1
|
Peng X, Zheng J, Liu T, Zhou Z, Song C, Zhang D, Zhang X, Huang Y. DNA Methylation-Based Diagnosis and Treatment of Breast Cancer. Curr Cancer Drug Targets 2025; 25:26-37. [PMID: 38441008 DOI: 10.2174/0115680096278978240204162353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024]
Abstract
DNA methylation is a key epigenetic modifier involved in tumor formation, invasion, and metastasis. The development of breast cancer is a complex process, and many studies have now confirmed the involvement of DNA methylation in breast cancer. Moreover, the number of genes identified as aberrantly methylated in breast cancer is rapidly increasing, and the accumulation of epigenetic alterations becomes a chronic factor in the development of breast cancer. The combined effects of external environmental factors and the internal tumor microenvironment promote epigenetic alterations that drive tumorigenesis. This article focuses on the relevance of DNA methylation to breast cancer, describing the role of detecting DNA methylation in the early diagnosis, prediction, progression, metastasis, treatment, and prognosis of breast cancer, as well as recent advances. The reversibility of DNA methylation is utilized to target specific methylation aberrant promoters as well as related enzymes, from early prevention to late targeted therapy, to understand the journey of DNA methylation in breast cancer with a more comprehensive perspective. Meanwhile, methylation inhibitors in combination with other therapies have a wide range of prospects, providing hope to drug-resistant breast cancer patients.
Collapse
Affiliation(s)
- Xintong Peng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Jingfan Zheng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Tianzi Liu
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Ziwen Zhou
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Chen Song
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Danyan Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Xinlong Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Yan Huang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Pant A, Anjankar AP, Shende S, Dhok A, Jha RK, Manglaram AV. Early detection of breast cancer through the diagnosis of Nipple Aspirate Fluid (NAF). Clin Proteomics 2024; 21:45. [PMID: 38943056 PMCID: PMC11212179 DOI: 10.1186/s12014-024-09495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
The development of breast cancer has been mainly reported in women who have reached the post-menopausal stage; therefore, it is the primary factor responsible for death amongst postmenopausal women. However, if treated on time it has shown a survival rate of 20 years in about two-thirds of women. Cases of breast cancer have also been reported in younger women and the leading cause in them is their lifestyle pattern or they may be carriers of high penetrance mutated genes. Premenopausal women who have breast cancer have been diagnosed with aggressive build-up of tumors and are therefore at more risk of loss of life. Mammography is an effective way to test for breast cancer in women after menopause but is not so effective for premenopausal women or younger females. Imaging techniques like contrast-enhanced MRI can up to some extent indicate the presence of a tumor but it cannot adequately differentiate between benign and malignant tumors. Although the 'omics' strategies continuing for the last 20 years have been helpful at the molecular level in enabling the characteristics and proper understanding of such tumors over long-term longitudinal monitoring. Classification, diagnosis, and prediction of the outcomes have been made through tissue and serum biomarkers but these also fail to diagnose the disease at an early stage. Considerably there is no adequate detection technique present globally that can help early detection and provide adequate specificity, safety, sensitivity, and convenience for the younger and premenopausal women, thereby it becomes necessary to take early measures and build efficient tools and techniques for the same. Through biopsies of nipple aspirate fluid (NAF) biomarker profiling can be performed. It is a naturally secreted fluid from the cells of epithelium found in the breast. Nowadays, home-based liquid biopsy collection kits are also available through which a routine check on breast health can be performed with the help of NAF. Herein, we will review the biomarker screening liquid biopsy, and the new emerging technologies for the examination of cancer at an early stage, especially in premenopausal women.
Collapse
Affiliation(s)
- Abhishek Pant
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India.
| | - Ashish P Anjankar
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Sandesh Shende
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Archana Dhok
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Roshan Kumar Jha
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| | - Anjali Vagga Manglaram
- Department of Biochemistry, Datta Meghe Institute of Higher Education and Research, Wardha Sawangi Meghe, India
| |
Collapse
|
3
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Differences in DNA Methylation-Based Age Prediction Within Twin Pairs Discordant for Cancer. Twin Res Hum Genet 2022; 25:171-179. [PMID: 36073160 DOI: 10.1017/thg.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA methylation-based age acceleration (DNAmAA) is associated with cancer, with both cancer tissue and blood showing increased DNAmAA. We aimed to investigate whether DNAmAA is associated with cancer risk within twin pairs discordant for cancer, and whether DNAmAA has the potential to serve as a biomarker for such. The study included 47 monozygotic and 48 same-sex-dizygotic cancer-discordant twin pairs from the Finnish Twin Cohort study with blood samples available between 17 and 31 years after the cancer diagnosis. We studied all cancers (95 pairs), then separately breast cancer (24 pairs) and all sites other than breast cancer (71 pairs). DNAmAA was calculated for seven models: Horvath, Horvath intrinsic epigenetic age acceleration, Hannum, Hannum intrinsic epigenetic age acceleration, Hannum extrinsic epigenetic age acceleration, PhenoAge and GrimAge. Within-pair differences in DNAmAA were analyzed by paired t tests and linear regression. Twin pairs sampled before cancer diagnosis did not differ significantly in DNAmAA. However, the within-pair differences in DNAmAA before cancer diagnosis increased significantly the closer the cancer diagnosis was, and this acceleration extended for years after the diagnosis. Pairs sampled after the diagnosis differed for DNAmAA with the Horvath models capturing cancer diagnosis-associated DNAmAA across all three cancer groupings. The results suggest that DNAmAA in blood is associated with cancer diagnosis. This may be due to epigenetic alterations in relation to cancer, its treatment or associated lifestyle changes. Based on the current study, the biomarker potential of DNAmAA in blood appears to be limited.
Collapse
|
5
|
Ren Z, Liu Z, Ma S, Yue J, Yang J, Wang R, Gao Y, Guo Y. Expression and clinical significance of UBE2V1 in cervical cancer. Biochem Biophys Rep 2021; 28:101108. [PMID: 34466666 PMCID: PMC8385167 DOI: 10.1016/j.bbrep.2021.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
The majority of cervical cancer (CC) patients are caused by the high-risk human papillomavirus (HPV) infection Although they are preventable and controllable, the mortality rate is still high. It is essential to identify the biomarkers for early screening and diagnosis of CC to improve the prognosis of patients with CC. The conjugating enzyme 2 (E2) family members are the key components of ubiquitin protease system. However, the role of E2 family in CC remains unclear. We aimed to investigate the role of UBE2V1, a ubiquitin binding E2 enzyme variant protein (ube2v) without conserved cysteine residues required for E2s catalytic activity in CC. In this study, we first studied the expression of UBE2V1 in CC by real time quantitative PCR (RT-qPCR), and then, the clinical information of 191 CC patients in TCGA database was retrieved to explore the relationship between the expression of UBE2V1 and the occurrence and development of CC by examining the translational profile and methylation, the high expression of UBE2V1 was well correlated to the poor prognosis of patients, indicating that UBE2V1 is an independent risk factor for the prognosis of CC patients. The expression of UBE2V1 was also correlated with clinical stages, tumor grades and TNM stages of CC. In addition, the expression of UBE2V1 was slightly negatively correlated with the methylation at the multiple methylation sites. our study revealed the relationship between UBE2V1 and the occurrence and development of CC from the level of transcriptional profile and DNA methylation. UBE2V1 is a novel candidate biomarker for the diagnosis, screening and prognosis of CC. The expression of UBE2V1 was abnormal in cervical cancer. UBE2V1 is associated with poor prognosis in patients with cervical cancer. UBE2V1 can be used as a new tumor marker for cervical cancer.
Collapse
Affiliation(s)
- Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Shenqian Ma
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junming Yue
- Department of Pathology, The University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN, 38163, USA
| | - Jinming Yang
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Ruiya Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, 450003, Henan, China
| |
Collapse
|
6
|
Wang J, Liu Y, Zhang S. Prognostic and immunological value of ATP6AP1 in breast cancer: implications for SARS-CoV-2. Aging (Albany NY) 2021; 13:16904-16921. [PMID: 34228637 PMCID: PMC8312471 DOI: 10.18632/aging.203229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Abnormal ATPase H+ Transporting Accessory Protein 1 (ATP6AP1) expression may promote carcinogenesis. We investigated the association of ATP6AP1 with breast cancer (BC) and COVID-19. The Oncomine, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Kaplan-Meier plotter databases were used to evaluate the expression and prognostic value of ATP6AP1 in BC. ATP6AP1 was upregulated in BC tissues, and higher ATP6AP1 expression was associated with poorer outcomes. Data from the Tumor Immune Estimation Resource, Tumor-Immune System Interaction Database and Kaplan-Meier plotter indicated that ATP6AP1 expression correlated with immune infiltration, and that its prognostic effects in BC depended on tumor-infiltrating immune cell subtype levels. Multiple databases were used to evaluate the association of ATP6AP1 with clinicopathological factors, assess the mutation and methylation of ATP6AP1, and analyze gene co-expression and enrichment. The ATP6AP1 promoter was hypomethylated in BC tissues and differentially methylated between different disease stages and subtypes. Data from the Gene Expression Omnibus indicated that ATP6AP1 levels in certain cell types were reduced after SARS-CoV-2 infections. Ultimately, higher ATP6AP1 expression was associated with a poorer prognosis and with higher or lower infiltration of particular immune cells in BC. BC patients may be particularly susceptible to SARS-CoV-2 infections, which may alter their prognoses.
Collapse
Affiliation(s)
- Jintian Wang
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang 050011, China
| | - Yunjiang Liu
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang 050011, China
| | - Shuo Zhang
- Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang 050011, China
| |
Collapse
|
7
|
Sheikh-Hosseini M, Larijani B, Gholipoor Kakroodi Z, Shokoohi M, Moarefzadeh M, Sayahpour FA, Goodarzi P, Arjmand B. Gene Therapy as an Emerging Therapeutic Approach to Breast Cancer: New Developments and Challenges. Hum Gene Ther 2021; 32:1330-1345. [PMID: 33307949 DOI: 10.1089/hum.2020.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease, which is the consequence of several genetic and environmental factors. Also, it is one of the most common causes of cancer death and second leading cancer among women all around the world. Therefore, it is necessary to develop novel therapeutic approaches useful for the successful treatment of breast cancer. As conventional treatments had limited success, alternative approaches for the treatment of breast cancer have been applied in recent years. Hence, the molecular basis of breast cancer has provided the opportunity of using genetic materials for therapeutic uses. In this regard, gene therapy as one of the potentially efficient and beneficial treatments among various techniques became a popular treatment for different cancers, especially breast cancer. Accordingly, there are plenty of targets available for gene therapy of breast cancer. Gene therapy strategies have the potential to correct molecular defects that contributed to the cancer progression. These techniques should selectively target tumor cells without affecting normal cells. Moreover, data of clinical trials in gene therapy for breast cancer indicated that this approach has little toxicity compared to other therapeutic approaches. In this study, different aspects of breast neoplasm, gene therapy techniques, challenges, and recent developments will be mentioned.
Collapse
Affiliation(s)
- Motahareh Sheikh-Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gholipoor Kakroodi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Shokoohi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Moarefzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ahmadi M, Mohammadi Z, Azad M, Foroughi F, Khojastehpour S, Gheibi N, Samiee-Rad F, Maali A. Evaluation of expression level and methylation profile of CXX1 gene in breast cancer tissue blocks. J Cancer Res Ther 2021; 17:1328-1334. [DOI: 10.4103/jcrt.jcrt_27_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Rahvar F, Salimi M, Mozdarani H. Plasma GBP2 promoter methylation is associated with advanced stages in breast cancer. Genet Mol Biol 2020; 43:e20190230. [PMID: 33211060 PMCID: PMC7783727 DOI: 10.1590/1678-4685-gmb-2019-0230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Blood methylated cell-free DNA (cfDNA) as a minimally invasive cancer biomarker
has great importance in cancer management. Guanylate binding protein 2 (GBP2)
has been considered as a possible controlling factor in tumor development.
GBP2 gene expression and its promoter methylation status in
both plasma cfDNA and tumor tissues of ductal carcinoma breast cancer patients
were analyzed using SYBR green comparative Real-Time RT-PCR and, Methyl-specific
PCR techniques, respectively in order to find a possible cancer-related marker.
The results revealed that GBP2 gene expression and promoter
methylation were inversely associated. GBP2 was down-regulated
in tumors with emphasis on triple negative status, nodal involvement and higher
cancer stages (p<0.0001). GBP2 promoter
methylation on both cfDNA and tumor tissues were positively correlated and was
detected in about 88% of breast cancer patients mostly in (Lymph node positive)
LN+ and higher stages. Data provided shreds of evidence that
GBP2 promoter methylation in circulating DNA may be
considered as a possible effective non-invasive molecular marker in poor
prognostic breast cancer patients with the evidence of its relation to disease
stage and lymph node metastasis. However further studies need to evaluate the
involvement of GBP2 promoter methylation in progression-free
survival or overall survival of the patients.
Collapse
Affiliation(s)
- Farzaneh Rahvar
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Institute of Medical Biotechnology, Department of Medical Genetics, Tehran, Iran
| | - Mahdieh Salimi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Institute of Medical Biotechnology, Department of Medical Genetics, Tehran, Iran
| | - Hossein Mozdarani
- Tarbiat Modares University, Faculty of Medical Sciences, Department of Medical Genetics, Tehran, Iran
| |
Collapse
|
10
|
Guo Y, Mao X, Qiao Z, Chen B, Jin F. A Novel Promoter CpG-Based Signature for Long-Term Survival Prediction of Breast Cancer Patients. Front Oncol 2020; 10:579692. [PMID: 33194705 PMCID: PMC7606941 DOI: 10.3389/fonc.2020.579692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
DNA methylation has been reported as one of the most critical epigenetic aberrations during the tumorigenesis and development of breast cancer (BC). This study explored a novel promoter CpG-based signature for long-term survival prediction of BC patients. We used The Cancer Genome Atlas (TCGA) data as training set, and results were validated in an independent dataset from Gene Expression Omnibus (GEO). First, the differential methylation CpG sites were screened in TCGA dataset, of which the candidate promoter CpG sites were preliminarily identified with the univariate Cox regression analysis and the least absolute shrinkage and selection operator regression analysis. Second, the signature was constructed with stepwise regression analysis and multivariate Cox proportional hazards model, which was validated with the survival analysis of two cohorts each from TCGA and GEO databases. The 10-year receiver operating characteristic curves of risk score presented an area under the curve of over 0.7 for both cohorts. A nomogram was also constructed and released. Moreover, Gene Set Enrichment Analysis was performed to identify the more active pathways in high-risk patients. The CpG sites-target gene correlations and differential methylation regions were further explored. In conclusion, the promoter CpG-based signature exhibited good prognostic prediction efficacy in the long-term overall survival of BC patients.
Collapse
Affiliation(s)
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
11
|
Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol 2020; 83:152-165. [PMID: 32858230 DOI: 10.1016/j.semcancer.2020.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Nadia Aziz Salman
- Kingston University London, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston, upon Thames, London, KT1 2EE, UK
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, P.O. Box 26999, Qatar; Laboratory Animal Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
12
|
Abstract
Despite decades of laboratory, epidemiological and clinical research, breast cancer incidence continues to rise. Breast cancer remains the leading cancer-related cause of disease burden for women, affecting one in 20 globally and as many as one in eight in high-income countries. Reducing breast cancer incidence will likely require both a population-based approach of reducing exposure to modifiable risk factors and a precision-prevention approach of identifying women at increased risk and targeting them for specific interventions, such as risk-reducing medication. We already have the capacity to estimate an individual woman's breast cancer risk using validated risk assessment models, and the accuracy of these models is likely to continue to improve over time, particularly with inclusion of newer risk factors, such as polygenic risk and mammographic density. Evidence-based risk-reducing medications are cheap, widely available and recommended by professional health bodies; however, widespread implementation of these has proven challenging. The barriers to uptake of, and adherence to, current medications will need to be considered as we deepen our understanding of breast cancer initiation and begin developing and testing novel preventives.
Collapse
Affiliation(s)
- Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Kelly-Anne Phillips
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Kougioumtsidou N, Vavoulidis E, Nasioutziki M, Symeonidou M, Pratilas GC, Mareti E, Petousis S, Chatzikyriakidou A, Grimbizis G, Theodoridis T, Miliaras D, Dinas K, Zepiridis L. DNA methylation patterns of RAR-β2 and RASSF1A gene promoters in FNAB samples from Greek population with benign or malignant breast lesions. Diagn Cytopathol 2020; 49:153-164. [PMID: 32530576 DOI: 10.1002/dc.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Promoter hypermethylation is common in Breast Cancer (BC) with studies mainly in histological specimens showing frequent methylation of tumor suppressor genes (TSGs) compared with normal tissues. The aim of this study was to estimate the frequency of promoter methylation of RAR-β2 and RASSF1A genes in breast FNAB material aiming to evaluate the methylation status of these two genes as biomarker for detecting BC in Greek population. METHODS FNAB material from 104 patients was collected for cytological evaluation and epigenetic analysis. DNA was extracted and subjected to bisulfite conversion. A methylation-specific PCR was carried out and the final products were separated with electrophoresis in 2% agarose gels. RESULTS From 104 samples, RASSF1A hypermethylation was observed in 78 (75%) and RAR-β2 hypermethylation in 64 (61.6%). 84% and 78% of the cases diagnosed with breast malignancy (n = 50) were methylated for RASSF1A and RAR-β2, respectively. Methylated RASSF1A and RAR-β2 were also detected in 88.3% and 76.5% in samples diagnosed as suspicious for malignancy (n = 17) and in 57.2% of samples diagnosed with atypia (n = 14). The Odds Ratio for breast malignancy was 4.545 in patients with RASSF1A hypermethylation and 9.167 in patients with RAR-β2 hypermethylation underlying their promoter's methylation positive correlation with breast malignancy. CONCLUSION To optimize the sensitivity and specificity of this epigenetic setting, more TSGs related to BC should be gradually imported in our evaluated methylation panel and be validated in a larger study sample with the aim that the obtained epigenetic profiles will provide clinicians with valuable tools for management of BC patients in Greece.
Collapse
Affiliation(s)
- Niki Kougioumtsidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Maria Nasioutziki
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Symeonidou
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Chrysostomos Pratilas
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mareti
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatios Petousis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Faculty of Medicine, Laboratory of Medical Biology-Genetics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gregorios Grimbizis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Theodoridis
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- Faculty of Medicine, First Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Zepiridis
- Faculty of Medicine, Second Department of Obstetrics and Gynaecology and Molecular Cytopathology Laboratory, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Lavin DP, Tiwari VK. Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front Oncol 2020; 10:554. [PMID: 32477926 PMCID: PMC7235173 DOI: 10.3389/fonc.2020.00554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is the process whereby a polarized epithelial cell ceases to maintain cell-cell contacts, loses expression of characteristic epithelial cell markers, and acquires mesenchymal cell markers and properties such as motility, contractile ability, and invasiveness. A complex process that occurs during development and many disease states, EMT involves a plethora of transcription factors (TFs) and signaling pathways. Whilst great advances have been made in both our understanding of the progressive cell-fate changes during EMT and the gene regulatory networks that drive this process, there are still gaps in our knowledge. Epigenetic modifications are dynamic, chromatin modifying enzymes are vast and varied, transcription factors are pleiotropic, and signaling pathways are multifaceted and rarely act alone. Therefore, it is of great importance that we decipher and understand each intricate step of the process and how these players at different levels crosstalk with each other to successfully orchestrate EMT. A delicate balance and fine-tuned cooperation of gene regulatory mechanisms is required for EMT to occur successfully, and until we resolve the unknowns in this network, we cannot hope to develop effective therapies against diseases that involve aberrant EMT such as cancer. In this review, we focus on data that challenge these unknown entities underlying EMT, starting with EMT stimuli followed by intracellular signaling through to epigenetic mechanisms and chromatin remodeling.
Collapse
Affiliation(s)
| | - Vijay K. Tiwari
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Wong EM, Southey MC, Terry MB. Integrating DNA methylation measures to improve clinical risk assessment: are we there yet? The case of BRCA1 methylation marks to improve clinical risk assessment of breast cancer. Br J Cancer 2020; 122:1133-1140. [PMID: 32066913 PMCID: PMC7156506 DOI: 10.1038/s41416-019-0720-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Current risk prediction models estimate the probability of developing breast cancer over a defined period based on information such as family history, non-genetic breast cancer risk factors, genetic information from high and moderate risk breast cancer susceptibility genes and, over the past several years, polygenic risk scores (PRS) from more than 300 common variants. The inclusion of additional data such as PRS improves risk stratification, but it is anticipated that the inclusion of epigenetic marks could further improve model performance accuracy. Here, we present the case for including information on DNA methylation marks to improve the accuracy of these risk prediction models, and consider how this approach contrasts genetic information, as identifying DNA methylation marks associated with breast cancer risk differs inherently according to the source of DNA, approaches to the measurement of DNA methylation, and the timing of measurement. We highlight several DNA-methylation-specific challenges that should be considered when incorporating information on DNA methylation marks into risk prediction models, using BRCA1, a highly penetrant breast cancer susceptibility gene, as an example. Only after careful consideration of study design and DNA methylation measurement will prospective performance of the incorporation of information regarding DNA methylation marks into risk prediction models be valid.
Collapse
Affiliation(s)
- Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Li J, Li X. Comprehensive analysis of prognosis-related methylated sites in breast carcinoma. Mol Genet Genomic Med 2020; 8:e1161. [PMID: 32037691 PMCID: PMC7196449 DOI: 10.1002/mgg3.1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background Breast carcinoma has become a nonnegligible public health problem in China with its increasing incidence and mortality in woman. As a early event regulating tumorigenesis and development, DNA methylation became one of the focuses of current carcinoma researches on potential diagnostic and therapeutic targets. Methods In this study, we comprehensively analyzed the gene expression data and DNA methylation data of breast carcinoma and adjacent normal tissues samples in the Gene Expression Omnibus database. Influences of tumor stage, adjuvant therapy, hormone therapy, and chemotherapy on CpG methylation level were explored by linear regression analysis. Correlations between methylation and gene expression levels were determined by spearman rank correlation analysis. Log‐rank test was applied for determining significance of associations between CpG sites methylation level and breast cancer patients' Kaplan–Meier survival. Results A total of 229 CpG sites were found to be significantly associated with tumor stage or treatment, and eight of which were potential markers that affect the survival of breast carcinoma and negatively correlated with their genes' expression levels. Conclusions We reported eight CpG sites as potential breast cancer prognosis signatures through comprehensively analyzed gene expression and DNA methylation datasets, and excluding influences of tumor stage and treatment. This should be helpful for breast cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| | - Xinzheng Li
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, P.R. China
| |
Collapse
|
17
|
Mendaza S, Ulazia-Garmendia A, Monreal-Santesteban I, Córdoba A, de Azúa YR, Aguiar B, Beloqui R, Armendáriz P, Arriola M, Martín-Sánchez E, Guerrero-Setas D. ADAM12 is A Potential Therapeutic Target Regulated by Hypomethylation in Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:E903. [PMID: 32019179 PMCID: PMC7036924 DOI: 10.3390/ijms21030903] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and currently lacks any effective targeted therapy. Since epigenetic alterations are a common event in TNBC, DNA methylation profiling can be useful for identifying potential biomarkers and therapeutic targets. Here, genome-wide DNA methylation from eight TNBC and six non-neoplastic tissues was analysed using Illumina Human Methylation 450K BeadChip. Results were validated by pyrosequencing in an independent cohort of 50 TNBC and 24 non-neoplastic samples, where protein expression was also assessed by immunohistochemistry. The functional role of disintegrin and metalloproteinase domain-containing protein 12(ADAM12) in TNBC cell proliferation, migration and drug response was analysed by gene expression silencing with short hairpin RNA. Three genes (Von Willenbrand factor C and Epidermal Growth Factor domain-containing protein (VWCE), tetraspanin-9 (TSPAN9) and ADAM12) were found to be exclusively hypomethylated in TNBC. Furthermore, ADAM12 hypomethylation was associated with a worse outcome in TNBC tissues and was also found in adjacent-to-tumour tissue and, preliminarily, in plasma from TNBC patients. In addition, ADAM12 silencing decreased TNBC cell proliferation and migration and improved doxorubicin sensitivity in TNBC cells. Our results indicate that ADAM12 is a potential therapeutic target and its hypomethylation could be a poor outcome biomarker in TNBC.
Collapse
Affiliation(s)
- Saioa Mendaza
- Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (A.U.-G.); (D.G.-S.)
| | - Ane Ulazia-Garmendia
- Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (A.U.-G.); (D.G.-S.)
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (A.U.-G.); (D.G.-S.)
| | - Alicia Córdoba
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| | - Yerani Ruiz de Azúa
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| | - Begoña Aguiar
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| | - Raquel Beloqui
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| | - Pedro Armendáriz
- Department of Surgery, ComplejoHospitalario de Navarra, (CHN), Irunlarrea 3, 31008, Pamplona, Spain;
| | - Marta Arriola
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| | - Esperanza Martín-Sánchez
- Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (A.U.-G.); (D.G.-S.)
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (S.M.); (A.U.-G.); (D.G.-S.)
- Department of Pathology, ComplejoHospitalario de Navarra (CHN), Irunlarrea 3, 31008, Pamplona, Spain; (A.C.); (Y.R.d.A.); (B.A.); (R.B.); (M.A.)
| |
Collapse
|
18
|
Snider H, Villavarajan B, Peng Y, Shepherd LE, Robinson AC, Mueller CR. Region-specific glucocorticoid receptor promoter methylation has both positive and negative prognostic value in patients with estrogen receptor-positive breast cancer. Clin Epigenetics 2019; 11:155. [PMID: 31675993 PMCID: PMC6825343 DOI: 10.1186/s13148-019-0750-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The glucocorticoid receptor (NR3C1, GR) is frequently downregulated in breast tumors, and evidence suggests it acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer. We previously found that methylation of the GR promoter CpG island represses gene expression and occurs in ER+ breast tumors. In this study, the prognostic and predictive value of GR methylation was examined in ER+ patients from the CCTG MA.12 clinical trial of tamoxifen versus placebo in women with early breast cancer. METHODS We developed a targeted multiplex bisulfite next-generation sequencing assay to detect methylation at multiple GR promoter regions in DNA from formalin-fixed paraffin-embedded (FFPE) samples. Following validation in a small cohort of breast tumors, ER+ FFPE tumor samples from MA.12 (n = 208) were tested. Survival analyses evaluated the impact of GR promoter methylation on patient overall survival (OS) and disease-free survival (DFS). RESULTS An analysis of TCGA data found that GR methylation is prevalent in ER+ tumors and is associated with decreased gene expression and analysis of public microarray data (KM Plotter) linked decreased GR expression to a poor outcome. In MA.12, two GR promoter regions (U and C) each had prognostic value, but with opposite effects on the outcome. U methylation was associated with poor OS (HR = 1.79, P = 0.041) whereas C methylation was associated with better OS (HR = 0.40, P = 0.040) and DFS (HR = 0.49, P = 0.037). The classification of patients based on the methylation status of the two regions was prognostic for OS (P = 0.006) and DFS (P = 0.041) and revealed a group of patients (U methylated, C unmethylated) with very poor outcomes. Placebo-treated patients in this high-risk group had worse OS (HR = 2.86, P = 0.002) and DFS (HR = 2.09, P = 0.014) compared to the rest of the cohort. CONCLUSION Region-specific GR promoter methylation was an independent prognostic marker for patient survival and identified a subset of patients with poor prognosis, particularly without tamoxifen treatment. These findings provide a foundation for future studies into GR methylation as a promising prognostic biomarker in ER+ breast cancer.
Collapse
Affiliation(s)
- Hilary Snider
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brithica Villavarajan
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Yingwei Peng
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.,Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lois E Shepherd
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Canadian Cancer Trials Group, Queen's University, Kingston, Canada
| | - Andrew C Robinson
- Department of Oncology, Division of Medical Oncology, Queen's University, Kingston, Canada
| | - Christopher R Mueller
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
19
|
Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, Vallette FM, Lelièvre SA, Cartron PF. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front Genet 2019; 10:885. [PMID: 31611907 PMCID: PMC6777643 DOI: 10.3389/fgene.2019.00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 01/11/2023] Open
Abstract
The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Christophe Olivier
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Service de toxicologie, Faculté de pharmacie de Nantes, Nantes, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| |
Collapse
|
20
|
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO J 2019; 38:e100330. [PMID: 31304632 PMCID: PMC6627240 DOI: 10.15252/embj.2018100330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.
Collapse
Affiliation(s)
- Davide Pellacani
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Susanna Tan
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Sylvain Lefort
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Connie J Eaves
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| |
Collapse
|
21
|
Binder AM, Stiemsma LT, Keller K, van Otterdijk SD, Mericq V, Pereira A, Santos JL, Shepherd J, Michels KB. Inverse association between estrogen receptor-α DNA methylation and breast composition in adolescent Chilean girls. Clin Epigenetics 2018; 10:122. [PMID: 30286806 PMCID: PMC6172836 DOI: 10.1186/s13148-018-0553-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Estrogen receptor-α (ER-α) is a transcriptional regulator, which mediates estrogen-dependent breast development, as well as breast tumorigenesis. The influence of epigenetic regulation of ER-α on adolescent breast composition has not been previously studied and could serve as a marker of pubertal health and susceptibility to breast cancer. We investigated the association between ER-α DNA methylation in leukocytes and breast composition in adolescent Chilean girls enrolled in the Growth and Obesity Cohort Study (GOCS) in Santiago, Chile. Breast composition (total breast volume (BV; cm3), fibroglandular volume (FGV; cm3), and percent fibroglandular volume (%FGV)) was measured at breast Tanner stage 4 (B4). ER-α promoter DNA methylation was assessed by pyrosequencing in blood samples collected at breast Tanner stages 2 (B2; n = 256) and B4 (n = 338). Results After adjusting for fat percentage at breast density measurement, ER-α methylation at B2, and cellular heterogeneity, we observed an inverse association between B4 average ER-α DNA methylation and BV and FGV. Geometric mean BV was 15% lower (95% CI: − 28%, − 1%) among girls in the highest quartile of B4 ER-α methylation (6.96–23.60%) relative to the lowest (0.78–3.37%). Similarly, FGV was 19% lower (95% CI: − 33%, − 2%) among girls in the highest quartile of B4 ER-α methylation relative to the lowest. The association between ER-α methylation and breast composition was not significantly modified by body fat percentage and was not influenced by pubertal timing. Conclusions These findings suggest that the methylation profile of ER-α may modulate adolescent response to estrogen and breast composition, which may influence breast cancer risk in adulthood. Electronic supplementary material The online version of this article (10.1186/s13148-018-0553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Leah T Stiemsma
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Kristen Keller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, 90095, USA
| | - Sanne D van Otterdijk
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Verónica Mericq
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - John Shepherd
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
22
|
Williams KE, Jawale RM, Schneider SS, Otis CN, Pentecost BT, Arcaro KF. DNA methylation in breast cancers: Differences based on estrogen receptor status and recurrence. J Cell Biochem 2018; 120:738-755. [DOI: 10.1002/jcb.27431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Kristin E. Williams
- Department of Molecular and Cellular Biology University of Massachusetts –Amherst Amherst Massachusetts
| | - Rahul M. Jawale
- Department of Pathology Baystate Medical Center Springfield Massachusetts
| | - Sallie S. Schneider
- Biospecimen Resource and Molecular Analysis Facility Baystate Medical Center Springfield Massachusetts
| | | | - Brian T. Pentecost
- Division of Translational Medicine Wadsworth Center, New York State Department of Health Albany New York
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences University of Massachusetts – Amherst Amherst Massachusetts
| |
Collapse
|
23
|
Sasidharan Nair V, El Salhat H, Taha RZ, John A, Ali BR, Elkord E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics 2018; 10:78. [PMID: 29983831 PMCID: PMC6003083 DOI: 10.1186/s13148-018-0512-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
Background High expression of immune checkpoints in tumor microenvironment plays significant roles in inhibiting anti-tumor immunity, which is associated with poor prognosis and cancer progression. Major epigenetic modifications in both DNA and histone could be involved in upregulation of immune checkpoints in cancer. Methods Expressions of different immune checkpoint genes and PD-L1 were assessed using qRT-PCR, and the underlying epigenetic modifications including CpG methylation and repressive histone abundance were determined using bisulfite sequencing, and histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) chromatin immunoprecipitation assays (ChIP), respectively. Results We first assessed the expression level of six immune checkpoints/ligands and found that PD-1, CTLA-4, TIM-3, and LAG-3 were significantly upregulated in breast tumor tissues (TT), compared with breast normal tissues (NT). We investigated the epigenetic modifications beyond this upregulation in immune checkpoint genes. Interestingly, we found that CpG islands in the promoter regions of PD-1, CTLA-4, and TIM-3 were significantly hypomethylated in tumor compared with normal tissues. Additionally, CpG islands of PD-L1 promoter were completely demethylated (100%), LAG-3 were highly hypomethylated (80–90%), and TIGIT were poorly hypomethylated (20–30%), in both NT and TT. These demethylation findings are in accordance with the relative expression data that, out of all these genes, PD-L1 was highly expressed and completely demethylated and TIGIT was poorly expressed and hypermethylated in both NT and TT. Moreover, bindings of H3K9me3 and H3K27me3 were found to be reduced in the promoter loci of PD-1, CTLA-4, TIM-3, and LAG-3 in tumor tissues. Conclusion Our data demonstrate that both DNA and histone modifications are involved in upregulation of PD-1, CTLA-4, TIM-3, and LAG-3 in breast tumor tissue and these epigenetic modifications could be useful as diagnostic/prognostic biomarkers and/or therapeutic targets in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0512-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- 1Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Haytham El Salhat
- 2Oncology Department, Al Noor Hospital, Abu Dhabi, United Arab Emirates.,3Oncology Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Rowaida Z Taha
- 1Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Anne John
- 4Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- 4Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,5Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eyad Elkord
- 1Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,6Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Moraru A, de Almeida MM, Degryse JM. PALTEM: What Parameters Should Be Collected in Disaster Settings to Assess the Long-Term Outcomes of Famine? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050857. [PMID: 29693637 PMCID: PMC5981896 DOI: 10.3390/ijerph15050857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
Abstract
Evidence suggests that nutritional status during fetal development and early life leaves an imprint on the genome, which leads to health outcomes not only on a person as an adult but also on his offspring. The purpose of this study is to bring forth an overview of the relevant parameters that need to be collected to assess the long-term and transgenerational health outcomes of famine. A literature search was conducted for the most pertinent articles on the epigenetic effects of famine. The results were compiled, synthesized and discussed with an expert in genetics for critical input and validation. Prenatal and early life exposure to famine was associated with metabolic, cardiovascular, respiratory, reproductive, neuropsychiatric and oncologic diseases. We propose a set of parameters to be collected in disaster settings to assess the long-term outcomes of famine: PALTEM (parameters to assess long-term effects of malnutrition).
Collapse
Affiliation(s)
- Alexandra Moraru
- Centre for Research on the Epidemiology of Disasters, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Maria Moitinho de Almeida
- Centre for Research on the Epidemiology of Disasters, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Jean-Marie Degryse
- Institute of Health and Society, Université Catholique de Louvain, Brussels 1200, Belgium.
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
25
|
Shaheed SU, Tait C, Kyriacou K, Linforth R, Salhab M, Sutton C. Evaluation of nipple aspirate fluid as a diagnostic tool for early detection of breast cancer. Clin Proteomics 2018; 15:3. [PMID: 29344009 PMCID: PMC5763528 DOI: 10.1186/s12014-017-9179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022] Open
Abstract
There has been tremendous progress in detection of breast cancer in postmenopausal women, resulting in two-thirds of women surviving more than 20 years after treatment. However, breast cancer remains the leading cause of cancer-related deaths in premenopausal women. Breast cancer is increasing in younger women due to changes in life-style as well as those at high risk as carriers of mutations in high-penetrance genes. Premenopausal women with breast cancer are more likely to be diagnosed with aggressive tumours and therefore have a lower survival rate. Mammography plays an important role in detecting breast cancer in postmenopausal women, but is considerably less sensitive in younger women. Imaging techniques, such as contrast-enhanced MRI improve sensitivity, but as with all imaging approaches, cannot differentiate between benign and malignant growths. Hence, current well-established detection methods are falling short of providing adequate safety, convenience, sensitivity and specificity for premenopausal women on a global level, necessitating the exploration of new methods. In order to detect and prevent the disease in high risk women as early as possible, methods that require more frequent monitoring need to be developed. The emergence of "omics" strategies over the last 20 years, enabling the characterisation and understanding of breast cancer at the molecular level, are providing the potential for long term, longitudinal monitoring of the disease. Tissue and serum biomarkers for breast cancer stratification, diagnosis and predictive outcome have emerged, but have not successfully translated into clinical screening for early detection of the disease. The use of breast-specific liquid biopsies, such as nipple aspirate fluid (NAF), a natural secretion produced by breast epithelial cells, can be collected non-invasively for biomarker profiling. As we move towards an age of active surveillance, home-based liquid biopsy collection kits are increasingly being applied and these could provide a paradigm shift where NAF biomarker profiling is used for routine breast health monitoring. The current status of established and newly emerging imaging techniques for early detection of breast cancer and the potential for alternative biomarker screening of liquid biopsies, particularly those applied to high-risk, premenopausal women, will be reviewed.
Collapse
Affiliation(s)
- Sadr-Ul Shaheed
- 1Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | | | - Kyriacos Kyriacou
- 3The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Chris Sutton
- 1Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| |
Collapse
|
26
|
Davalos V, Martinez-Cardus A, Esteller M. The Epigenomic Revolution in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2163-2174. [DOI: 10.1016/j.ajpath.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 02/09/2023]
|
27
|
|
28
|
Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes (Basel) 2016; 7:genes7120117. [PMID: 27918480 PMCID: PMC5192493 DOI: 10.3390/genes7120117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 01/15/2023] Open
Abstract
Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant. Here we review studies that have assessed DNA methylation in cord blood following maternal exposures that may impact neurodevelopment of the child. We also highlight some key studies to illustrate the potential for DNA methylation to successfully identify infants at risk for poor outcomes. While the current evidence is limited, in that observations to date are largely correlational, in time and with larger cohorts analyzed and longer term follow-up completed, we may be able to develop epigenetic biomarkers that not only indicate adverse early life exposures but can also be used to identify individuals likely to be at an increased risk of impaired neurodevelopment even in the absence of detailed information regarding prenatal environment.
Collapse
|
29
|
Wu L, Shen Y, Peng X, Zhang S, Wang M, Xu G, Zheng X, Wang J, Lu C. Aberrant promoter methylation of cancer-related genes in human breast cancer. Oncol Lett 2016; 12:5145-5155. [PMID: 28105221 PMCID: PMC5228392 DOI: 10.3892/ol.2016.5351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
The clinical relevance of aberrant DNA methylation is being increasingly recognized in breast cancer. The present study aimed to evaluate the promoter methylation status of seven candidate genes and to explore their potential use as a biomarker for the diagnosis of breast cancer. A total of 70 Chinese patients with breast cancer were recruited, and matched with 20 patients with benign breast disease (BBD). Methylation-specific polymerase chain reaction was performed to measure the methylation status of selected genes. The protein expression of candidate genes was determined by immunohistochemistry. Hypermethylation of Breast cancer 1, early onset; DNA repair associated (BRCA1), glutathione S-transferase pi 1 (GSTP1), cyclin dependent kinase inhibitor 2A, O-6-methylguanine-DNA methyltransferase, phosphatase and tensin homolog, retinoic acid receptor beta 2 and cyclin D2 was observed to be more common in cancerous tissues (24.3, 31.4, 40.0, 27.1, 48.6, 55.7 and 67.1%, respectively) as compared with BBD controls (0.0, 0.0, 20.0, 25.0, 40.0, 40.0 and 45.0%, respectively). Immunohistochemical analysis demonstrated a correlation between the methylation of the target gene and downregulation of protein expression. When BRCA1 and GSTP1 were combined as the biomarker, the area under the receiver operating characteristic curve reached 0.721 (95% confidence interval, 0.616–0.827). The present findings indicated that promoter methylation of cancer-related genes was frequently observed in patients with breast cancer and was associated with various clinical features. Hypermethylation of BRCA1 and GSTP1 may be used as promising biomarkers for breast cancer.
Collapse
Affiliation(s)
- Liang Wu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ye Shen
- Department of Gastrointestinal Surgery, Aoyoung Hospital, Zhangjiagang, Jiangsu 215617, P.R. China
| | - Xianzhen Peng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Simin Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Guisheng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xianzhi Zheng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China; The Innovation Center for Social Risk Governance in Health, Nanjing, Jiangsu, 211166, P.R. China
| | - Cheng Lu
- Department of Breast, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|