1
|
van de Waterweg Berends A, Broux B, Machiels B, Gillet L, Hellings N. The EBV-MS connection: the enigma remains. Front Immunol 2024; 15:1466339. [PMID: 39267757 PMCID: PMC11390381 DOI: 10.3389/fimmu.2024.1466339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- A van de Waterweg Berends
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - B Broux
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - B Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - L Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals and Health (FARAH), ULiège, Liège, Belgium
| | - N Hellings
- Neuro-Immune Connections and Repair Lab, Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| |
Collapse
|
2
|
Wu Q, Zhong L, Wei D, Zhang W, Hong J, Kang Y, Chen K, Huang Y, Zheng Q, Xu M, Zeng MS, Zeng YX, Xia N, Zhao Q, Krummenacher C, Chen Y, Zhang X. Neutralizing antibodies against EBV gp42 show potent in vivo protection and define novel epitopes. Emerg Microbes Infect 2023; 12:2245920. [PMID: 37542379 PMCID: PMC10443957 DOI: 10.1080/22221751.2023.2245920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dongmei Wei
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yinfeng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People’s Republic of China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Capasso N, Virgilio E, Covelli A, Giovannini B, Foschi M, Montini F, Nasello M, Nilo A, Prestipino E, Schirò G, Sperandei S, Clerico M, Lanzillo R. Aging in multiple sclerosis: from childhood to old age, etiopathogenesis, and unmet needs: a narrative review. Front Neurol 2023; 14:1207617. [PMID: 37332984 PMCID: PMC10272733 DOI: 10.3389/fneur.2023.1207617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Multiple sclerosis (MS) primarily affects adult females. However, in the last decades, rising incidence and prevalence have been observed for demographic extremes, such as pediatric-onset MS (POMS; occurring before 18 years of age) and late-onset MS (corresponding to an onset above 50 years). These categories show peculiar clinical-pathogenetic characteristics, aging processes and disease courses, therapeutic options, and unmet needs. Nonetheless, several open questions are still pending. POMS patients display an important contribution of multiple genetic and environmental factors such as EBV, while in LOMS, hormonal changes and pollution may represent disease triggers. In both categories, immunosenescence emerges as a pathogenic driver of the disease, particularly for LOMS. In both populations, patient and caregiver engagement are essential from the diagnosis communication to early treatment of disease-modifying therapy (DMTs), which in the elderly population appears more complex and less proven in terms of efficacy and safety. Digital technologies (e.g., exergames and e-training) have recently emerged with promising results, particularly in treating and following motor and cognitive deficits. However, this offer seems more feasible for POMS, being LOMS less familiar with digital technology. In this narrative review, we discuss how the aging process influences the pathogenesis, disease course, and therapeutic options of both POMS and LOMS. Finally, we evaluate the impact of new digital communication tools, which greatly interest the current and future management of POMS and LOMS patients.
Collapse
Affiliation(s)
- Nicola Capasso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Naples, Italy
| | - Eleonora Virgilio
- Neurology Unit, Department of Translational Medicine, AOU Maggiore della Carità Novara, University of Eastern Piedmont, Novara, Italy
| | - Antonio Covelli
- Department of Neurology, Santi Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Beatrice Giovannini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Foschi
- Department of Neuroscience, MS Center, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, L’Aquila, Italy
| | - Federico Montini
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Nasello
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Head, Neck and Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Elio Prestipino
- UOSC Neuro-Stroke Unit, AORN Antonio Cardarelli, Naples, Italy
| | - Giuseppe Schirò
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Silvia Sperandei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
- Multiple Sclerosis Unit, Policlinico Federico II University Hospital, Naples, Italy
| |
Collapse
|
4
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
5
|
Abstract
The complex interplay between host and EBV has made it difficult to elaborate useful vaccines protecting against EBV diseases. It is encouraging to see that EBV vaccine programs have started to incorporate different arms of the immune system. An array of argument calls for a realistic goal for vaccine strategies which should be preventing EBV diseases, rather than EBV infection. EBV is the primary cause of infectious mononucleosis and is associated with epithelial cell carcinomas, as well as lymphoid malignancies. Parallel to this need, one could propose priorities for future research: (i) identification of surrogate predictive markers for the development of EBV diseases (ii) determination of immune correlates of protection in animal models and humans.
Collapse
|
6
|
Reguraman N, Hassani A, Philip P, Khan G. Uncovering early events in primary Epstein-Barr virus infection using a rabbit model. Sci Rep 2021; 11:21220. [PMID: 34707156 PMCID: PMC8551192 DOI: 10.1038/s41598-021-00668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of several malignant and non-malignant conditions. However, a number of fundamental aspects about the biology of EBV and the mechanism(s) by which this virus induces pathology remain unknown. One major obstacle has been the lack of a suitable animal model for EBV infection. In this study, using our recently established rabbit model of EBV infection, we examined the early events following primary EBV infection. We show that, both immunocompetent and immunosuppressed animals were readily susceptible to EBV infection. However, immunosuppressed animals showed marked splenomegaly and widespread infection. Following EBV infection, the virus primarily targeted naïve IgM+, CD20+, CD21+ and CD79a+ B cells. Infected cells expressed varying sets of viral latent/lytic gene products. Notably, co-expression of latent and lytic proteins in the same cell was not observed. Infected cells in type 0/1 latency (EBERs+), were small and proliferating (Ki67+). By contrast, cells in type 2/3 latency (LMP1+), were large, non-proliferating (Ki-67-) and p53+. Although infected B-cells were widely present in splenic follicles, they did not express germinal center marker, BCL-6. Taken together, this study shows for the first time, some of the early events following primary EBV infection.
Collapse
Affiliation(s)
- Narendran Reguraman
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty Philip
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Keane JT, Afrasiabi A, Schibeci SD, Swaminathan S, Parnell GP, Booth DR. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 2021; 71:103572. [PMID: 34488019 PMCID: PMC8426200 DOI: 10.1016/j.ebiom.2021.103572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection may be necessary for the development of Multiple sclerosis (MS). Earlier we had identified six MS risk loci that are co-located with binding sites for the EBV transcription factor Epstein-Barr Nuclear Antigen 2 (EBNA2) in EBV-infected B cells (lymphoblastoid cell lines – LCLs). Methods We used an allele-specific chromatin immunoprecipitation PCR assay to assess EBNA2 allelic preference. We treated LCLs with a peptide inhibitor of EBNA2 (EBNA2-TAT), reasoning that inhibiting EBNA2 function would alter gene expression at these loci if it was mediated by EBNA2. Findings We found that EBNA2 binding was dependent on the risk allele for five of these six MS risk loci (p < 0·05). Treatment with EBNA2-TAT significantly altered the expression of TRAF3 (p < 0·05), CD40 (p < 0·001), CLECL1 (p <0·0001), TNFAIP8 (p < 0·001) and TNFRSF1A (p < 0·001). Interpretation These data suggest that EBNA2 can enhance or reduce expression of the gene depending on the risk allele, likely promoting EBV infection. This is consistent with the concept that these MS risk loci affect MS risk through altering the response to EBNA2. Together with the extensive data indicating a pathogenic role for EBV in MS, this study supports targeting EBV and EBNA2 to reduce their effect on MS pathogenesis. Funding Funding was provided by grants from MS Research Australia, National Health and Medical Research Council of Australia, Australian Government Research Training Program, Multiple Sclerosis International Federation, Trish Multiple Sclerosis Research Foundation.
Collapse
Affiliation(s)
- Jeremy Thomas Keane
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stephen Donald Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; Department of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Grant Peter Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| | - David Richmond Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Pich D, Mrozek-Gorska P, Bouvet M, Sugimoto A, Akidil E, Grundhoff A, Hamperl S, Ling PD, Hammerschmidt W. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio 2019; 10:e01723-19. [PMID: 31530670 PMCID: PMC6751056 DOI: 10.1128/mbio.01723-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with small RNA (EBERs) had no discernible phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the prelatent phase. Even EBNA1, which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a decisive parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B lymphocytes from energetically quiescent to activated cells.IMPORTANCE The preferred target of Epstein-Barr virus (EBV) is human resting B lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume, followed by cellular DNA synthesis after 3 days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to 3 days later, the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains, we investigated the individual contributions of EBV's multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV's prelatent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming, viral latent genes other than EBNA2 are dispensable, but some, EBNA-LP, for example, support the viral program and presumably stabilize the infected cells once viral latency is established.
Collapse
Affiliation(s)
- Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Atsuko Sugimoto
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Ezgi Akidil
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
9
|
Tatfi M, Hermine O, Suarez F. Epstein-Barr Virus (EBV)-Related Lymphoproliferative Disorders in Ataxia Telangiectasia: Does ATM Regulate EBV Life Cycle? Front Immunol 2019; 9:3060. [PMID: 30662441 PMCID: PMC6329310 DOI: 10.3389/fimmu.2018.03060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an ubiquitous herpesvirus with a tropism for epithelial cells (where lytic replication occurs) and B-cells (where latency is maintained). EBV persists throughout life and chronic infection is asymptomatic in most individuals. However, immunocompromised patients may be unable to control EBV infection and are at increased risk of EBV-related malignancies, such as diffuse large B-cell lymphomas or Hodgkin's lymphomas. Ataxia telangiectasia (AT) is a primary immunodeficiency caused by mutations in the ATM gene and associated with an increased incidence of cancers, particularly EBV-associated lymphomas. However, the immune deficiency present in AT patients is often too modest to explain the increased incidence of EBV-related malignancies. The ATM defect in these patients could therefore impair the normal regulation of EBV latency in B-cells, thus promoting lymphomagenesis. This suggests that ATM plays a role in the normal regulation of EBV latency. ATM is a serine/threonine kinase involved in multiple cell functions such as DNA damage repair, cell cycle regulation, oxidative stress, and gene expression. ATM is implicated in the lytic cycle of EBV, where EBV uses the activation of DNA damage repair pathway to promote its own replication. ATM regulates the latent cycle of the EBV-related herpesvirus KSHV and MHV68. However, the contribution of ATM in the control of the latent cycle of EBV is not yet known. A better understanding of the regulation of EBV latency could be harnessed in the conception of novel therapeutic strategies in AT and more generally in all ATM deficient EBV-related malignancies.
Collapse
Affiliation(s)
| | | | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, IMAGINE Institute, Paris, France
| |
Collapse
|
10
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
11
|
Abstract
The Epstein-Barr virus (EBV) is a B-lymphotropic gamma herpes virus associated with a number of malignancies. Most EBV-related cancers present complex medical management challenges; thus it has been essential to develop preclinical in vivo models allowing for the study of pathogenesis, prevention, and treatment of these diseases. Early in vivo models used nonhuman primates; however, such models were limited by the inability of EBV to achieve viral latency, availability, and cost. Immunodeficient mouse strains emerged as efficient models that allow for engraftment of human mononuclear cells and controlled evaluation of EBV-driven lymphoproliferative disease (EBV-LPD). By using highly immunodeficient strains of mice such as severe combined immune deficiency (SCID) and NOD/LtSz-scid ILrg(-/-)(NOG) mice, investigators have developed efficient platforms for evaluating pathogenesis of benign (HLH) and malignant (EBV-LPD) diseases associated with EBV. Humanized murine chimeric models have been essential tools for evaluating preventive strategies with vaccine and adoptive cellular approaches, as well as development of experimental therapeutic strategies. Manipulation of the human immune cells before engraftment or mutation of viral lytic and latent genes has enhanced our understanding of the oncogenic nature of EBV and the complexity of human immune responses to EBV. In this review, we discuss how the EBV murine models have evolved to become essential tools for studying the virology of EBV as it relates to human EBV-LPD pathogenesis, the immunobiology of innate and adaptive responses, and limitations of these models.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Elshafa Hassan Ahmed, DVM, MPH, is a postdoctoral fellow at the Comprehensive Cancer Center and graduate fellow in the Comparative and Veterinary Medicine Program at The Ohio State University in Columbus, Ohio. Robert A. Baiocchi, MD, PhD, is an associate professor in the Division of Hematology, Department of Internal Medicine at The Ohio State University in Columbus, Ohio
| | - Robert A Baiocchi
- Elshafa Hassan Ahmed, DVM, MPH, is a postdoctoral fellow at the Comprehensive Cancer Center and graduate fellow in the Comparative and Veterinary Medicine Program at The Ohio State University in Columbus, Ohio. Robert A. Baiocchi, MD, PhD, is an associate professor in the Division of Hematology, Department of Internal Medicine at The Ohio State University in Columbus, Ohio
| |
Collapse
|