1
|
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024; 13:1931. [PMID: 39682681 DOI: 10.3390/cells13231931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The main purpose of regenerative medicine for degenerative eye diseases is to create cells to replace lost or damaged ones. Due to their anatomical, genetic, and epigenetic features, characteristics of origin, evolutionary inheritance, capacity for dedifferentiation, proliferation, and plasticity, mammalian and human RPE cells are of great interest as endogenous sources of new photoreceptors and other neurons for the degrading retina. Promising methods for the reprogramming of RPE cells into retinal cells include genetic methods and chemical methods under the influence of certain low-molecular-weight compounds, so-called small molecules. Depending on the goal, which can be the preservation or the replacement of lost RPE cells and cellular structures, various small molecules are used to influence certain biological processes at different levels of cellular regulation. This review discusses the potential of the chemical reprogramming of RPE cells in comparison with other somatic cells and induced pluripotent stem cells (iPSCs) into neural cells of the brain and retina. Possible mechanisms of the chemically induced reprogramming of somatic cells under the influence of small molecules are explored and compared. This review also considers other possibilities in using them in the treatment of retinal degenerative diseases based on the protection, preservation, and support of survived RPE and retinal cells.
Collapse
Affiliation(s)
- Lyubov A Rzhanova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Elena V Alpeeva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Maria A Aleksandrova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
2
|
Daskivich GJ, Brodsky JL. The generation of detergent-insoluble clipped fragments from an ERAD substrate in mammalian cells. Sci Rep 2023; 13:21508. [PMID: 38057493 PMCID: PMC10700608 DOI: 10.1038/s41598-023-48769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Proteostasis ensures the proper synthesis, folding, and trafficking of proteins and is required for cellular and organellar homeostasis. This network also oversees protein quality control within the cell and prevents accumulation of aberrant proteins, which can lead to cellular dysfunction and disease. For example, protein aggregates irreversibly disrupt proteostasis and can exert gain-of-function toxic effects. Although this process has been examined in detail for cytosolic proteins, how endoplasmic reticulum (ER)-tethered, aggregation-prone proteins are handled is ill-defined. To determine how a membrane protein with a cytoplasmic aggregation-prone domain is routed for ER-associated degradation (ERAD), we analyzed a new model substrate, TM-Ubc9ts. In yeast, we previously showed that TM-Ubc9ts ERAD requires Hsp104, which is absent in higher cells. In transient and stable HEK293 cells, we now report that TM-Ubc9ts degradation is largely proteasome-dependent, especially at elevated temperatures. In contrast to yeast, clipped TM-Ubc9ts polypeptides, which are stabilized upon proteasome inhibition, accumulate and are insoluble at elevated temperatures. TM-Ubc9ts cleavage is independent of the intramembrane protease RHBDL4, which clips other classes of ERAD substrates. These studies highlight an unappreciated mechanism underlying the degradation of aggregation-prone substrates in the ER and invite further work on other proteases that contribute to ERAD.
Collapse
Affiliation(s)
- Grant J Daskivich
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Vázquez-Domínguez I, Garanto A. Considerations for Generating Humanized Mouse Models to Test Efficacy of Antisense Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:267-279. [PMID: 35213024 DOI: 10.1007/978-1-0716-2010-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decades, animal models have become increasingly important in therapeutic drug development and assessment. The use of these models, mainly mice and rats, allow evaluating drugs in the real-organism environment and context. However, several molecular therapeutic approaches are sequence-dependent, and therefore, the humanization of such models is required to assess the efficacy. The generation of genetically modified humanized mouse models is often an expensive and laborious process that may not always recapitulate the human molecular and/or physiological phenotype. In this chapter, we summarize basic aspects to consider before designing and generating humanized models, especially when they are aimed to test antisense-based therapies.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Vázquez-Domínguez I, Garanto A, Collin RWJ. Molecular Therapies for Inherited Retinal Diseases-Current Standing, Opportunities and Challenges. Genes (Basel) 2019; 10:genes10090654. [PMID: 31466352 PMCID: PMC6770110 DOI: 10.3390/genes10090654] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal diseases (IRDs) are both genetically and clinically highly heterogeneous and have long been considered incurable. Following the successful development of a gene augmentation therapy for biallelic RPE65-associated IRD, this view has changed. As a result, many different therapeutic approaches are currently being developed, in particular a large variety of molecular therapies. These are depending on the severity of the retinal degeneration, knowledge of the pathophysiological mechanism underlying each subtype of IRD, and the therapeutic target molecule. DNA therapies include approaches such as gene augmentation therapy, genome editing and optogenetics. For some genetic subtypes of IRD, RNA therapies and compound therapies have also shown considerable therapeutic potential. In this review, we summarize the current state-of-the-art of various therapeutic approaches, including the pros and cons of each strategy, and outline the future challenges that lie ahead in the combat against IRDs.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
6
|
Eblimit A, Agrawal SA, Thomas K, Anastassov IA, Abulikemu T, Moayedi Y, Mardon G, Chen R. Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice. Exp Eye Res 2018; 166:120-130. [PMID: 29100828 PMCID: PMC5756513 DOI: 10.1016/j.exer.2017.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
The mammalian retina consists of multiple cell layers including photoreceptor cells, which are light sensing neurons that play essential functions in the visual process. Previously, we identified mutations in SPATA7, encoding spermatogenesis associated protein 7, in families with Leber Congenital Amaurosis (LCA) and juvenile Retinitis Pigmentosa (RP), and showed that Spata7 null mice recapitulate the human disease phenotype of retinal degeneration. SPATA7 is expressed in the connecting cilium of photoreceptor (PR) cells in the mouse retina, as well as in retinal pigment epithelium (RPE) cells, but the functional role of Spata7 in the RPE remains unknown. To investigate whether Spata7 is required in PRs, the RPE, or both, we conditionally knocked out Spata7 in photoreceptors and RPE cells using Crx-Cre and Best1-Cre transgenic mouse lines, respectively. In Spata7 photoreceptor-specific conditional (cKO) mice, both rod and cone photoreceptor dysfunction and degeneration is observed, characterized by progressive thinning of the outer nuclear layer and reduced response to light; however, RPE-specific deletion of Spata7 does not impair retinal function or cell survival. Furthermore, our findings show that both Rhodopsin and RPGRIP1 are mislocalized in the Spata7Flox/-; Crx-Cre cKO mice, suggesting that loss of Spata7 in photoreceptors alone can result in altered trafficking of these proteins in the connecting cilium. Together, our findings suggest that loss of Spata7 in photoreceptors alone is sufficient to cause photoreceptor degeneration, but its function in the RPE is not required for photoreceptor survival; therefore, loss of Spata7 in photoreceptors alters both rod and cone function and survival, consistent with the clinical phenotypes observed in LCA and RP patients with mutations in SPATA7.
Collapse
Affiliation(s)
- Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Smriti Akshay Agrawal
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Kandace Thomas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Ivan Assenov Anastassov
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Tajiguli Abulikemu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
| | | | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| |
Collapse
|
7
|
Ghaderi S, Ahmadian S, Soheili ZS, Ahmadieh H, Samiei S, Kheitan S, Pirmardan ER. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress. J Cell Biochem 2017; 119:1355-1367. [PMID: 28782832 DOI: 10.1002/jcb.26296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022]
Abstract
Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases.
Collapse
Affiliation(s)
- Shima Ghaderi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra-Soheila Soheili
- Ministry of Science, Research and Technology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Samira Kheitan
- Ministry of Science, Research and Technology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan R Pirmardan
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. Int J Mol Sci 2017; 18:ijms18010201. [PMID: 28106827 PMCID: PMC5297831 DOI: 10.3390/ijms18010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
The retina is a specialized sensory organ, which is essential for light detection and visual formation in the human eye. Inherited retinal degenerations are a heterogeneous group of eye diseases that can eventually cause permanent vision loss. UPR (unfolded protein response) and ER (endoplasmic reticulum) stress plays an important role in the pathological mechanism of retinal degenerative diseases. mTOR (the mammalian target of rapamycin) kinase, as a signaling hub, controls many cellular processes, covering protein synthesis, RNA translation, ER stress, and apoptosis. Here, the hypothesis that inhibition of mTOR signaling suppresses ER stress-induced cell death in retinal degenerative disorders is discussed. This review surveys knowledge of the influence of mTOR signaling on ER stress arising from misfolded proteins and genetic mutations in retinal degenerative diseases and highlights potential neuroprotective strategies for treatment and therapeutic implications.
Collapse
|