were no differences in DNA damage between the location groups of sampling. Collectively, the results indicate that particles in mining areas may cause ROS production and DNA damage in lung cells depending on mine dust. Coupled with the long-range transportation potential of mine dust, safety measures on open pit and dust disposal sites should be adopted.
Collapse
Affiliation(s)
- Shuhan Tian
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Samantha C Ying
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
14
|
Signorelli SS, Oliveri Conti G, Zanobetti A, Baccarelli A, Fiore M, Ferrante M. Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: A systematic review. ENVIRONMENTAL RESEARCH 2019; 177:108573. [PMID: 31323394 DOI: 10.1016/j.envres.2019.108573] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 05/25/2023]
Abstract
Environmental pollution is an important modifiable determinant for preventing cardiovascular diseases. Acute exposure to air pollution is linked to severe adverse cardiovascular events, including venous thromboembolism risk. The adverse health effects seem to arise from blood-borne metals and transition metal components from exposure to particulate matter that, when breathed, passes through the lungs into the heart and the blood stream. Pollution affects health via mechanisms including oxidative stress and inflammation, and metals may have a detrimental effect on both the blood cells, particularly platelets, and circulation. Some evidences demonstrates atherotrombotic consequences of acute and chronic exposure to air pollution, but few studies have examined exposure effects on the prothrombotic biomarkers leading to venous thromboembolism. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review (14 papers) of the past twelve years, focusing on the relationship between inhalable airborne metal exposures and coagulative biomarker disorders leading to lower limb venous thromboembolisms, e.g., deep vein thrombosis. Results support the hypothesis that exposure to inhalable metals, as elemental compounds in particulate matter, cause changes or activation of a number of human prothrombotic hemostatic biomarkers.
Collapse
Affiliation(s)
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Fiore
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy.
| |
Collapse
|
15
|
Gerlofs-Nijland ME, Bokkers BGH, Sachse H, Reijnders JJE, Gustafsson M, Boere AJF, Fokkens PFH, Leseman DLAC, Augsburg K, Cassee FR. Inhalation toxicity profiles of particulate matter: a comparison between brake wear with other sources of emission. Inhal Toxicol 2019; 31:89-98. [PMID: 31066325 DOI: 10.1080/08958378.2019.1606365] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: There is substantial evidence that exposure to airborne particulate matter (PM) from road traffic is associated with adverse health outcomes. Although it is often assumed to be caused by vehicle exhaust emissions such as soot, other components may also contribute to detrimental effects. The toxicity of fine PM (PM2.5; <2.5 µm mass median aerodynamic diameter) released from brake pads was compared to PM from other sources. Materials and methods: PM2.5 of different types of brake pads (low-metallic, semi-metallic, NAO and ECE-NAO hybrid), tires and road pavement, poultry as well as the combustion of diesel fuel and wood (modern and old-fashioned stove technologies) were collected as suspensions in water. These were subsequently aerosolized for inhalation exposures. Female BALB/cOlaHsd mice were exposed for 1.5, 3, or 6 hours by nose-only inhalation up to 9 mg/m3. Results: Neither cytotoxicity nor oxidative stress was observed after exposure to any of the re-aerosolized PM2.5 samples. Though, at similar PM mass concentrations the potency to induce inflammatory responses was strongly dependent on the emission source. Exposure to most examined PM2.5 sources provoked inflammation including those derived from the poultry farm, wear emissions of the NAO and ECE-NAO hybrid brake pads as well as diesel and wood combustion, as indicated by neutrophil chemoattractant, KC and MIP-2 and lung neutrophil influx. Discussion and conclusions: Our study revealed considerable variability in the toxic potency of brake wear particles. Understanding of sources that are most harmful to health can provide valuable information for risk management strategies and could help decision-makers to develop more targeted air pollution regulation.
Collapse
Affiliation(s)
- M E Gerlofs-Nijland
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - B G H Bokkers
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - H Sachse
- b IDIADA Fahrzeugtechnik , Ingolstadt , Germany
| | - J J E Reijnders
- c Eindhoven University of Technology , Eindhoven , Netherlands
| | - M Gustafsson
- d Swedish National Road and Transport Research Institute (VTI) , Linköping , Sweden
| | - A J F Boere
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - P F H Fokkens
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - D L A C Leseman
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - K Augsburg
- e Technical University Ilmenau , Ilmenau , Germany
| | - F R Cassee
- a National Institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| |
Collapse
|
16
|
Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. METALS 2019. [DOI: 10.3390/met9020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several studies have shown an increased mortality rate for different types of tumors, respiratory disease and cardiovascular morbidity associated with foundry work. Airborne particles were investigated in a steelmaking foundry using an electric low-pressure impactor (ELPI+™), a Philips Aerasense Nanotracer and traditional sampling equipment. Determination of metallic elements in the collected particles was carried out by inductively coupled plasma mass spectrometry. The median of ultrafine particle (UFP) concentration was between 4.91 × 103 and 2.33 × 105 part/cm3 (max. 9.48 × 106 part/cm3). Background levels ranged from 1.97 × 104 to 3.83 × 104 part/cm3. Alveolar and deposited tracheobronchial surface area doses ranged from 1.3 × 102 to 8.7 × 103 mm2, and 2.6 × 101 to 1.3 × 103 mm2, respectively. Resulting inhalable and respirable fraction and metallic elements were below limit values set by Italian legislation. A variable concentration of metallic elements was detected in the different fractions of UFPs in relation to the sampling site, the emission source and the size range. This data could be useful in order to increase the knowledge about occupational exposure to fine and ultrafine particles and to design studies aimed to investigate early biological effects associated with the exposure to particulate matter in the foundry industries.
Collapse
|
17
|
Ferdous Z, Al-Salam S, Greish YE, Ali BH, Nemmar A. Pulmonary exposure to silver nanoparticles impairs cardiovascular homeostasis: Effects of coating, dose and time. Toxicol Appl Pharmacol 2019; 367:36-50. [PMID: 30639276 DOI: 10.1016/j.taap.2019.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to silver nanoparticles (AgNPs) revealed the potential of nanoparticles to cause pulmonary toxicity, cross the alveolar-capillary barrier, and distribute to remote organs. However, the mechanism underlying the effects of AgNPs on the cardiovascular system remains unclear. Hence, we investigated the cardiovascular mechanisms of pulmonary exposure to AgNPs (10 nm) with varying coatings [polyvinylpyrrolidone (PVP) and citrate (CT)], concentrations (0.05, 0.5 and 5 mg/kg body weight), and time points (1 and 7 days) in BALB/C mice. Silver ions (Ag+) were used as ionic control. Exposure to AgNPs induced lung inflammation. In heart, tumor necrosis factor α, interleukin 6, total antioxidants, reduced glutathione and 8-isoprostane significantly increased for both AgNPs. Moreover, AgNPs caused oxidative DNA damage and apoptosis in the heart. The plasma concentration of fibrinogen, plasminogen activation inhibitor-1 and brain natriuretic peptide were significantly increased for both coating AgNPs. Likewise, the prothrombin time and activated partial thromboplastin time were significantly decreased. Additionally, the PVP- and CT- AgNPs induced a significant dose-dependent increase in thrombotic occlusion time in cerebral microvessels at both time points. In vitro study on mice whole blood exhibited significant platelet aggregation for both particle types. Compared with AgNPs, Ag+ increased thrombogenicity and markers of oxidative stress, but did not induce either DNA damage or apoptosis in the heart. In conclusion, pulmonary exposure to AgNPs caused cardiac oxidative stress, DNA damage and apoptosis, alteration of coagulation markers and thrombosis. Our findings provide a novel mechanistic insight into the cardiovascular pathophysiological effects of lung exposure to AgNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O Box 17666, Al Ain, United Arab Emirates
| | - Yaser E Greish
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 17551, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
18
|
Mesías Monsalve S, Martínez L, Yohannessen Vásquez K, Alvarado Orellana S, Klarián Vergara J, Martín Mateo M, Costilla Salazar R, Fuentes Alburquenque M, Cáceres Lillo DD. Trace element contents in fine particulate matter (PM 2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1077-1091. [PMID: 28536962 DOI: 10.1007/s10653-017-9980-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM2.5) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.
Collapse
Affiliation(s)
- Stephanie Mesías Monsalve
- Programa de Salud Ambiental, Facultad de Medicina, Escuela de Salud Pública, Universidad de Chile, Av. Independencia 939, Independencia, Santiago, Chile
| | - Leonardo Martínez
- Department of Epidemiology and Biostatistics, School of Public Health, University of Georgia, Athens, GA, USA
- Department of Preventive Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Karla Yohannessen Vásquez
- Programa de Salud Ambiental, Facultad de Medicina, Escuela de Salud Pública, Universidad de Chile, Av. Independencia 939, Independencia, Santiago, Chile
| | - Sergio Alvarado Orellana
- Programa de Salud Ambiental, Facultad de Medicina, Escuela de Salud Pública, Universidad de Chile, Av. Independencia 939, Independencia, Santiago, Chile
- Grups de Recerca d'América i Africa Llatines GRAAL, Unitat de Bioestadística, Facultat de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - José Klarián Vergara
- Departamento de Prevención de Riesgos y Medioambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Miguel Martín Mateo
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Grups de Recerca d'América i Africa Llatines GRAAL, Unitat de Bioestadística, Facultat de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Rogelio Costilla Salazar
- División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Dante D Cáceres Lillo
- Programa de Salud Ambiental, Facultad de Medicina, Escuela de Salud Pública, Universidad de Chile, Av. Independencia 939, Independencia, Santiago, Chile.
- Grups de Recerca d'América i Africa Llatines GRAAL, Unitat de Bioestadística, Facultat de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain.
- Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile.
| |
Collapse
|
19
|
Palleschi S, Rossi B, Armiento G, Montereali MR, Nardi E, Mazziotti Tagliani S, Inglessis M, Gianfagna A, Silvestroni L. Toxicity of the readily leachable fraction of urban PM 2.5 to human lung epithelial cells: Role of soluble metals. CHEMOSPHERE 2018; 196:35-44. [PMID: 29289849 DOI: 10.1016/j.chemosphere.2017.12.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Fine airborne particulate matter (PM2.5) has been repeatedly associated with adverse health effects in humans. The PM2.5 soluble fraction, and soluble metals in particular, are thought to cause lung damage. Literature data, however, are not consistent and the role of leachable metals is still under debate. In this study, Winter and Summer urban PM2.5 aqueous extracts, obtained by using a bio-compatible solution and different contact times at 37 °C, were used to investigate cytotoxic effects of PM2.5 in cultured lung epithelial cells (A549) and the role played by the leachable metals Cu, Fe, Zn, Ni, Pb and Cd. Cell viability and migration, as well as intracellular glutathione, extracellular cysteine, cysteinylglycine and homocysteine concentrations, were evaluated in cells challenged with both PM2.5 extracts before and after ultrafiltration and artificial metal ion solutions mimicking the metal composition of the genuine extracts. The thiol oxidative potential was also evaluated by an abiotic test. Results demonstrate that PM2.5 bioactive components were released within minutes of PM2.5 interaction with the leaching solution. Among these are i) low MW (<3 kDa) solutes inducing oxidative stress and ii) high MW and/or water-insoluble compounds largely contributing to thiol oxidation and to increased homocysteine levels in the cell medium. Cu and/or Ni ions likely contributed to the effects of Summer PM2.5 extracts. Nonetheless, the strong bio-reactivity of Winter PM2.5 extracts could not be explained by the presence of the studied metals. A possible role for PM2.5 water-extractable organic components is discussed.
Collapse
Affiliation(s)
- Simonetta Palleschi
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Barbara Rossi
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Giovanna Armiento
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese, 301, 00123 Rome, Italy.
| | - Maria Rita Montereali
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese, 301, 00123 Rome, Italy.
| | - Elisa Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese, 301, 00123 Rome, Italy.
| | | | - Marco Inglessis
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Antonio Gianfagna
- Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Leopoldo Silvestroni
- Department of Fundamental and Applied Sciences for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161, Rome, Italy.
| |
Collapse
|
20
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
21
|
Isley CF, Nelson PF, Taylor MP, Stelcer E, Atanacio AJ, Cohen DD, Mani FS, Maata M. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:450-461. [PMID: 28863376 DOI: 10.1016/j.scitotenv.2017.08.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM2.5: effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM2.5 samples from Suva, spanning one year. Sources of PM2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning.
Collapse
Affiliation(s)
- C F Isley
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - P F Nelson
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - M P Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - E Stelcer
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - A J Atanacio
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - D D Cohen
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - F S Mani
- Faculty of Science Technology and Environment, University of the South Pacific, Laucala Campus, Suva, Fiji.
| | - M Maata
- Faculty of Science Technology and Environment, University of the South Pacific, Laucala Campus, Suva, Fiji.
| |
Collapse
|
22
|
Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol 2018; 15:1. [PMID: 29298690 PMCID: PMC5753450 DOI: 10.1186/s12989-017-0237-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM2.5) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially susceptible groups to healthy individuals.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - Mark R Miller
- University/BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Bozlaker A, Peccia J, Chellam S. Indoor/Outdoor Relationships and Anthropogenic Elemental Signatures in Airborne PM 2.5 at a High School: Impacts of Petroleum Refining Emissions on Lanthanoid Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4851-4859. [PMID: 28375618 DOI: 10.1021/acs.est.6b06252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Outdoor emissions of primary fine particles and their contributions to indoor air quality deterioration were examined by collecting PM2.5 inside and outside a mechanically ventilated high school in the ultraindustrialized ship channel region of Houston, TX over a 2-month period. By characterizing 47 elements including lanthanoids (rare earth elements), using inductively coupled plasma-mass spectrometry, we captured indoor signatures of outdoor episodic emissions arising from nonroutine operations of petroleum refinery fluidized-bed catalytic cracking units. Average indoor-to-outdoor (I/O) abundance ratios for the majority of elements were close to unity providing evidence that indoor metal-bearing PM2.5 had predominantly outdoor origins. Only Co had an I/O abundance ratio >1 but its indoor sources could not be explicitly identified. La and 17 other elements (Na, K, V, Ni, Co, Cu, Zn, Ga, As, Se, Mo, Cd, Sn, Sb, Ba, W, and Pb), including air toxics were enriched relative to the local soil both in indoor and outdoor PM2.5 demonstrating their noncrustal origins. Several lines of evidence including receptor modeling, lanthanoid ratios, and La-Ce-Sm ternary diagrams pointed to petroleum refineries as being largely responsible for enhanced La and total lanthanoid concentrations in the majority of paired indoor and outdoor PM2.5.
Collapse
Affiliation(s)
- Ayse Bozlaker
- Department of Civil Engineering, Texas A&M University , College Station, Texas 77843-3136, United States
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - Shankararaman Chellam
- Department of Civil Engineering, Texas A&M University , College Station, Texas 77843-3136, United States
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843-3122, United States
| |
Collapse
|
24
|
Watanabe M, Noma H, Kurai J, Sano H, Hantan D, Ueki M, Kitano H, Shimizu E. A panel study of airborne particulate matter composition versus concentration: Potential for inflammatory response and impaired pulmonary function in children. Allergol Int 2017; 66:52-58. [PMID: 27262618 DOI: 10.1016/j.alit.2016.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/29/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The relationship between airborne particulate matter (PM) and pulmonary function in children has not been consistent among studies, potentially owing to differences in the inflammatory response to PM, based on PM types and sources. The objective of this study was to investigate the effect of airborne PM on pulmonary function in schoolchildren and its potential for an inflammatory response. METHODS Daily morning peak expiratory flow (PEF) was measured in 339 schoolchildren in February 2015. Interleukin (IL)-8 production was assessed in THP1 cells stimulated by airborne PM collected every day during the study period, and these IL-8 concentrations are described as the daily IL-8 levels. A linear mixed model was used to estimate the association between PEF values and the daily levels of suspended PM (SPM), PM diameters smaller than 2.5 μm (PM2.5), and IL-8. RESULTS The daily IL-8 levels were significantly associated with those of SPM and PM2.5. A 0.83 μg/mL increase in IL-8 levels was significantly associated with a -1.07 L/min (95% confidence interval, -2.05 to -0.08) decrease in PEF. A 12.0 μg/m3 increase in SPM and a 10.0 μg/m3 increase in PM2.5 were associated with a -1.36 L/min (-2.93 to 0.22) and -1.72 L/min (-3.82 to 0.36) decreases in PEF, respectively. There were no significant relationships between PEF, SPM, and PM2.5. CONCLUSIONS These findings suggest that the effects of airborne PM on pulmonary function in schoolchildren might depend more on the pro-inflammatory response than the mass concentration of the PM.
Collapse
|
25
|
Kastury F, Smith E, Juhasz AL. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1054-1074. [PMID: 27672736 DOI: 10.1016/j.scitotenv.2016.09.056] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 05/04/2023]
Abstract
Inhalation of metal(loid)s in ambient particulate matter (APM) represents a significant exposure pathway to humans. Although exposure assessment associated with this pathway is currently based on total metal(loid) content, a bioavailability (i.e. absorption in the systemic circulation) and/or bioaccessibility (i.e. solubility in simulated lung fluid) based approach may more accurately quantify exposure. Metal(loid) bioavailability-bioaccessibility assessment from APM is inherently complex and lacks consensus. This paper reviews the discrepancies that impede the adoption of a universal protocol for the assessment of inhalation bioaccessibility. Exposure assessment approaches for in-vivo bioavailability, in-vitro cell culture and in-vitro bioaccessibility (composition of simulated lungs fluid, physico-chemical and methodological considerations) are critiqued in the context of inhalation exposure refinement. An important limitation of bioavailability and bioaccessibility studies is the use of considerably higher than environmental metal(loid) concentration, which diminishing their relevance to human exposure scenarios. Similarly, individual metal(loid) studies have been criticised due to complexities of APM metal(loid) mixtures which may impart synergistic or antagonistic effects compared to single metal(loid) exposure. Although a number of different simulated lung fluid (SLF) compositions have been used in metal(loid) bioaccessibility studies, information regarding the comparative leaching efficiency among these different SLF and comparisons to in-vivo bioavailability data is lacking. In addition, the particle size utilised is often not representative of what is deposited in the lungs while assay parameters (extraction time, solid to liquid ratio, temperature and agitation) are often not biologically relevant. Research needs are identified in order to develop robust in-vitro bioaccessibility protocols for the assessment or prediction of metal(loid) bioavailability in APM for the refinement of inhalation exposure.
Collapse
Affiliation(s)
- Farzana Kastury
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
26
|
Holland NA, Thompson LC, Vidanapathirana AK, Urankar RN, Lust RM, Fennell TR, Wingard CJ. Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 2016; 13:48. [PMID: 27558113 PMCID: PMC4997661 DOI: 10.1186/s12989-016-0159-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The uses of engineered nanomaterials have expanded in biomedical technology and consumer manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent. METHODS Male Sprague-Dawley rats were exposed to 200 μg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation. RESULTS AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naïve. CONCLUSIONS Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the immune system to respond to a secondary insult (e.g., cardiac I/R) which may drive expansion of I/R injury at 1 and 7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.
Collapse
Affiliation(s)
- Nathan A. Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Leslie C. Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Achini K. Vidanapathirana
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Rahkee N. Urankar
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Timothy R. Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC 27709 USA
| | - Christopher J. Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
27
|
Van Den Heuvel R, Den Hond E, Govarts E, Colles A, Koppen G, Staelens J, Mampaey M, Janssen N, Schoeters G. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B). ENVIRONMENTAL RESEARCH 2016; 149:48-56. [PMID: 27177354 DOI: 10.1016/j.envres.2016.04.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM10 in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013-2014 PM10 was sampled (24h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM10 particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM10 particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM10 characteristics and biological effects of PM10 were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses.
Collapse
Affiliation(s)
- Rosette Van Den Heuvel
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium.
| | - Jeroen Staelens
- Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp, Belgium.
| | - Maja Mampaey
- LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels, Belgium.
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven, The Netherlands.
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol, Belgium; University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp, Belgium.
| |
Collapse
|
28
|
Rosa MJ, Benedetti C, Peli M, Donna F, Nazzaro M, Fedrighi C, Zoni S, Marcon A, Zimmerman N, Wright R, Lucchini R. Association between personal exposure to ambient metals and respiratory disease in Italian adolescents: a cross-sectional study. BMC Pulm Med 2016; 16:6. [PMID: 26754125 PMCID: PMC4709999 DOI: 10.1186/s12890-016-0173-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background Release of ambient metals during ferroalloy production may be an important source of environmental exposure for nearby communities and exposure to these metals has been linked to adverse respiratory outcomes. We sought to characterize the association between personal air levels of metals and respiratory health in Italian adolescents living in communities with historic and current ferroalloy activity. Methods As part of a study in the industrial province of Brescia, Italy, 410 adolescents aged 11–14 years were recruited. Participants were enrolled from three different communities with varying manganese (Mn) levels: Bagnolo Mella which has current ferroalloy activity, Valcamonica, which has historic ferroalloy activity and Garda Lake which has no history of ferroalloy activity. Particulate matter <10 μm in diameter (PM10) was collected for 24 h in filters using personal sampling. Mn, nickel (Ni), zinc (Zn), chromium (Cr) and iron (Fe) were measured in filters using x-ray fluorescence. Data on respiratory health was collected through questionnaire. Data for 280 adolescents were analyzed using a modified Poisson regression, and risk ratios were calculated for an interquartile (IQR) range increase in each pollutant. Results In adjusted models including PM10 as a co-pollutant, we found significant associations between concentrations of Mn (RR: 1.09, 95 % CI [1.00, 1.18] per 42 ng/m3 increase), Ni (RR: 1.11, 95 % CI [1.03, 1.21] per 4 ng/m3 increase) and Cr (RR: 1.08, 95 % CI [1.06, 1.11] per 9 ng/m3 increase) and parental report of asthma. We also found significant associations between increased Mn and Ni and increased risk of asthma medication use in the past 12 months (RR: 1.13, 95 % CI [1.04, 1.29] and (RR: 1.13, 95 % CI [1.01, 1.27] respectively). Conclusions Our findings suggest that exposure to ambient Mn, Ni and Cr may be associated with adverse respiratory outcomes. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0173-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Chiara Benedetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| | - Marco Peli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy. .,Department of Civil, Environmental, Architectural Engineering and Mathematics of the University of Brescia, Brescia, Italy.
| | - Filippo Donna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| | - Marco Nazzaro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| | - Chiara Fedrighi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| | - Silvia Zoni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| | - Alessandro Marcon
- Department of Diagnostics and Public Health, Unit of Epidemiology & Medical Statistics, University of Verona, Verona, Italy.
| | - Neil Zimmerman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Rosalind Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA. .,Department of Pediatrics, Pulmonary and Critical Care, Icahn School of Medicine at 'Mount Sinai, New York, NY, USA.
| | - Roberto Lucchini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA. .,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Occupational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|