1
|
Lebrun F, Levard D, Lemarchand E, Yetim M, Furon J, Potzeha F, Marie P, Lesept F, Blanc M, Haelewyn B, Rubio M, Letourneur A, Violle N, Orset C, Vivien D. Improving stroke outcomes in hyperglycemic mice by modulating tPA/NMDAR signaling to reduce inflammation and hemorrhages. Blood Adv 2024; 8:1330-1344. [PMID: 38190586 PMCID: PMC10943589 DOI: 10.1182/bloodadvances.2023011744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
ABSTRACT The pharmacological intervention for ischemic stroke hinges on intravenous administration of the recombinant tissue-type plasminogen activator (rtPA, Alteplase/Actilyse) either as a standalone treatment or in conjunction with thrombectomy. However, despite its clinical significance, broader use of rtPA is constrained because of the risk of hemorrhagic transformations (HTs). Furthermore, the presence of diabetes or chronic hyperglycemia is associated with an elevated risk of HT subsequent to thrombolysis. This detrimental impact of tPA on the neurovascular unit in patients with hyperglycemia has been ascribed to its capacity to induce endothelial N-methyl-D-aspartate receptor (NMDAR) signaling, contributing to compromised blood-brain barrier integrity and neuroinflammatory processes. In a mouse model of thromboembolic stroke with chronic hyperglycemia, we assessed the effectiveness of rtPA and N-acetylcysteine (NAC) as thrombolytic agents. We also tested the effect of blocking tPA/NMDAR signaling using a monoclonal antibody, Glunomab. Magnetic resonance imaging, speckle contrast imaging, flow cytometry, and behavioral tasks were used to evaluate stroke outcomes. In hyperglycemic animals, treatment with rtPA resulted in lower recanalization rates and increased HTs. Conversely, NAC treatment reduced lesion sizes while mitigating HTs. After a single administration, either in standalone or combined with rtPA-induced thrombolysis, Glunomab reduced brain lesion volumes, HTs, and neuroinflammation after stroke, translating into improved neurological outcomes. Additionally, we demonstrated the therapeutic efficacy of Glunomab in combination with NAC or as a standalone strategy in chronic hyperglycemic animals. Counteracting tPA-dependent endothelial NMDAR signaling limits ischemic damages induced by both endogenous and exogenous tPA, including HTs and inflammatory processes after ischemic stroke in hyperglycemic animals.
Collapse
Affiliation(s)
- Florent Lebrun
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- STROK@LLIANCE, ETAP-Lab, Caen, France
| | - Damien Levard
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Eloïse Lemarchand
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Jonathane Furon
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Fanny Potzeha
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | - Pauline Marie
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | | | | | - Benoit Haelewyn
- GIP Cyceron, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
| | | | | | - Cyrille Orset
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie, Caen, France
- Experimental Stroke Research Platform, Normandie University, CURB, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| |
Collapse
|
2
|
Li L, Wang M, Ma YM, Yang L, Zhang DH, Guo FY, Jing L, Zhang JZ. Selenium inhibits ferroptosis in hyperglycemic cerebral ischemia/reperfusion injury by stimulating the Hippo pathway. PLoS One 2023; 18:e0291192. [PMID: 37682882 PMCID: PMC10490962 DOI: 10.1371/journal.pone.0291192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperglycemia can exacerbate cerebral ischemia/reperfusion (I/R) injury, and the mechanism involves oxidative stress, apoptosis, autophagy and mitochondrial function. Our previous research showed that selenium (Se) could alleviate this injury. The aim of this study was to examine how selenium alleviates hyperglycemia-mediated exacerbation of cerebral I/R injury by regulating ferroptosis. Middle cerebral artery occlusion (MCAO) and reperfusion models were established in rats under hyperglycemic conditions. An in vitro model of hyperglycemic cerebral I/R injury was created with oxygen-glucose deprivation and reoxygenation (OGD/R) and high glucose was employed. The results showed that hyperglycemia exacerbated cerebral I/R injury, and sodium selenite pretreatment decreased infarct volume, edema and neuronal damage in the cortical penumbra. Moreover, sodium selenite pretreatment increased the survival rate of HT22 cells under OGD/R and high glucose conditions. Pretreatment with sodium selenite reduced the hyperglycemia mediated enhancement of ferroptosis. Furthermore, we observed that pretreatment with sodium selenite increased YAP and TAZ levels in the cytoplasm while decreasing YAP and TAZ levels in the nucleus. The Hippo pathway inhibitor XMU-MP-1 eliminated the inhibitory effect of sodium selenite on ferroptosis. The findings suggest that pretreatment with sodium selenite can regulate ferroptosis by activating the Hippo pathway, and minimize hyperglycemia-mediated exacerbation of cerebral I/R injury.
Collapse
Affiliation(s)
- Lu Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan-Mei Ma
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan Yang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Deng-Hai Zhang
- The Shanghai Health Commission Key Lab of AI-Based Management of Inflammation and Chronic Diseases, The Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Feng-Ying Guo
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Jing
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Zhong Zhang
- Ningxia Key Laboratory of Craniocerebral Diseases, Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Song J, Shin SD, Jamaluddin SF, Chiang WC, Tanaka H, Song KJ, Ahn S, Park JH, Kim J, Cho HJ, Moon S, Jeon ET. Prediction of Mortality among Patients with Isolated Traumatic Brain Injury Using Machine Learning Models in Asian Countries: An International Multi-Center Cohort Study. J Neurotrauma 2023. [PMID: 36656672 DOI: 10.1089/neu.2022.0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant healthcare concern in several countries, accounting for a major burden of morbidity, mortality, disability, and socioeconomic losses. Although conventional prognostic models for patients with TBI have been validated, their performance has been limited. Therefore, we aimed to construct machine learning (ML) models to predict the clinical outcomes in adult patients with isolated TBI in Asian countries. The Pan-Asian Trauma Outcome Study registry was used in this study, and the data were prospectively collected from January 1, 2015, to December 31, 2020. Among a total of 6540 patients (≥ 15 years) with isolated moderate and severe TBI, 3276 (50.1%) patients were randomly included with stratification by outcomes and subgrouping variables for model evaluation, and 3264 (49.9%) patients were included for model training and validation. Logistic regression was considered as a baseline, and ML models were constructed and evaluated using the area under the precision-recall curve (AUPRC) as the primary outcome metric, area under the receiver operating characteristic curve (AUROC), and precision at fixed levels of recall. The contribution of the variables to the model prediction was measured using the SHapley Additive exPlanations (SHAP) method. The ML models outperformed logistic regression in predicting the in-hospital mortality. Among the tested models, the gradient-boosted decision tree showed the best performance (AUPRC, 0.746 [0.700-0.789]; AUROC, 0.940 [0.929-0.952]). The most powerful contributors to model prediction were the Glasgow Coma Scale, O2 saturation, transfusion, systolic and diastolic blood pressure, body temperature, and age. Our study suggests that ML techniques might perform better than conventional multi-variate models in predicting the outcomes among adult patients with isolated moderate and severe TBI.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Emergency Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sang Do Shin
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Wen-Chu Chiang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Hideharu Tanaka
- Graduate School of Emergency Medical Service System, Kokushikan University, Tokyo, Japan
| | - Kyoung Jun Song
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sejoong Ahn
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Jong-Hak Park
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Jooyeong Kim
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Han-Jin Cho
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Sungwoo Moon
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Eun-Tae Jeon
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Chen J, Chen Y, Lin Y, Long J, Chen Y, He J, Huang G. Roles of Bilirubin in Hemorrhagic Transformation of Different Types and Severity. J Clin Med 2023; 12:jcm12041471. [PMID: 36836007 PMCID: PMC9966404 DOI: 10.3390/jcm12041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke (AIS). This study was performed to explore and validate the relation between bilirubin levels and spontaneous HT (sHT) and HT after mechanical thrombectomy (tHT). METHODS The study population consisted of 408 consecutive AIS patients with HT and age- and sex-matched patients without HT. All patients were divided into quartiles according to total bilirubin (TBIL) level. HT was classified as hemorrhagic infarction (HI) and parenchymal hematoma (PH) based on radiographic data. RESULTS In this study, the baseline TBIL levels were significantly higher in the HT than non-HT patients in both cohorts (p < 0.001). Furthermore, the severity of HT increased with increasing TBIL levels (p < 0.001) in sHT and tHT cohorts. The highest quartile of TBIL was associated with HT in sHT and tHT cohorts (sHT cohort: OR = 3.924 (2.051-7.505), p < 0.001; tHT cohort: OR = 3.557 (1.662-7.611), p = 0.006). CONCLUSIONS Our results suggest that an increased TBIL is associated with a high risk of patients with sHT and tHT, and that TBIL is more suitable as a predictor for sHT than tHT. These findings may help to identify patients susceptible to different types and severity of HT.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yiting Chen
- School of Foreign Language Studies, Wenzhou Medical University, Wenzhou 325000, China
| | - Yisi Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingfang Long
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yufeng Chen
- Department of General Practice, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (J.H.); (G.H.)
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (J.H.); (G.H.)
| |
Collapse
|
5
|
Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence. Sci Rep 2022; 12:3977. [PMID: 35273267 PMCID: PMC8913667 DOI: 10.1038/s41598-022-07881-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the significance of predicting the prognosis of idiopathic sudden sensorineural hearing loss (ISSNHL), no predictive models have been established. This study used artificial intelligence to develop prognosis models to predict recovery from ISSNHL. We retrospectively reviewed the medical data of 453 patients with ISSNHL (men, 220; women, 233; mean age, 50.3 years) who underwent treatment at a tertiary hospital between January 2021 and December 2019 and were followed up after 1 month. According to Siegel's criteria, 203 patients recovered in 1 month. Demographic characteristics, clinical and laboratory data, and pure-tone audiometry were analyzed. Logistic regression (baseline), a support vector machine, extreme gradient boosting, a light gradient boosting machine, and multilayer perceptron were used. The outcomes were the area under the receiver operating characteristic curve (AUROC) primarily, area under the precision-recall curve, Brier score, balanced accuracy, and F1 score. The light gradient boosting machine model had the best AUROC and balanced accuracy. Together with multilayer perceptron, it was also significantly superior to logistic regression in terms of AUROC. Using the SHapley Additive exPlanation method, we found that the initial audiogram shape is the most important prognostic factor. Machine/deep learning methods were successfully established to predict the prognosis of ISSNHL.
Collapse
|
6
|
Ferrari F, Moretti A, Villa RF. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural Regen Res 2022; 17:292-299. [PMID: 34269190 PMCID: PMC8463990 DOI: 10.4103/1673-5374.317959] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin (including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Antonio Moretti
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Roberto Federic Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| |
Collapse
|
7
|
Interpretable machine learning for early neurological deterioration prediction in atrial fibrillation-related stroke. Sci Rep 2021; 11:20610. [PMID: 34663874 PMCID: PMC8523653 DOI: 10.1038/s41598-021-99920-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multicenter prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanation (SHAP) method to evaluate feature importance. Of the 3,213 stroke patients, the 2,363 who had arrived at the hospital within 24 h of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.772; 95% confidence interval, 0.715–0.829). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the effects of the features on the predictive power of the model were individualized using the SHAP method.
Collapse
|
8
|
Gómez-de Frutos MC, Laso-García F, Diekhorst L, Otero-Ortega L, Fuentes B, Jolkkonen J, Detante O, Moisan A, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M. Intravenous delivery of adipose tissue-derived mesenchymal stem cells improves brain repair in hyperglycemic stroke rats. Stem Cell Res Ther 2019; 10:212. [PMID: 31315686 PMCID: PMC6637493 DOI: 10.1186/s13287-019-1322-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background Over 50% of acute stroke patients have hyperglycemia, which is associated with a poorer prognosis and outcome. Our aim was to investigate the impact of hyperglycemia on behavioral recovery and brain repair of delivered human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) in a rat model of permanent middle cerebral artery occlusion (pMCAO). Methods Hyperglycemia was induced in rats by the administration of nicotinamide and streptozotocin. The rats were then subjected to stroke by a pMCAO model. At 48 h post-stroke, 1 × 106 hAD-MSCs or saline were intravenously administered. We evaluated behavioral outcome, infarct size by MRI, and brain plasticity markers by immunohistochemistry (glial fibrillary acidic protein [GFAP], Iba-1, synaptophysin, doublecortin, CD-31, collagen-IV, and α-smooth muscle actin [α-SMA]). Results The hyperglycemic group exhibited more severe neurological deficits; lesion size and diffusion coefficient were larger compared with the non-hyperglycemic rats. GFAP, Iba-1, and α-SMA were increased in the hyperglycemic group. The hyperglycemic rats administered hAD-MSCs at 48 h after pMCAO had improved neurological impairment. Although T2-MRI did not show differences in lesion size between groups, the rADC values were lower in the treated group. Finally, the levels of GFAP, Iba-1, and arterial wall thickness were lower in the treated hyperglycemic group than in the nontreated hyperglycemic group at 6 weeks post-stroke. Conclusions Our data suggest that rats with hyperglycemic ischemic stroke exhibit increased lesion size and impaired brain repair processes, which lead to impairments in behavioral recovery after pMCAO. More importantly, hAD-MSC administration induced better anatomical tissue preservation, associated with a good behavioral outcome. Electronic supplementary material The online version of this article (10.1186/s13287-019-1322-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Fernando Laso-García
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Luke Diekhorst
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Olivier Detante
- Neurology Department, Stroke Unit, Grenoble Hospital, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, Grenoble, France
| | - Anaick Moisan
- Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, Grenoble, France.,Cell Therapy and Engineering Unit, EFS Auvergne Rhône Alpes, Saint-Ismier, France
| | - Arturo Martínez-Arroyo
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | | |
Collapse
|
9
|
Deng L, Qiu S, Wang C, Bian H, Wang L, Li Y, Wu B, Liu M. Effects of the blood urea nitrogen to creatinine ratio on haemorrhagic transformation in AIS patients with diabetes mellitus. BMC Neurol 2019; 19:63. [PMID: 30987606 PMCID: PMC6463662 DOI: 10.1186/s12883-019-1290-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/31/2019] [Indexed: 02/05/2023] Open
Abstract
Background The effect of the blood urea nitrogen (BUN) to creatinine (Cr) ratio (henceforth BUN/Cr) on haemorrhagic transformation (HT) of acute ischaemic stroke (AIS) patients is unclear. Methods AIS patients in the West China Hospital, Sichuan University, Chengdu, China, admitted within seven days from stroke onset (2012–2016) were included in the study. Baseline data, including BUN and Cr levels, were collected. The outcome was defined as HT during hospitalization. Results In this study, 1738 participants with an average age of 62.7 ± 14.0 years were included. After adjusting potential confounders (age, blood platelet, albumin, stroke severity, triglycerides and low-density lipoprotein [LDL]), multivariate logistic regression analyses indicated that BUN/Cr is independently associated with HT. The nonlinear relation between BUN/Cr and HT was explored in a dose-dependent manner, with an apparent inflection point of 30.71. On the left and right sides of the inflection point, the odds ratio (OR) and 95% confidence interval (CI) were 1.05 (1.02–1.08) and 0.96 (0.88–1.05), respectively. Interaction between BUN/Cr and diabetes mellitus (DM) and HT (P for interaction = 0.0395) was noted. BUN/Cr showed positive correlation with HT in DM patients (OR = 1.07; 95% CI: [1.02, 1.12]) but no significant relationship with HT in patients without DM. Conclusion BUN/Cr is significantly associated with HT in AIS patients in a linear fashion, with an apparent cut point demarcating the HT difference. When the patients have DM, BUN/Cr is positively correlated with HT. These results support a revision in how we anticipate the prognosis for AIS patients. Electronic supplementary material The online version of this article (10.1186/s12883-019-1290-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linghui Deng
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Center of Biomedical big data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changyi Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Bian
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lu Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxiao Li
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
McBride DW, Gren ECK, Kelln W, Hayes WK, Zhang JH. Crotalus atrox disintegrin reduces hemorrhagic transformation by attenuating matrix metalloproteinase-9 activity after middle cerebral artery occlusion in hyperglycemic male rats. J Neurosci Res 2018; 98:191-200. [PMID: 30242872 DOI: 10.1002/jnr.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
Abstract
Hemorrhagic transformation after ischemic stroke is an independent predictor for poor outcome and is characterized by blood vessel rupture leading to brain edema. To date, no therapies for preventing hemorrhagic transformation exist. Disintegrins from the venom of Crotalus atrox have targets within the coagulation cascade, including receptors on platelets. We hypothesized that disintegrins from C. atrox venom can attenuate hemorrhagic transformation by preventing activation of matrix metalloproteinase after middle cerebral artery occlusion (MCAO) in hyperglycemic rats. We subjected 48 male Sprague-Dawley rats weighing 240-260 g to MCAO and hyperglycemia to induce hemorrhagic transformation of the infarction. At reperfusion, we administered either saline (vehicle), whole C. atrox venom (two doses were used), or fractionated C. atrox venom (HPLC Fraction 2). Rats were euthanized 24 hr post-ictus for measurement of infarction and hemoglobin volume. Reversed-phase HPLC was performed to fractionate the whole venom and peaks were combined to form Fraction 2, which contained the disintegrin Crotatroxin. Fraction 2 protected against hemorrhagic transformation after MCAO, and attenuated activation of matrix metalloproteinase-9. Administering matrix metalloproteinase antagonists prevented the protection by Fraction 2. The results of this study indicate that disintegrins found in C. atrox venom may have therapeutic potential for reducing hemorrhagic transformation after ischemic stroke. Moreover, the RP-HPLC fractions retained sufficient protein activity to suggest that gentler and less efficient orthogonal chromatographic methods may be unnecessary to isolate proteins and explore their function.
Collapse
Affiliation(s)
- Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
11
|
Zhang G, He M, Xu Y, Li X, Cai Z, Guo Z, Meng P, Ji N, He X, Pang L. Hemoglobin A1c predicts hemorrhagic transformation and poor outcomes after acute anterior stroke. Eur J Neurol 2018; 25:1432-e122. [PMID: 29959811 DOI: 10.1111/ene.13747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Hemorrhagic transformation (HT) is a major complication of acute ischaemic stroke that is potentially related to clinical deterioration. The objective of this study was to assess whether chronic hyperglycemia is a predictive factor of HT in patients with acute anterior stroke. METHODS Patients with acute anterior stroke were included in this study. Hemoglobin A1c (HbA1c) was measured in the morning after hospitalization. HT was detected by computed tomography scans or gradient echo magnetic resonance imaging performed 4 (±2) days after onset. Univariate and multivariate logistic regression analyses were used to assess the risks for HT and short-term outcomes. RESULTS Of the 426 patients included, 93 (21.8%) had HT: 61 (14.3%) presented with hemorrhagic infarction and 32 (7.5%) presented with parenchymal hematoma. A total of 54 patients received thrombolytic treatment and 18 (33.3%) were found to have HT. In the multivariate analysis, HbA1c [odds ratio (OR), 1.294; 95% confidence interval (CI), 1.097-1.528], infarction size (OR, 3.358; 95% CI, 1.748-6.449) and thrombolytic therapy (OR, 3.469; 95% CI, 1.757-6.847) were predictors of HT. The predictive effect of HbA1c on HT was still observed in both groups when patients were stratified according to the levels of fasting blood glucose. HbA1c was found to be a predictor of poor outcomes in the multilogistic regression analysis (OR, 1.482; 95% CI, 1.228-1.788). CONCLUSIONS Higher HbA1c was independently related to HT and poor neurological outcomes in patients with ischaemic stroke. These findings have significant implications for the treatment of diabetes and glucose management in patients with diabetes mellitus and/or acute ischaemic stroke.
Collapse
Affiliation(s)
- G Zhang
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - M He
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - Y Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu
| | - X Li
- Department of Emergency, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu, China
| | - Z Cai
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - Z Guo
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - P Meng
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - N Ji
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - X He
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| | - L Pang
- Department of Neurology, Lianyungang Hospital affiliated to Xuzhou Medical College, Lianyungang, Jiangsu
| |
Collapse
|
12
|
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315:C343-C356. [PMID: 29949404 DOI: 10.1152/ajpcell.00095.2018] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Dinesh Tripathi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
13
|
Fabian RH, Derry PJ, Rea HC, Dalmeida WV, Nilewski LG, Sikkema WKA, Mandava P, Tsai AL, Mendoza K, Berka V, Tour JM, Kent TA. Efficacy of Novel Carbon Nanoparticle Antioxidant Therapy in a Severe Model of Reversible Middle Cerebral Artery Stroke in Acutely Hyperglycemic Rats. Front Neurol 2018; 9:199. [PMID: 29686642 PMCID: PMC5900022 DOI: 10.3389/fneur.2018.00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION While oxidative stress can be measured during transient cerebral ischemia, antioxidant therapies for ischemic stroke have been clinically unsuccessful. Many antioxidants are limited in their range and/or capacity for quenching radicals and can generate toxic intermediates overwhelming depleted endogenous protection. We developed a new antioxidant class, 40 nm × 2 nm carbon nanoparticles, hydrophilic carbon clusters, conjugated to poly(ethylene glycol) termed PEG-HCCs. These particles are high-capacity superoxide dismutase mimics, are effective against hydroxyl radical, and restore the balance between nitric oxide and superoxide in the vasculature. Here, we report the effects of PEG-HCCs administered during reperfusion after transient middle cerebral artery occlusion (tMCAO) by suture in the rat under hyperglycemic conditions. Hyperglycemia occurs in one-third of stroke patients and worsens clinical outcome. In animal models, this worsening occurs largely by accelerating elaboration of reactive oxygen species (ROS) during reperfusion. METHODS PEG-HCCs were studied for their protective ability against hydrogen peroxide in b.End3 brain endothelial cell line and E17 primary cortical neuron cultures. In vivo, hyperglycemia was induced by streptozotocin injection 2 days before tMCAO. 58 Male Sprague-Dawley rats were analyzed. They were injected IV with PBS or PEG-HCCs (4 mg/kg 2×) at the time of recanalization after either 90- or 120-min occlusion. Rats were survived for up to 3 days, and infarct volume characteristics and neurological functional outcome (modified Bederson Score) were assessed. RESULTS PEG-HCCs were protective against hydrogen peroxide in both culture models. In vivo improvement was found after PEG-HCCs with 90-min ischemia with reduction in infarct size (42%), hemisphere swelling (46%), hemorrhage score (53%), and improvement in Bederson score (70%) (p = 0.068-0.001). Early high mortality in the 2-h in the PBS control group precluded detailed analysis, but a trend was found in improvement in all factors, e.g., reduction in infarct volume (48%; p = 0.034) and a 56% improvement in Bederson score (p = 0.055) with PEG-HCCs. CONCLUSION This nano-antioxidant showed some improvement in several outcome measures in a severe model of tMCAO when administered at a clinically relevant time point. Long-term studies and additional models are required to assess potential for clinical use, especially for patients hyperglycemic at the time of their stroke, as these patients have the worst outcomes.
Collapse
Affiliation(s)
- Roderic H. Fabian
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Paul J. Derry
- Department of Neurology and Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Harriett Charmaine Rea
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - William V. Dalmeida
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | | | | | - Pitchaiah Mandava
- Department of Neurology, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Vladimir Berka
- Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - James M. Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, TX, United States
| | - Thomas A. Kent
- Department of Neurology and Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
14
|
Ahmadi-Eslamloo H, Dehghani GA, Moosavi SMS. Long-term treatment of diabetic rats with vanadyl sulfate or insulin attenuate acute focal cerebral ischemia/reperfusion injury via their antiglycemic effect. Metab Brain Dis 2018; 33:225-235. [PMID: 29151151 DOI: 10.1007/s11011-017-0153-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
It is well-known that patients with diabetes mellitus have worse clinical outcomes following acute ischemic stroke. The intensifying effects of diabetes on ischemic brain injury have been shown to be mostly due to hyperglycemia, rather than the lack of insulin direct effects on brain. It is also well-approved that vanadium compounds have insulin-like and anti-diabetic effects, and the present study was designed to compare the protective effects of diabetes treatment with vanadium or insulin on ischemic/reperfused brain injury. Male Sprague-Dawley rats were divided into 4 groups (n = 21). Two groups of streptozotocin-induced diabetic rats were treated with either vanadyl sulfate or insulin at proper doses to similarly attenuate hyperglycemia during 45 days, while there was no treatment in the control diabetic and non-diabetic sham groups. Thereafter, all treated and non-treated diabetic rats were subjected to 60-min of the right middle cerebral artery occlusion followed by 12-h reperfusion, and then their brains were removed for evaluating blood-brain barrier leakage, tissue swelling, infarct size and oxidant status in both hemispheres. Vanadium and insulin that equally reduced blood glucose and water intake had some differences in their antidiabetic effects of ameliorating weight loss and hypertension during 45-days treatment period. However, they caused similar decrements in levels of Evans blue dye extravastion, edema, infarct volume and malondialdehyde in ischemic/reperfused cerebral hemisphere. Therefore, it can be suggested that insulin and vanadium via their antiglycemic effect cause reduction in cerebral production of oxidants following acute focal ischemia/reperfusion, which attenuate BBB disruption and brain tissue injury.
Collapse
Affiliation(s)
- Hossein Ahmadi-Eslamloo
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Gholam Abbas Dehghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran.
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 591] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Desilles JP, Syvannarath V, Ollivier V, Journé C, Delbosc S, Ducroux C, Boisseau W, Louedec L, Di Meglio L, Loyau S, Jandrot-Perrus M, Potier L, Michel JB, Mazighi M, Ho-Tin-Noé B. Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke 2017; 48:1932-1940. [PMID: 28526762 DOI: 10.1161/strokeaha.117.017080] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Admission hyperglycemia is associated with a poor outcome in acute ischemic stroke. How hyperglycemia impacts the pathophysiology of acute ischemic stroke remains largely unknown. We investigated how preexisting hyperglycemia increases ischemia/reperfusion cerebral injury. METHODS Normoglycemic and streptozotocin-treated hyperglycemic rats were subjected to transient middle cerebral artery occlusion. Infarct growth and brain perfusion were assessed by magnetic resonance imaging. Markers of platelet, coagulation, and neutrophil activation were measured in brain homogenates and plasma. Downstream microvascular thromboinflammation (DMT) was investigated by intravital microscopy. RESULTS Hyperglycemic rats had an increased infarct volume with an increased blood-brain barrier disruption and hemorrhagic transformation rate compared with normoglycemic rats. Magnetic resonance imaging scans revealed that hyperglycemia enhanced and accelerated lesion growth and was associated with hemorrhagic transformation originating from territories that were still not completely reperfused at 1 hour after middle cerebral artery recanalization. Intravital microscopy and analysis of brain homogenates showed that DMT began immediately after middle cerebral artery occlusion and was exacerbated by hyperglycemia. Measurement of plasma serotonin and matrix metalloproteinase-9 indicated that platelets and neutrophils were preactivated in hyperglycemic rats. Neutrophils from hyperglycemic diabetic patients showed increased adhesion to endothelial cells as compared with neutrophils from normoglycemic donors in flow chamber experiments. CONCLUSIONS We show that hyperglycemia primes the thromboinflammatory cascade, thus, amplifying middle cerebral artery occlusion-induced DMT. DMT exacerbation in hyperglycemic rats impaired reperfusion and precipitated neurovascular damage, blood-brain barrier disruption, and hemorrhagic transformation. Our results designate DMT as a possible target for reduction of the deleterious impact of hyperglycemia in acute ischemic stroke.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.).
| | - Varouna Syvannarath
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Véronique Ollivier
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Clément Journé
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Sandrine Delbosc
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Célina Ducroux
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - William Boisseau
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Liliane Louedec
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Lucas Di Meglio
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Stéphane Loyau
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Martine Jandrot-Perrus
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Louis Potier
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Jean-Baptiste Michel
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Mikael Mazighi
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| | - Benoit Ho-Tin-Noé
- From the Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cite, France (J.-P.D., V.S., V.O., C.J., S.D., C.D., W.B., L.L., L.D.M., S.L., M.J.-P., J.-B.M., M.M., B.H.-T.-N.); Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France (J.-P.D., W.B., M.M.); DHU NeuroVasc, Paris, France (J.-P.D., M.M.); FRIM-Paris 7 University, Paris, France (C.J.); and Department of Diabetology AP-HP, Bichat Hospital, Paris, France (L.P.)
| |
Collapse
|
17
|
Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis 2016; 95:82-92. [PMID: 27425889 DOI: 10.1016/j.nbd.2016.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a major stroke risk factor and is associated with poor functional recovery after stroke. Accumulating evidence indicates that the worsened outcomes may be due to hyperglycemia-induced cerebral vascular complications, especially disruption of the blood-brain barrier (BBB). The present study tested a hypothesis that the activation of hypoxia inducible factor-1 (HIF-1) was involved in hyperglycemia-aggravated BBB disruption in an ischemic stroke model. Non-diabetic control and Streptozotocin-induced type I diabetic mice were subjected to 90min transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Our results demonstrated that hyperglycemia induced higher expression of HIF-1α and vascular endothelial growth factor (VEGF) in brain microvessels after MCAO/reperfusion. Diabetic mice showed exacerbated BBB damage and tight junction disruption, increased infarct volume as well as worsened neurological deficits. Furthermore, suppressing HIF-1 activity by specific knock-out endothelial HIF-1α ameliorated BBB leakage and brain infarction in diabetic animals. Moreover, glycemic control by insulin abolished HIF-1α up-regulation in diabetic animals and reduced BBB permeability and brain infarction. These findings strongly indicate that HIF-1 plays an important role in hyperglycemia-induced exacerbation of BBB disruption in ischemic stroke. Endothelial HIF-1 inhibition warrants further investigation as a therapeutic target for the treatment of stroke patients with diabetes.
Collapse
|