1
|
Blume J, Dhanasekara CS, Kahathuduwa CN, Mastergeorge AM. Central Executive and Default Mode Networks: An Appraisal of Executive Function and Social Skill Brain-Behavior Correlates in Youth with Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:1882-1896. [PMID: 36988766 DOI: 10.1007/s10803-023-05961-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Atypical connectivity patterns have been observed for individuals with autism spectrum disorders (ASD), particularly across the triple-network model. The current study investigated brain-behavior relationships in the context of social skills and executive function profiles for ASD youth. We calculated connectivity measures from diffusion tensor imaging using Bayesian estimation and probabilistic tractography. We replicated prior structural equation modeling of behavioral measures with total default mode network (DMN) connectivity to include comparisons with central executive network (CEN) connectivity and CEN-DMN connectivity. Increased within-CEN connectivity was related to metacognitive strengths. Our findings indicate behavior regulation difficulties in youth with ASD may be attributable to impaired connectivity between the CEN and DMN and social skill difficulties may be exacerbated by impaired within-DMN connectivity.
Collapse
Affiliation(s)
- Jessica Blume
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA.
| | | | - Chanaka N Kahathuduwa
- Department of Psychiatry and Neurology, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Ann M Mastergeorge
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA
| |
Collapse
|
2
|
Yao S, Zheng X, Xie G, Zhang F. Multimodal Neuroimaging Computing: Basics and Applications in Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:323-336. [PMID: 39523274 DOI: 10.1007/978-3-031-64892-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In neurosurgery, multimodal neuroimaging computing plays a critical role by providing a comprehensive and detailed understanding of the brain and its function. This integrated approach can unlock deeper insights into complex neurological diseases, as well as providing a big picture for image-guided neurosurgery and precision medicine. In this chapter, we will introduce the recent updates of neuroimaging techniques, their applications in neurosurgery scenarios, the difficulties of data processing and computing, and potential future perspectives.
Collapse
Affiliation(s)
- Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Zheng
- Department of Neurosurgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoqiang Xie
- Department of Neurosurgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang, China
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
De Cannière G. The olfactory striae: A historical perspective on the inconsistent anatomy of the bulbar projections. J Anat 2024; 244:170-183. [PMID: 37712100 PMCID: PMC10734660 DOI: 10.1111/joa.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Central olfactory pathways (i.e., projection axons of the mitral and tufted cells), and especially olfactory striae, lack common terminology. This is due to their high degree of intra- and interindividual variability, which has been studied in detail over the past century by Beccari, Mutel, Klass, Erhart, and more recently, by Duque Parra et al. These variations led to some confusion about their number and anatomical arrangement. Recent advances in fiber tractography have enabled the precise in vivo visualization of human olfactory striae and the study of their projections. However, these studies require their algorithms to be set up according to the presumed anatomy of the analyzed fibers. A more precise definition of the olfactory striae is therefore needed, not only to allow a better analysis of the results but also to ensure the quality of the data obtained. By studying the various published works on the central olfactory pathways from the first systematic description by Soemmerring to the present, I have traced the different discussions on the olfactory tracts and summarized them here. This review adopts a systematic approach by addressing each stria individually and tracing the historical background of what was known about it in the past, compared to the current knowledge. The chronological and organized approach used provides a better understanding of the anatomy of these essential structures of the olfactory system.
Collapse
Affiliation(s)
- Gilles De Cannière
- Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Chidambaram S, Anthony D, Jansen T, Vigo V, Fernandez Miranda JC. Intraoperative augmented reality fiber tractography complements cortical and subcortical mapping. World Neurosurg X 2023; 20:100226. [PMID: 37456694 PMCID: PMC10344792 DOI: 10.1016/j.wnsx.2023.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Augmented reality (AR) has been found to be advantageous in enhancing visualization of complex neuroanatomy intraoperatively and in neurosurgical education. Another key tool that allows neurosurgeons to have enhanced visualization, namely of white matter tracts, is diffusion tensor imaging (DTI) that is processed with high-definition fiber tractography (HDFT). There remains an enduring challenge in the structural-functional correlation of white matter tracts that centers on the difficulty in clearly assigning function to any given fiber tract when evaluating them through separated as opposed to integrated modalities. Combining the technologies of AR with fiber tractography shows promise in helping to fill in this gap between structural-functional correlation of white matter tracts. This novel study demonstrates through a series of three cases of awake craniotomies for glioma resections a technique that allows the first and most direct evidence of fiber tract stimulation and assignment of function or deficit in vivo through the intraoperative, real-time fusion of electrical cortical stimulation, AR, and HDFT. This novel technique has qualitatively shown to be helpful in guiding intraoperative decision making on extent of resection of gliomas. Future studies could focus on larger, prospective cohorts of glioma patients who undergo this methodology and further correlate the post-operative imaging results to patient functional outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Juan C. Fernandez Miranda
- Corresponding author. Department of Neurological Surgery, Stanford University, 213 Quarry Rd, Rm 2851MC 5957, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Li Y, Hou Y, Li X, Li Q, Lu J, Tang J. Quantitative Validation of the Correlation Between Optimized Pyramidal Tract Delineation After Brain Shift Compensation and Direct Electrical Subcortical Stimulation During Brain Tumor Surgery. J Digit Imaging 2023; 36:1974-1986. [PMID: 37340196 PMCID: PMC10501987 DOI: 10.1007/s10278-023-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
It remains unclear whether tractography of pyramidal tracts is correlated with the intraoperative direct electrical subcortical stimulation (DESS), and brain shift further complicates the issue. The objective of this research is to quantitatively verify the correlation between optimized tractography (OT) of pyramidal tracts after brain shift compensation and DESS during brain tumor surgery. OT was performed for 20 patients with lesions in proximity to the pyramidal tracts based on preoperative diffusion-weighted magnetic resonance imaging. During surgery, tumor resection was guided by DESS. A total of 168 positive stimulation points and their corresponding stimulation intensity thresholds were recorded. Using the brain shift compensation algorithm based on hierarchical B-spline grids combined with a Gaussian resolution pyramid, we warped the preoperative pyramidal tract models and used receiver operating characteristic (ROC) curves to investigate the reliability of our brain shift compensation method based on anatomic landmarks. Additionally, the minimum distance between the DESS points and warped OT (wOT) model was measured and correlated with DESS intensity threshold. Brain shift compensation was achieved in all cases, and the area under the ROC curve was 0.96 in the registration accuracy analysis. The minimum distance between the DESS points and the wOT model was found to have a significantly high correlation with the DESS stimulation intensity threshold (r = 0.87, P < 0.001), with a linear regression coefficient of 0.96. Our OT method can provide comprehensive and accurate visualization of the pyramidal tracts for neurosurgical navigation and was quantitatively verified by intraoperative DESS after brain shift compensation.
Collapse
Affiliation(s)
- Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Xiaoyu Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China.
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China.
| |
Collapse
|
6
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
7
|
A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: what is the evidence so far? Acta Neurochir (Wien) 2022; 164:177-191. [PMID: 34674026 PMCID: PMC8761150 DOI: 10.1007/s00701-021-05012-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Over the past decade, the functional importance of white matter pathways has been increasingly acknowledged in neurosurgical planning. A method to directly study anatomo-functional correlations is direct electrical stimulation (DES). DES has been widely accepted by neurosurgeons as a reliable tool to minimize the occurrence of permanent postoperative motor, vision, and language deficits. In recent years, DES has also been used for stimulation mapping of other cognitive functions, such as executive functions and visuospatial awareness. METHODS The aim of this review is to summarize the evidence so far from DES studies on subcortical pathways that are involved in visuospatial awareness and in the following three executive functions: (1) inhibitory control, (2) working memory, and (3) cognitive flexibility. RESULTS Eleven articles reported on intraoperative electrical stimulation of white matter pathways to map the cognitive functions and explicitly clarified which subcortical tract was stimulated. The results indicate that the right SLF-II is involved in visuospatial awareness, the left SLF-III and possibly the right SLF-I are involved in working memory, and the cingulum is involved in cognitive flexibility. CONCLUSIONS We were unable to draw any more specific conclusions, nor unequivocally establish the critical involvement of pathways in executive functions or visuospatial awareness due to the heterogeneity of the study types and methods, and the limited number of studies that assessed these relationships. Possible approaches for future research to obtain converging and more definite evidence for the involvement of pathways in specific cognitive functions are discussed.
Collapse
|
8
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
9
|
Ferreira F, Akram H, Ashburner J, Zrinzo L, Zhang H, Lambert C. Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. Neuroimage 2021; 238:118231. [PMID: 34089871 PMCID: PMC8960999 DOI: 10.1016/j.neuroimage.2021.118231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.
Collapse
Affiliation(s)
- Francisca Ferreira
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Hui Zhang
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
10
|
Liang B, Feng D, Lyon KA, Zhang Y, Huang JH. Intraoperative utilization of Microvascular Doppler for the detection of intracranial venous structures during tumor resection - A technical note. J Clin Neurosci 2021; 88:10-15. [PMID: 33992166 DOI: 10.1016/j.jocn.2021.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Microvascular Doppler (MVD) has been widely used for the detection of arterial blood flow in the brain, especially during aneurysm clipping, vascular malformation resection, or bypass surgeries. However, the benefits obtained from early identification of intracranial sinuses and deep draining veins during tumor resection has not been reported. METHODS We reviewed the clinical data and imaging from our cases and conducted a systemic review of the medical literature using PubMed and keywords. Bibliographies of each result were evaluated to determine if additional reports describing the use of MVD during tumor resection could be found. RESULTS No reports were found in the literature where MVD was specifically used for venous identification during the resection of deep-seated brain tumors. In our patient cohort, MVD was used successfully to detect and ultimately allow immediate protection of large dural venous sinuses as well as smaller deep cerebral veins during tumor resection. Each patient developed no new venous infarcts and made a satisfactory recovery with no new postoperative neurological deficits. CONCLUSION MVD is a reliable tool for the intraoperative detection of intracranial venous blood flow to allow for quick identification and protection of venous structures. MVD is an additional safety measure for the patient as its accuracy in detecting venous structures is less susceptible to many of the inherent weaknesses of stereotactic neuro-navigation including the accompanying brain shift or anatomical distortion produced by long duration deep seated brain tumor resection.
Collapse
Affiliation(s)
- Buqing Liang
- Department of Neurosurgery, Baylor Scott & White Health, Scott & White Medical Center, Temple, TX, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| | - Dongxia Feng
- Department of Neurosurgery, Baylor Scott & White Health, Scott & White Medical Center, Temple, TX, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| | - Kristopher A Lyon
- Department of Neurosurgery, Baylor Scott & White Health, Scott & White Medical Center, Temple, TX, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| | - Yilu Zhang
- Department of Neurosurgery, Baylor Scott & White Health, Scott & White Medical Center, Temple, TX, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Scott & White Medical Center, Temple, TX, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA.
| |
Collapse
|
11
|
Bopp MHA, Emde J, Carl B, Nimsky C, Saß B. Diffusion Kurtosis Imaging Fiber Tractography of Major White Matter Tracts in Neurosurgery. Brain Sci 2021; 11:brainsci11030381. [PMID: 33802710 PMCID: PMC8002557 DOI: 10.3390/brainsci11030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 01/31/2023] Open
Abstract
Diffusion tensor imaging (DTI)-based fiber tractography is routinely used in clinical applications to visualize major white matter tracts, such as the corticospinal tract (CST), optic radiation (OR), and arcuate fascicle (AF). Nevertheless, DTI is limited due to its capability of resolving intra-voxel multi-fiber populations. Sophisticated models often require long acquisition times not applicable in clinical practice. Diffusion kurtosis imaging (DKI), as an extension of DTI, combines sophisticated modeling of the diffusion process with short acquisition times but has rarely been investigated in fiber tractography. In this study, DTI- and DKI-based fiber tractography of the CST, OR, and AF was investigated in healthy volunteers and glioma patients. For the CST, significantly larger tract volumes were seen in DKI-based fiber tractography. Similar results were obtained for the OR, except for the right OR in patients. In the case of the AF, results of both models were comparable with DTI-based fiber tractography showing even significantly larger tract volumes in patients. In the case of the CST and OR, DKI-based fiber tractography contributes to advanced visualization under clinical time constraints, whereas for the AF, other models should be considered.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
- Correspondence:
| | - Julia Emde
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
| |
Collapse
|
12
|
Briggs RG, Allan PG, Poologaindran A, Dadario NB, Young IM, Ahsan SA, Teo C, Sughrue ME. The Frontal Aslant Tract and Supplementary Motor Area Syndrome: Moving towards a Connectomic Initiation Axis. Cancers (Basel) 2021; 13:cancers13051116. [PMID: 33807749 PMCID: PMC7961364 DOI: 10.3390/cancers13051116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Connectomics enables us to map whole brain networks that can be applied to operative neurosurgery to improve neuro-oncological outcomes. Damage to the superior frontal gyrus during frontal lobe surgery is thought to induce supplementary motor area (SMA) syndrome in patients. However, network-based modeling may provide a more accurate cortical model of SMA syndrome, including the Frontal Aslant Tract (FAT). The aim of our study was to retrospectively assess if surgical tractography with diffusion tensor imaging (DTI) decreases the likelihood of SMA syndrome. Compared to patients who underwent surgery preserving the SFG (n = 23), patients who had their FAT and SMA networks mapped through DTI and subsequently preserved were less likely to experience transient SMA syndrome. Preserving the FAT and SMA improves functional outcomes in patients following medial frontal glioma surgery and demonstrates how network-based approaches can improve surgical outcomes. Abstract Connectomics is the use of big data to map the brain’s neural infrastructure; employing such technology to improve surgical planning may improve neuro-oncological outcomes. Supplementary motor area (SMA) syndrome is a well-known complication of medial frontal lobe surgery. The ‘localizationist’ view posits that damage to the posteromedial bank of the superior frontal gyrus (SFG) is the basis of SMA syndrome. However, surgical experience within the frontal lobe suggests that this is not entirely true. In a study on n = 45 patients undergoing frontal lobe glioma surgery, we sought to determine if a ‘connectomic’ or network-based approach can decrease the likelihood of SMA syndrome. The control group (n = 23) underwent surgery avoiding the posterior bank of the SFG while the treatment group (n = 22) underwent mapping of the SMA network and Frontal Aslant Tract (FAT) using network analysis and DTI tractography. Patient outcomes were assessed post operatively and in subsequent follow-ups. Fewer patients (8.3%) in the treatment group experienced transient SMA syndrome compared to the control group (47%) (p = 0.003). There was no statistically significant difference found between the occurrence of permanent SMA syndrome between control and treatment groups. We demonstrate how utilizing tractography and a network-based approach decreases the likelihood of transient SMA syndrome during medial frontal glioma surgery. We found that not transecting the FAT and the SMA system improved outcomes which may be important for functional outcomes and patient quality of life.
Collapse
Affiliation(s)
- Robert G. Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Parker G. Allan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.B.); (P.G.A.)
| | - Anujan Poologaindran
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK;
- Doctoral Program, The Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Nicholas B. Dadario
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Isabella M. Young
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Syed A. Ahsan
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Charles Teo
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
| | - Michael E. Sughrue
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney 2031, Australia; (N.B.D.); (I.M.Y.); (S.A.A.); (C.T.)
- Correspondence:
| |
Collapse
|
13
|
Wegmayr V, Buhmann JM. Entrack: Probabilistic Spherical Regression with Entropy Regularization for Fiber Tractography. Int J Comput Vis 2020. [DOI: 10.1007/s11263-020-01384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractWhite matter tractography, based on diffusion-weighted magnetic resonance images, is currently the only available in vivo method to gather information on the structural brain connectivity. The low resolution of diffusion MRI data suggests to employ probabilistic methods for streamline reconstruction, i.e., for fiber crossings. We propose a general probabilistic model for spherical regression based on the Fisher-von-Mises distribution, which efficiently estimates maximum entropy posteriors of local streamline directions with machine learning methods. The optimal precision of posteriors for streamlines is determined by an information-theoretic technique, the expected log-posterior agreement concept. It relies on the requirement that the posterior distributions of streamlines, inferred on retest measurements of the same subject, should yield stable results within the precision determined by the noise level of the data source.
Collapse
|
14
|
Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sci 2020; 10:brainsci10070412. [PMID: 32630166 PMCID: PMC7408085 DOI: 10.3390/brainsci10070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
To date, the structural characteristics that distinguish language-involved from non-involved cortical areas are largely unclear. Particularly in patients suffering from language-eloquent brain tumors, reliable mapping of the cortico-subcortical language network is of high clinical importance to prepare and guide safe tumor resection. To investigate differences in structural characteristics between language-positive and language-negative areas, 20 patients (mean age: 63.2 ± 12.9 years, 16 males) diagnosed with language-eloquent left-hemispheric glioblastoma multiforme (GBM) underwent preoperative language mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT). The number of language-positive and language-negative points as well as the gray matter intensity (GMI), normalized volumes of U-fibers, interhemispheric fibers, and fibers projecting to the cerebellum were assessed and compared between language-positive and language-negative nTMS mappings and set in correlation with aphasia grades. We found significantly lower GMI for language-positive nTMS points (5.7 ± 1.7 versus 7.1 ± 1.6, p = 0.0121). Furthermore, language-positive nTMS points were characterized by an enhanced connectivity profile, i.e., these points showed a significantly higher ratio in volumes for U-fibers (p ≤ 0.0056), interhemispheric fibers (p = 0.0494), and fibers projecting to the cerebellum (p = 0.0094). The number of language-positive nTMS points (R ≥ 0.4854, p ≤ 0.0300) as well as the ratio in volumes for U-fibers (R ≤ -0.4899, p ≤ 0.0283) were significantly associated with aphasia grades, as assessed pre- or postoperatively and during follow-up examinations. In conclusion, this study provides evidence for structural differences on cortical and subcortical levels between language-positive and language-negative areas, as detected by nTMS language mapping. The results may further increase confidence in the technique of nTMS language mapping and nTMS-based tractography in the direct clinical setting. Future studies may confirm our results in larger cohorts and may expand the findings to patients with other tumor entities than GBM.
Collapse
|
15
|
Dalamagkas K, Tsintou M, Rathi Y, O'Donnell LJ, Pasternak O, Gong X, Zhu A, Savadjiev P, Papadimitriou GM, Kubicki M, Yeterian EH, Makris N. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav 2020; 14:696-714. [PMID: 30617788 PMCID: PMC6614022 DOI: 10.1007/s11682-018-0006-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, USA
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Magdalini Tsintou
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Peter Savadjiev
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George M Papadimitriou
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Chirchiglia D, Chirchiglia P, Latorre D. An update of the imaging and diagnostic techniques in use for the preservation of eloquent areas in brain tumor surgery – An opinion paper. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Yang J, Carl B, Nimsky C, Bopp MHA. The impact of position-orientation adaptive smoothing in diffusion weighted imaging-From diffusion metrics to fiber tractography. PLoS One 2020; 15:e0233474. [PMID: 32433682 PMCID: PMC7239461 DOI: 10.1371/journal.pone.0233474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
In contrast to commonly used approaches to improve data quality in diffusion weighted imaging, position-orientation adaptive smoothing (POAS) provides an edge-preserving post-processing approach. This study aims to investigate its potential and effects on image quality, diffusion metrics, and fiber tractography of the corticospinal tract in relation to non-post-processed and averaged data. 22 healthy volunteers were included in this study. For each volunteer five clinically applicable diffusion weighted imaging data sets were acquired and post-processed by standard averaging and POAS. POAS post-processing led to significantly higher signal-to-noise-ratios (p < 0.001), lower fractional anisotropy across the whole brain (p < 0.05) and reduced intra-subject variability of diffusion weighted imaging signal intensity and fractional anisotropy (p < 0.001, p = 0.006). Fiber tractography of the corticospinal tract resulted in significantly (p = 0.027, p = 0.014) larger tract volumes while fiber density was the lowest. Similarity across tractography results was highest for POAS post-processed data (p < 0.001). POAS post-processing enhances image quality, decreases the intra-subject variability of signal intensity and fractional anisotropy, increases fiber tract volume of the corticospinal tract, and leads to higher reproducibility of tractography results. Thus, POAS post-processing supports a reliable and more accurate fiber tractography of the corticospinal tract, being mandatory for the clinical use.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
18
|
Sollmann N, Zhang H, Fratini A, Wildschuetz N, Ille S, Schröder A, Zimmer C, Meyer B, Krieg SM. Risk Assessment by Presurgical Tractography Using Navigated TMS Maps in Patients with Highly Motor- or Language-Eloquent Brain Tumors. Cancers (Basel) 2020; 12:cancers12051264. [PMID: 32429502 PMCID: PMC7281396 DOI: 10.3390/cancers12051264] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
Abstract
Patients with functionally eloquent brain lesions are at risk of functional decline in the course of resection. Given tumor-related plastic reshaping and reallocation of function, individual data are needed for patient counseling and risk assessment prior to surgery. This study evaluates the utility of mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT) for individual risk evaluation of surgery-related decline of motor or language function in the clinical setting. In total, 250 preoperative nTMS mappings (100 language and 150 motor mappings) derived from 216 patients (mean age: 57.0 ± 15.5 years, 58.8% males; glioma World Health Organization (WHO) grade I & II: 4.2%, glioma WHO grade III & IV: 83.4%, arteriovenous malformations: 1.9%, cavernoma: 2.3%, metastasis: 8.2%) were included. Deterministic tractography based on nTMS motor or language maps as seed regions was performed with 25%, 50%, and 75% of the individual fractional anisotropy threshold (FAT). Lesion-to-tract distances (LTDs) were measured between the tumor mass and the corticospinal tract (CST), arcuate fascicle (AF), or other closest language-related tracts. LTDs were compared between patients and correlated to the functional status (no/transient/permanent surgery-related paresis or aphasia). Significant differences were found between patients with no or transient surgery-related deficits and patients with permanent surgery-related deficits regarding LTDs in relation to the CST (p < 0.0001), AF (p ≤ 0.0491), or other closest language-related tracts (p ≤ 0.0435). The cut-off values for surgery-related paresis or aphasia were ≤12 mm (LTD—CST) and ≤16 mm (LTD—AF) or ≤25 mm (LTD—other closest language-related tract), respectively. Moreover, there were significant associations between the status of surgery-related deficits and the LTD when considering the CST (range r: −0.3994 to −0.3910, p < 0.0001) or AF (range r: −0.2918 to −0.2592, p = 0.0135 and p = 0.0473 for 25% and 50% FAT). In conclusion, this is the largest study evaluating the application of both preoperative functional mapping and function-based tractography for motor and language function for risk stratification in patients with functionally eloquent tumors. The LTD may qualify as a viable marker that can be seamlessly assessed in the clinical neurooncological setup.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Alessia Fratini
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Noémie Wildschuetz
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
19
|
Lacerda LM, Clayden JD, Handley SE, Winston GP, Kaden E, Tisdall M, Cross JH, Liasis A, Clark CA. Microstructural Investigations of the Visual Pathways in Pediatric Epilepsy Neurosurgery: Insights From Multi-Shell Diffusion Magnetic Resonance Imaging. Front Neurosci 2020; 14:269. [PMID: 32322185 PMCID: PMC7158873 DOI: 10.3389/fnins.2020.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
Background Surgery is a key approach for achieving seizure freedom in children with focal onset epilepsy. However, the resection can affect or be in the vicinity of the optic radiations. Multi-shell diffusion MRI and tractography can better characterize tissue structure and provide guidance to help minimize surgical related deficits. Whilst in adults tractography has been used to demonstrate that damage to the optic radiations leads to postoperative visual field deficits, this approach has yet to be properly explored in children. Objective To demonstrate the capabilities of multi-shell diffusion MRI and tractography in characterizing microstructural changes in children with epilepsy pre- and post-surgery affecting the occipital, parietal or temporal lobes. Methods Diffusion Tensor Imaging and the Spherical Mean Technique were used to investigate the microstructure of the optic radiations. Furthermore, tractography was used to evaluate whether pre-surgical reconstructions of the optic radiations overlap with the resection margin as measured using anatomical post-surgical T1-weighted MRI. Results Increased diffusivity in patients compared to controls at baseline was observed with evidence of decreased diffusivity, anisotropy, and neurite orientation distribution in contralateral hemisphere after surgery. Pre-surgical optic radiation tractography overlapped with post-surgical resection margins in 20/43 (46%) children, and where visual data was available before and after surgery, the presence of overlap indicated a visual field deficit. Conclusion This is the first report in a pediatric series which highlights the relevance of tractography for future pre-surgical evaluation in children undergoing epilepsy surgery and the usefulness of multi-shell diffusion MRI to characterize brain microstructure in these patients.
Collapse
Affiliation(s)
- Luís M Lacerda
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sian E Handley
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Martin Tisdall
- Department of Neurosurgery, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - J Helen Cross
- Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alki Liasis
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Centre, Pittsburgh, PA, United States
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
20
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
21
|
Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, Kindlmann G, Wassermann D, San Jose Estepar R, Rathi Y, Kikinis R, Johnson HJ, Westin CF, Pieper S, Golby AJ, O’Donnell LJ. SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization. JCO Clin Cancer Inform 2020; 4:299-309. [PMID: 32216636 PMCID: PMC7113081 DOI: 10.1200/cci.19.00141] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We present SlicerDMRI, an open-source software suite that enables research using diffusion magnetic resonance imaging (dMRI), the only modality that can map the white matter connections of the living human brain. SlicerDMRI enables analysis and visualization of dMRI data and is aimed at the needs of clinical research users. SlicerDMRI is built upon and deeply integrated with 3D Slicer, a National Institutes of Health-supported open-source platform for medical image informatics, image processing, and three-dimensional visualization. Integration with 3D Slicer provides many features of interest to cancer researchers, such as real-time integration with neuronavigation equipment, intraoperative imaging modalities, and multimodal data fusion. One key application of SlicerDMRI is in neurosurgery research, where brain mapping using dMRI can provide patient-specific maps of critical brain connections as well as insight into the tissue microstructure that surrounds brain tumors. PATIENTS AND METHODS In this article, we focus on a demonstration of SlicerDMRI as an informatics tool to enable end-to-end dMRI analyses in two retrospective imaging data sets from patients with high-grade glioma. Analyses demonstrated here include conventional diffusion tensor analysis, advanced multifiber tractography, automated identification of critical fiber tracts, and integration of multimodal imagery with dMRI. RESULTS We illustrate the ability of SlicerDMRI to perform both conventional and advanced dMRI analyses as well as to enable multimodal image analysis and visualization. We provide an overview of the clinical rationale for each analysis along with pointers to the SlicerDMRI tools used in each. CONCLUSION SlicerDMRI provides open-source and clinician-accessible research software tools for dMRI analysis. SlicerDMRI is available for easy automated installation through the 3D Slicer Extension Manager.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas Noh
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Sarah F. Frisken
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Laura Rigolo
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Isaiah Norton
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tina Kapur
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sonia Pujol
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - William Wells
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Massachusetts Institute of Technology, Boston, MA
| | | | | | - Demian Wassermann
- Parietal, Inria Saclay-lle de France, Neurospin CEA, Université Paris-Saclay, Palaiseau, France
| | | | - Yogesh Rathi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Ron Kikinis
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- University of Bremen and Fraunhofer MEVIS, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Çavdar S, Esen Aydın A, Algin O, Aydoğmuş E. Fiber dissection and 3-tesla diffusion tensor tractography of the superior cerebellar peduncle in the human brain: emphasize on the cerebello-hypthalamic fibers. Brain Struct Funct 2019; 225:121-128. [PMID: 31776651 DOI: 10.1007/s00429-019-01985-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
Experimental studies in various species using tract-tracing techniques showed clear evidence of the presence of cerebello-hypothalamic projections. However, these connections were not clearly described in humans. In the present study we aimed to describe the direct cerebello-hypothalamic connections within the superior cerebellar peduncle (SCP) using fiber dissection techniques on cadaveric brains and diffusion tensor tractography (DTI) in healthy adults. Fiber dissection was performed in a stepwise manner from lateral to medial on 6 cerebral hemispheres. The gray matter was decorticate and fiber tracts were revealed. The SCP was exposed and the fibers were traced distally using wooden spatulas. The MRI examinations were performed in seven cases using 3-tesla 3T unit. The direct cerebello-hyothalamic pathways were exposed using high-spatial-resolution DTI. The present study using both fiber dissection and DTI in adult human showed direct cerebello-hypothalamic fibers within the SCP. The SCP fibers course anterolateral to the cerebral aqueduct reaching the level of the red nucleus of the midbrain. The majority of the fibers crosses over and reached the contralateral diencephalic structures and some of these fibers terminated at the contralateral anterior hypothalamic area. Some of the uncrossed SCP fibers reached the ipsilateral diencephalic structures and terminated at the ipsilateral posterior hypothalamic area. We further reported the close relationship of the SCP with the MCP, lateral lemniscus, red nucleus and substantia nigra. In the DTI evaluations of the SCP we exposed unilateral left cerebello-hypothalamic fibers in five cases and bilateral cerebello-hypothalamic fibers in two cases. The present study demonstrates the direct cerebello-hypothalamic connections within the SCP for the first time using fiber dissection and DTI technique in the human brain. The detailed knowledge of the cerebello-hypothalamic fibers can outline the unexplained deficit that may occur during regional surgery.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Sarıyer, 34450, Istanbul, Turkey.
| | - Ayşegül Esen Aydın
- Department of Neurosurgery, Bakırköy Ruh ve Sinir Hastanesi, Istanbul, Turkey
| | - Oktay Algin
- Radiology Department, City Hospital, Yıldırım Beyazıt University, Ankara, Turkey.,National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Evren Aydoğmuş
- Department of Neurosurgery, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
23
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
24
|
Alexopoulos G, Cikla U, El Tecle N, Kulkarni N, Pierson M, Mercier P, Kemp J, Coppens J, Mahmoud S, Sehi M, Bucholz R, Abdulrauf S. The Value of White Matter Tractography by Diffusion Tensor Imaging in Altering a Neurosurgeon's Operative Plan. World Neurosurg 2019; 132:e305-e313. [PMID: 31494311 DOI: 10.1016/j.wneu.2019.08.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate if the implementation of white matter (WM) fiber tractography by diffusion tensor imaging in presurgical planning for supratentorial tumors proximal to eloquent WM tracts can alter a neurosurgeon's operative strategy. METHODS A retrospective review was conducted of patients with supratentorial brain tumors within eloquent WM tracts who underwent diffusion tensor imaging (DTI) tractography as part of their preoperative assessment. These patients were classified into 3 different DTI groups per the radiology reports: group 1, intact WM tracts; group 2, deviated and/or displaced WM bundles; and group 3, patients with an established WM injury (interrupted and/or destroyed tracts). A blinded prospective behavioral study followed, in which 4 neurosurgeons reviewed the preoperative images at 2 different times (magnetic resonance imaging without DTI, followed by a review of the DTI). They provided estimations about the DTI group of each individual eloquent WM category in every patient, and their planned surgical approach. RESULTS Fifteen patients (mean age, 58.3 years) were included in the study. The neurosurgeons provided a correct DTI group estimation in 53%, 60%, and 57% of the cases that involved motor/sensory pathway tracts, optic tracts, and language tracts, respectively. The neurosurgeons underestimated DTI group 3 in the motor category and in the optic category 75% of the time. DTI did not alter the planned surgical approach. CONCLUSIONS DTI WM tractography helped neurosurgeons to correctly identify patients with interrupted motor and optic pathway tracts so they could be more aggressive with the extent of tumor resection, despite its inability to alter the operative approach.
Collapse
Affiliation(s)
- Georgios Alexopoulos
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA.
| | - Ulas Cikla
- Department of Neurosurgery, Yale-New Haven Hospital, New Haven, Connecticut, USA
| | - Najib El Tecle
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Neha Kulkarni
- School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Matthew Pierson
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Philippe Mercier
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Joanna Kemp
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Jeroen Coppens
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Shamseldeen Mahmoud
- Department of Radiology, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Mehrdad Sehi
- Department of Radiology, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Richard Bucholz
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Saleem Abdulrauf
- Department of Neurosurgery, Saint Louis University Hospital, St. Louis, Missouri, USA; School of Medicine, Saint Louis University Hospital, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Mancini M, Vos SB, Vakharia VN, O'Keeffe AG, Trimmel K, Barkhof F, Dorfer C, Soman S, Winston GP, Wu C, Duncan JS, Sparks R, Ourselin S. Automated fiber tract reconstruction for surgery planning: Extensive validation in language-related white matter tracts. Neuroimage Clin 2019; 23:101883. [PMID: 31163386 PMCID: PMC6545442 DOI: 10.1016/j.nicl.2019.101883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
Diffusion MRI and tractography hold great potential for surgery planning, especially to preserve eloquent white matter during resections. However, fiber tract reconstruction requires an expert with detailed understanding of neuroanatomy. Several automated approaches have been proposed, using different strategies to reconstruct the white matter tracts in a supervised fashion. However, validation is often limited to comparison with manual delineation by overlap-based measures, which is limited in characterizing morphological and topological differences. In this work, we set up a fully automated pipeline based on anatomical criteria that does not require manual intervention, taking advantage of atlas-based criteria and advanced acquisition protocols available on clinical-grade MRI scanners. Then, we extensively validated it on epilepsy patients with specific focus on language-related bundles. The validation procedure encompasses different approaches, including simple overlap with manual segmentations from two experts, feasibility ratings from external multiple clinical raters and relation with task-based functional MRI. Overall, our results demonstrate good quantitative agreement between automated and manual segmentation, in most cases better performances of the proposed method in qualitative terms, and meaningful relationships with task-based fMRI. In addition, we observed significant differences between experts in terms of both manual segmentation and external ratings. These results offer important insights on how different levels of validation complement each other, supporting the idea that overlap-based measures, although quantitative, do not offer a full perspective on the similarities and differences between automated and manual methods.
Collapse
Affiliation(s)
- Matteo Mancini
- Centre for Medical Image Computing, University College London, London, United Kingdom.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Aidan G O'Keeffe
- Department of Statistical Science, University College London, London, UK
| | - Karin Trimmel
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Frederik Barkhof
- Centre for Medical Image Computing, University College London, London, United Kingdom; Brain Repair and Rehabilitation, University College London, London, UK; Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherlands
| | - Christian Dorfer
- Department of Neurosurgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Salil Soman
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA 00215, United States
| | - Gavin P Winston
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Bopp MH, Pietruk PM, Nimsky C, Carl B. Fiber tractography of the optic radiations: impact of diffusion model, voxel shape and orientation. J Neurosurg Sci 2019; 65:494-502. [PMID: 30724054 DOI: 10.23736/s0390-5616.19.04622-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reliable visualization of the optic radiations (OR) is of major importance in tumor surgery close to the OR to prevent permanent visual field deficits. Diffusion tensor imaging (DTI) based fiber tractography (FT) has become a standard tool to visualize major white matter tracts and to support the prevention of postoperative deficits. Nevertheless, FT of the OR is notoriously challenging due to its high neuroanatomical complexity. METHODS To improve FT of the OR we analyzed the effect of a more complex diffusion model and the effect of different voxel shapes and orientations. MRI data of 21 healthy subjects was acquired using isometric and anisometric voxel sizes and standard and adapted slice angulation. FT was performed using the DTI based approach and an orientation distribution function (ODF) based approach. Results were visually inspected, and fiber tract volumes were compared. RESULTS DTI based FT led to poor results, failing to reconstruct plausible tracts at all in up to 26.11 % of all cases. The ODF based approach resulted in more compound and solid tracts showing also significantly larger tract volumes. Voxel shape or orientation did not influence DTI but ODF based FT. Isometric or anisometric voxels with standard slice orientation revealed highest tract volumes. Adapted orientation in combination with anisometric voxels led to significantly smaller tract volumes. CONCLUSIONS Plausible tractography of the OR can be achieved using ODF based fiber tracking within a clinically feasible timeframe. Voxel shape and orientation seem to be of minor importance and might be kept to isometric voxel for flexible application of FT.
Collapse
Affiliation(s)
- Miriam H Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany - .,Marburg Center for Mind, Brain and Behavior, Marburg, Germany -
| | - Peter M Pietruk
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
27
|
White Matter Biomarkers Associated with Motor Change in Individuals with Stroke: A Continuous Theta Burst Stimulation Study. Neural Plast 2019; 2019:7092496. [PMID: 30863437 PMCID: PMC6378804 DOI: 10.1155/2019/7092496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022] Open
Abstract
Continuous theta burst stimulation (cTBS) is a form of noninvasive repetitive brain stimulation that, when delivered over the contralesional hemisphere, can influence the excitability of the ipsilesional hemisphere in individuals with stroke. cTBS applied prior to skilled motor practice interventions may augment motor learning; however, there is a high degree of variability in individual response to this intervention. The main objective of the present study was to assess white matter biomarkers of response to cTBS paired with skilled motor practice in individuals with chronic stroke. We tested the effects of stimulation of the contralesional hemisphere at the site of the primary motor cortex (M1c) or primary somatosensory cortex (S1c) and a third group who received sham stimulation. Within each stimulation group, individuals were categorized into responders or nonresponders based on their capacity for motor skill change. Baseline diffusion tensor imaging (DTI) indexed the underlying white matter microstructure of a previously known motor learning network, named the constrained motor connectome (CMC), as well as the corticospinal tract (CST) of lesioned and nonlesioned hemispheres. Across practice, there were no differential group effects. However, when categorized as responders vs. nonresponders using change in motor behaviour, we demonstrated a significant difference in CMC microstructural properties (as measured by fractional anisotropy (FA)) for individuals in M1c and S1c groups. There were no significant differences between responders and nonresponders in clinical baseline measures or microstructural properties (FA) in the CST. The present study identifies a white matter biomarker, which extends beyond the CST, advancing our understanding of the importance of white matter networks for motor after stroke.
Collapse
|
28
|
Chamberland M, Tax CMW, Jones DK. Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware. Neuroimage Clin 2018; 20:458-465. [PMID: 30128284 PMCID: PMC6096050 DOI: 10.1016/j.nicl.2018.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Introduction Surgical resection is an effective treatment for temporal lobe epilepsy but can result in visual field defects. This could be minimized if surgeons knew the exact location of the anterior part of the optic radiation (OR), the Meyer's loop. To this end, there is increasing prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable effort in developing analysis methods, a wide discrepancy in Meyer's loop reconstructions is observed in the literature. Moreover, the impact of differences in image acquisition on Meyer's loop tractography remains unclear. Here, while employing the same state-of-the-art analysis protocol, we explored the extent to which variance in data acquisition leads to variance in OR reconstruction. Methods Diffusion MRI data were acquired for the same thirteen healthy subjects using standard and state-of-the-art protocols on three scanners with different maximum gradient amplitudes (MGA): Siemens Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 mT/m). Meyer's loop was reconstructed on all subjects and its distance to the temporal pole (ML-TP) was compared across protocols. Results A significant effect of data acquisition on the ML-TP distance was observed between protocols (p < .01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7-16.5 mm). Conclusion We showed that variance in data acquisition leads to substantive variance in OR tractography. This has direct implications for neurosurgical planning, where part of the OR is at risk due to an under-estimation of its location using conventional acquisition protocols.
Collapse
Affiliation(s)
- Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
29
|
Wang R, Fan Q, Zhang Z, Chen Y, Zhu Y, Li Y. Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: A combined DTI-MRS study. Psychiatry Res Neuroimaging 2018; 277:39-44. [PMID: 29807209 DOI: 10.1016/j.pscychresns.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Numerous studies indicate the cortico-striato-thalamo-cortical (CSTC) circuit plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD). The anterior thalamic radiation (ATR), as a major fiber in the fronto-thalamic circuitry, contributes to symptomology of OCD. However, the underlying biochemical mechanism in relation with its structural alteration remains not understood. This study investigated the structural abnormality of ATR and its correlation with thalamic metabolic alteration in OCD, using diffusion tensor image (DTI) and proton magnetic resonance spectroscopy (1H-MRS). Twenty-six unmedicated adult OCD patients and twenty-six matched healthy controls participated in DTI study. Thirteen OCD patients and thirteen healthy controls, a subset of DTI participants, took part in MRS study. The results showed that mean fiber length of right ATR negatively correlated with ipsilateral thalamic choline (Cho) level in OCD patients. Additionally, significantly higher Cho concentration was detected in right thalamus of OCD patients compared to healthy controls. Moreover, the mean fractional anisotropy (FA) value of right ATR positively correlated with patients Yale-Brown Obsessive Compulsive Scale (YBOCS) total score, as well as YBOCS compulsion score. These results suggested the coupling of structural and metabolic changes in right ATR, which might serve as a multi-modal biomarker contributing to the pathogenesis of OCD.
Collapse
Affiliation(s)
- Ruilin Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China.
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yajing Zhu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
30
|
Bopp MHA, Yang J, Nimsky C, Carl B. The effect of pulsatile motion and cardiac-gating on reconstruction and diffusion tensor properties of the corticospinal tract. Sci Rep 2018; 8:11204. [PMID: 30046120 PMCID: PMC6060167 DOI: 10.1038/s41598-018-29525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Pulsatile motion occurs in the cardiac systolic period and leads to significantly larger displacement of water molecules as it is observed during diffusion weighted image acquisition. Obvious pulsatile motion arises in the brain stem and basal ganglia and might affect the corticospinal tract. So far there is no consensus on the real effect of pulsatile motion on diffusion properties, diffusion tensor parameters and fiber tractography and on the role of cardiac-gating to overcome these effects. The present study aimed at detecting effects of pulsatile motion on imaging properties and reconstruction of the corticospinal tract. Non-gated and cardiac-gated data of 22 healthy subjects was acquired using clinical standard protocols and analysed with regard to effects on signal intensities, diffusion tensor properties and tractography results concerning the corticospinal tract. Analyses resulted in obvious effects of pulsatile motion on signal intensities, especially alterations in diffusion tensor properties, compensated by the application of cardiac-gating, whereas no effect on fiber tract volume was seen. Therefore, pulsatile motion and cardiac-gating should be kept in mind as critical aspects when analysing and interpreting diffusion tensor properties within the human brain, but are of minor interest when considering fiber tractography of the corticospinal tract.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany.
| | - Jia Yang
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| | - Christopher Nimsky
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| | - Barbara Carl
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| |
Collapse
|
31
|
Chamberland M, Girard G, Bernier M, Fortin D, Descoteaux M, Whittingstall K. On the Origin of Individual Functional Connectivity Variability: The Role of White Matter Architecture. Brain Connect 2018; 7:491-503. [PMID: 28825322 DOI: 10.1089/brain.2017.0539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fingerprint patterns derived from functional connectivity (FC) can be used to identify subjects across groups and sessions, indicating that the topology of the brain substantially differs between individuals. However, the source of FC variability inferred from resting-state functional magnetic resonance imaging remains unclear. One possibility is that these variations are related to individual differences in white matter structural connectivity (SC). However, directly comparing FC with SC is challenging given the many potential biases associated with quantifying their respective strengths. In an attempt to circumvent this, we employed a recently proposed test-retest approach that better quantifies inter-subject variability by first correcting for intra-subject nuisance variability (i.e., head motion, physiological differences in brain state, etc.) that can artificially influence FC and SC measures. Therefore, rather than directly comparing the strength of FC with SC, we asked whether brain regions with, for example, low inter-subject FC variability also exhibited low SC variability. From this, we report two main findings: First, at the whole-brain level, SC variability was significantly lower than FC variability, indicating that an individual's structural connectome is far more similar to another relative to their functional counterpart even after correcting for noise. Second, although FC and SC variability were mutually low in some brain areas (e.g., primary somatosensory cortex) and high in others (e.g., memory and language areas), the two were not significantly correlated across all cortical and sub-cortical regions. Taken together, these results indicate that even after correcting for factors that may differently affect FC and SC, the two, nonetheless, remain largely independent of one another. Further work is needed to understand the role that direct anatomical pathways play in supporting vascular-based measures of FC and to what extent these measures are dictated by anatomical connectivity.
Collapse
Affiliation(s)
- Maxime Chamberland
- 1 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke , Sherbrooke, Canada .,2 Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University , Cardiff, United Kingdom
| | - Gabriel Girard
- 3 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke , Sherbrooke, Canada .,4 Signal Processing Lab (LTS5) , Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Michaël Bernier
- 1 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke , Sherbrooke, Canada
| | - David Fortin
- 5 Division of Neurosurgery and Neuro-Oncology, Faculty of Medicine and Health Science, University of Sherbrooke , Sherbrooke, Canada
| | - Maxime Descoteaux
- 3 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke , Sherbrooke, Canada
| | - Kevin Whittingstall
- 1 Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke , Sherbrooke, Canada
| |
Collapse
|
32
|
Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, O’Donnell LJ. Free water modeling of peritumoral edema using multi-fiber tractography: Application to tracking the arcuate fasciculus for neurosurgical planning. PLoS One 2018; 13:e0197056. [PMID: 29746544 PMCID: PMC5944935 DOI: 10.1371/journal.pone.0197056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. Materials and methods We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. Results The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. Conclusion Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Collapse
Affiliation(s)
- Shun Gong
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Fan Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isaiah Norton
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Walid I. Essayed
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Prashin Unadkat
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura Rigolo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ofer Pasternak
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Shanghai, China
| | - Alexandra J. Golby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lauren J. O’Donnell
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lukas RV, Wu J, Dey M, Buerki RA, Byrne RW, Dohrmann GJ. A Survey of the Neuro-Oncology Landscape. J Clin Neurol 2018; 14:8-15. [PMID: 29141278 PMCID: PMC5765260 DOI: 10.3988/jcn.2018.14.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
The field of neuro-oncology is evolving rapidly. Many important advances have recently been reported, and other promising investigations have the potential to soon make substantial impacts in the field, especially in the areas of high-grade gliomas and brain metastases. We present an overview of the current status of this field, highlighting the key recent advances as well as representative work of key clinical investigations, since these concepts have the potential to influence clinical management if they are demonstrated to be safe and efficacious. This overview includes some work that has only appeared in abstract form in order to provide a timely understanding of how the field is actively changing and what may lie on the horizon. We focus on both medical and surgical neuro-oncology advances in this highly multidisciplinary subspecialty.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, IL, USA.
| | - Jing Wu
- Neuro-Oncology Branch, National Institutes of Health, Bethesda, MD, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University, Indianapolis, IN, USA
| | - Robin A Buerki
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Richard W Byrne
- Department of Neurosurgery, Rush University, Chicago, IL, USA
| | | |
Collapse
|
34
|
|
35
|
Behan B, Chen DQ, Sammartino F, DeSouza DD, Wharton-Shukster E, Hodaie M. Comparison of Diffusion-Weighted MRI Reconstruction Methods for Visualization of Cranial Nerves in Posterior Fossa Surgery. Front Neurosci 2017; 11:554. [PMID: 29062268 PMCID: PMC5640769 DOI: 10.3389/fnins.2017.00554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Diffusion-weighted imaging (DWI)-based tractography has gained increasing popularity as a method for detailed visualization of white matter (WM) tracts. Different imaging techniques, and more novel, advanced imaging methods provide significant WM structural detail. While there has been greater focus on improving tract visualization for larger WM pathways, the relative value of each method for cranial nerve reconstruction and how this methodology can assist surgical decision-making is still understudied. Images from 10 patients with posterior fossa tumors (4 male, mean age: 63.5), affecting either the trigeminal nerve (CN V) or the facial/vestibular complex (CN VII/VIII), were employed. Three distinct reconstruction methods [two tensor-based methods: single diffusion tensor tractography (SDT) (3D Slicer), eXtended streamline tractography (XST), and one fiber orientation distribution (FOD)-based method: streamline tractography using constrained spherical deconvolution (CSD)-derived estimates (MRtrix3)], were compared to determine which of these was best suited for use in a neurosurgical setting in terms of processing speed, anatomical accuracy, and accurate depiction of the relationship between the tumor and affected CN. Computation of the tensor map was faster when compared to the implementation of CSD to provide estimates of FOD. Both XST and CSD-based reconstruction methods tended to give more detailed representations of the projections of CN V and CN VII/VIII compared to SDT. These reconstruction methods were able to more accurately delineate the course of CN V and CN VII/VIII, differentiate CN V from the cerebellar peduncle, and delineate compression of CN VII/VIII in situations where SDT could not. However, CSD-based reconstruction methods tended to generate more invalid streamlines. XST offers the best combination of anatomical accuracy and speed of reconstruction of cranial nerves within this patient population. Given the possible anatomical limitations of single tensor models, supplementation with more advanced tensor-based reconstruction methods might be beneficial.
Collapse
Affiliation(s)
- Brendan Behan
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - David Q Chen
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Francesco Sammartino
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Danielle D DeSouza
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Institute, University Health Network, Toronto, ON, Canada.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Erika Wharton-Shukster
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| |
Collapse
|
36
|
Liao R, Ning L, Chen Z, Rigolo L, Gong S, Pasternak O, Golby AJ, Rathi Y, O'Donnell LJ. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. NEUROIMAGE-CLINICAL 2017; 15:819-831. [PMID: 28725549 PMCID: PMC5506885 DOI: 10.1016/j.nicl.2017.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber tracking is to use a tractography method that is more sensitive than the traditional single-tensor streamline tractography. We performed experiments to assess the performance of two-tensor unscented Kalman filter (UKF) tractography in edema. UKF tractography fits a diffusion model to the data during fiber tracking, taking advantage of prior information from the previous step along the fiber. We studied UKF performance in a synthetic diffusion MRI digital phantom with simulated edema and in retrospective data from two neurosurgical patients with edema affecting the arcuate fasciculus and corticospinal tracts. We compared the performance of several tractography methods including traditional streamline, UKF single-tensor, and UKF two-tensor. To provide practical guidance on how the UKF method could be employed, we evaluated the impact of using various seed regions both inside and outside the edematous regions, as well as the impact of parameter settings on the tractography sensitivity. We quantified the sensitivity of different methods by measuring the percentage of the patient-specific fMRI activation that was reached by the tractography. We expected that diffusion anisotropy threshold parameters, as well as the inclusion of a free water model, would significantly influence the reconstruction of edematous WM fiber tracts, because edema increases water content in the tissue and lowers anisotropy. Contrary to our initial expectations, varying the fractional anisotropy threshold and including a free water model did not affect the UKF two-tensor tractography output appreciably in these two patient datasets. The most effective parameter for increasing tracking sensitivity was the generalized anisotropy (GA) threshold, which increased the length of tracked fibers when reduced to 0.075. In addition, the most effective seeding strategy was seeding in the whole brain or in a large region outside of the edema. Overall, the main contribution of this study is to provide insight into how UKF tractography can work, using a two-tensor model, to begin to address the challenge of fiber tract reconstruction in edematous regions near brain tumors. Reconstruction of edematous white matter from diffusion MRI is investigated. The performance of two–tensor unscented Kalman filter (UKF) tractography is assessed. The two–tensor model in UKF is analyzed in phantom and patient data experiments. Practical guidance on employing the UKF method in neurosurgical patients is provided
Collapse
Affiliation(s)
- Ruizhi Liao
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lipeng Ning
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenrui Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Rigolo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shun Gong
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Shanghai Changzheng Hospital, Shanghai, China
| | - Ofer Pasternak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
37
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Reid MW, Hannemann NP, York GE, Ritter JL, Kini JA, Lewis JD, Sherman PM, Velez CS, Drennon AM, Bolzenius JD, Tate DF. Comparing Two Processing Pipelines to Measure Subcortical and Cortical Volumes in Patients with and without Mild Traumatic Brain Injury. J Neuroimaging 2017; 27:365-371. [DOI: 10.1111/jon.12431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Matthew W. Reid
- Defense and Veterans Brain Injury Center San Antonio Military Medical Center San Antonio TX
| | | | - Gerald E. York
- Alaska Radiology Associates TBI Imaging and Research Anchorage AK
| | - John L. Ritter
- Defense and Veterans Brain Injury Center San Antonio Military Medical Center San Antonio TX
| | | | - Jeffrey D. Lewis
- Department of Neurology Uniformed Services University of the Health Sciences School of Medicine Bethesda MD
| | - Paul M. Sherman
- Department of Aeromedical Research, 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Dayton OH
- Department of Radiology 59th Medical Wing, Wilford Hall ASC San Antonio TX
| | - Carmen S. Velez
- Missouri Institute of Mental Health University of Missouri‐St Louis Berkeley MO
| | - Ann Marie Drennon
- Defense and Veterans Brain Injury Center San Antonio Military Medical Center San Antonio TX
| | - Jacob D. Bolzenius
- Missouri Institute of Mental Health University of Missouri‐St Louis Berkeley MO
| | - David F. Tate
- Missouri Institute of Mental Health University of Missouri‐St Louis Berkeley MO
- Department of Physical Medicine and Rehabilitation (Adjunct) Baylor College of Medicine Houston TX
| |
Collapse
|
39
|
Chamberland M, Scherrer B, Prabhu SP, Madsen J, Fortin D, Whittingstall K, Descoteaux M, Warfield SK. Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET). Hum Brain Mapp 2017; 38:509-527. [PMID: 27647682 PMCID: PMC5333642 DOI: 10.1002/hbm.23399] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/04/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxime Chamberland
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of ScienceUniversity of SherbrookeSherbrookeCanada
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Benoit Scherrer
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - Sanjay P. Prabhu
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - Joseph Madsen
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - David Fortin
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Kevin Whittingstall
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
- Department of Diagnostic Radiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Maxime Descoteaux
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of ScienceUniversity of SherbrookeSherbrookeCanada
| | - Simon K. Warfield
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| |
Collapse
|
40
|
Guise C, Fernandes MM, Nóbrega JM, Pathak S, Schneider W, Fangueiro R. Hollow Polypropylene Yarns as a Biomimetic Brain Phantom for the Validation of High-Definition Fiber Tractography Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29960-29967. [PMID: 27723307 DOI: 10.1021/acsami.6b09809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.
Collapse
Affiliation(s)
- Catarina Guise
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Margarida M Fernandes
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João M Nóbrega
- Institute for Polymers and Composites/I3N, University of Minho , Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
41
|
Rennert RC, Santiago-Dieppa DR, Figueroa J, Sanai N, Carter BS. Future directions of operative neuro-oncology. J Neurooncol 2016; 130:377-382. [DOI: 10.1007/s11060-016-2180-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/05/2016] [Indexed: 01/14/2023]
|