1
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Werner R, Crosbie R, Dorney M, Connolly A, Collins D, Hand CK, Burke L. Implementation of an ISO 15189 accredited next generation sequencing service for cell-free total nucleic acid (cfTNA) analysis to facilitate driver mutation reporting in blood: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024:jcp-2024-209514. [PMID: 38914446 DOI: 10.1136/jcp-2024-209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
AIMS Next generation sequencing (NGS) on tumour tissue is integral to the delivery of personalised medicine and targeted therapy. NGS on liquid biopsy, a much less invasive technology, is an emerging clinical tool that has rapidly expanded clinical utility. Gene mutations in cell-free total nucleic acids (cfTNA) circulating in the blood are representative of whole tumour biology and can reveal different mutations from different tumour sites, thus addressing tumour heterogeneity challenges. METHODS The novel Ion Torrent Genexus NGS system with automated sample preparation, onboard library preparation, templating, sequencing, data analysis and Oncomine Reporter software was used. cfTNA extracted from plasma was verified with the targeted pan-cancer (~50 genes) Oncomine Precision Assay (OPA). Assessment criteria included analytical sensitivity, specificity, limits of detection (LOD), accuracy, repeatability, reproducibility and the establishment of performance metrics. RESULTS An ISO 15189 accredited, minimally invasive cfTNA NGS diagnostic service has been implemented. High sensitivity (>83%) and specificity between plasma and tissue were observed. A sequencing LOD of 1.2% was achieved when the depth of coverage was >22 000×. A reduction (>68%) in turnaround time (TAT) of liquid biopsy results was achieved: 5 days TAT for in-house analysis from sample receipt to a final report issued to oncologists as compared with >15 days from reference laboratories. CONCLUSION Tumour-derived somatic variants can now be reliably assessed from plasma to provide minimally invasive tumour profiling. Successful implementation of this accredited service resulted in:Appropriate molecular profiling of patients where tumour tissue is unavailable or inaccessible.Rapid TAT of plasma NGS results.
Collapse
Affiliation(s)
- Reiltin Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Ruth Crosbie
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Mairead Dorney
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | | | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| |
Collapse
|
3
|
Yu L, Liu J, Jia J, Yang J, Tong R, Zhang X, Zhang Y, Yin S, Li J, Sun D. Fusion Genes Landscape of Lung Cancer Patients From Inner Mongolia, China. Genes Chromosomes Cancer 2024; 63:e23258. [PMID: 39011998 DOI: 10.1002/gcc.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.
Collapse
Affiliation(s)
- Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jinyang Liu
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jie Yang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Ruiying Tong
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Yun Zhang
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Songtao Yin
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Junlin Li
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Passaro A, Al Bakir M, Hamilton EG, Diehn M, André F, Roy-Chowdhuri S, Mountzios G, Wistuba II, Swanton C, Peters S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024; 187:1617-1635. [PMID: 38552610 PMCID: PMC7616034 DOI: 10.1016/j.cell.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
The integration of cancer biomarkers into oncology has revolutionized cancer treatment, yielding remarkable advancements in cancer therapeutics and the prognosis of cancer patients. The development of personalized medicine represents a turning point and a new paradigm in cancer management, as biomarkers enable oncologists to tailor treatments based on the unique molecular profile of each patient's tumor. In this review, we discuss the scientific milestones of cancer biomarkers and explore future possibilities to improve the management of patients with solid tumors. This progress is primarily attributed to the biological characterization of cancers, advancements in testing methodologies, elucidation of the immune microenvironment, and the ability to profile circulating tumor fractions. Integrating these insights promises to continually advance the precision oncology field, fostering better patient outcomes.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emily G Hamilton
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabrice André
- Gustave-Roussy Cancer Center, Paris Saclay University, Villejuif, France
| | - Sinchita Roy-Chowdhuri
- Department of Anatomic Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
5
|
Werner R, Connolly A, Bennett M, Hand CK, Burke L. Implementation of an ISO15189 accredited next-generation sequencing service with the fully automated Ion Torrent Genexus: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024; 77:278-283. [PMID: 36522176 PMCID: PMC10958377 DOI: 10.1136/jcp-2022-208625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
AIMS Next-generation sequencing (NGS) is integral to the delivery of personalised medicine for targeted cancer therapy. Average turnaround times (TAT) from reference laboratories with advanced expertise in sequencing are typically 2-3 weeks. Prolonged TAT for biomarker analysis can adversely affect patient outcomes. The project aim was to establish an accredited NGS service integrated within a routine clinical diagnostic laboratory, in a designated tertiary cancer centre with no previous experience in NGS or bioinformatics. METHODS Platform selected was the novel Ion Torrent Genexus Sequencer with automated onboard library preparation, templating, sequencing and data analysis, with subsequent reporting using Oncomine Reporter software.Entire workflow validation was performed with a targeted panel, the Oncomine Precision Assay, on formalin-fixed paraffin embedded clinical tumour samples. Oncomine Reporter software was used to report on variants including mutations, copy number variations and fusions across 50 key genes.Samples included surgical resections, biopsies, cytology and commercial reference material. Assessment of criteria included analytical sensitivity, specificity, limit of detection, accuracy, repeatability and reproducibility, with the establishment of performance metrics and quality parameters. RESULTS High sensitivity, specificity and reproducibility were achieved. DNA/RNA input requirements optimised to >10 ng, and sequencing performance established with a limit of detection of 5% when depth of coverage of 2500X was reached. This NGS service attained ISO15189 accreditation with no non-conformances and >56% reduction in TAT. CONCLUSION Successful implementation, clinical validation and accreditation of a novel NGS technology was achieved in this institution, with a significantly improved TAT of results to oncologists.
Collapse
Affiliation(s)
- Réiltín Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Michael Bennett
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Appel S, Bar J, Saad A, Marom EM, Urban D, Onn A, Gantz-Sorotsky H, Kremer RY, Ben-Nun A, Perelman M, Ofek E, Yacobi R, Daher S, Rasco A, Symon Z, Lawrence YR, Goldstein J. Effects of EGFR driver mutations on pathologic regression in resectable locally advanced non-small cell lung cancer treated with neoadjuvant chemoradiation and completion surgery. Br J Radiol 2023; 96:20220763. [PMID: 37751214 PMCID: PMC10646649 DOI: 10.1259/bjr.20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE We hypothesized that driver mutations in epidermal growth factor receptor (EGFR) are associated with decreased pathologic response to neoadjuvant chemoradiation (NA-ChRT) in locally advanced non-small cell lung cancer (LA-NSCLC). METHODS Patients with Stage IIB-IIIA NSCLC treated with NA-ChRT, completion surgery, and underwent molecular profile testing were identified in a lung cancer database. Pathologic response was quantified using: (i) major pathologic response (MPR), (ii) complete pathologic response (pCR), and (iii) mean residual viable tumor cells (MRTC). Two groups were formed based on the presence or absence of driver mutations. Clinical and pathological correlations between the groups were studied. RESULTS Forty-seven patients underwent tumor molecular profile testing, NA-ChRT, and completion surgery. Compared to the no-driver mutation group, the driver mutation group had lower MPR (23% vs 71%, p = 0.003), pCR (0% vs 26%, p = 0.02), and higher MRTC (43.4% vs 15.8%, p = 0.009). Univariate analysis showed an increased MPR rate for smokers, squamous cell histology, ChRT-surgery interval >65 days, and no-driver mutations. Multivariate analysis showed that only no-driver mutations (OR 0.39, p = 0.02) remained significant for MPR. PD-L1 status did not affect MPR. At 2 years, the driver mutation group had lower rates of local control (Hazard ration [HR] 0.67, p = 0.17) and disease-free survival (HR 0.5, p = 0.001). Overall survival was similar for both groups (HR = 1.04, p = 0.86). CONCLUSION Following 60 Gray NA-ChRT, tumors with a driver mutation had lower MPR and pCR rates than tumors without a driver mutation. PD-L1 was not associated with tumor regression. ADVANCES IN KNOWLEDGE Patients with resectable LA-NSCLC and an EGFR driver mutation treated with neoadjuvant-ChRT and completion surgery have reduced pathologic regression, lower local control rates, and shorter disease-free survival than patients without a driver mutation. Evaluation of molecular testing should be introduced in LA-NSCLC intended for prognostication and treatment decisions.
Collapse
Affiliation(s)
- Sarit Appel
- Department of Radiation Oncology, Chaim Sheba Medical Center, Tel- Hashomer, Israel
| | | | - Akram Saad
- Department of Medical Oncology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Damien Urban
- Department of Medical Oncology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Hadas Gantz-Sorotsky
- Department of Medical Oncology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ran Yosef Kremer
- Department of Thoracic Surgery, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Alon Ben-Nun
- Department of Thoracic Surgery, Assuta Medical Center, Tel Aviv, Israel
| | - Marina Perelman
- Department of Pathology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Efrat Ofek
- Department of Pathology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Rinat Yacobi
- Department of Pathology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Sameh Daher
- Thoracic Cancer Unit Cancer Division, Rambam Health Care Campus, Haifa, Israel
| | - Adi Rasco
- Department of Medical Oncology, Kaplan Medical Center, Rehovot, Israel
| | | | | | - Jeffrey Goldstein
- Department of Radiation Oncology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
7
|
Tu T, Chen D, Jiang H, Ma J, Wang H, Chen C. The Prognosis of Advanced Non-Small Cell Lung Cancer Patients with Precision-Targeted Therapy Guided by NGS Testing or Routine Testing. Cancer Manag Res 2023; 15:1307-1318. [PMID: 38027245 PMCID: PMC10658950 DOI: 10.2147/cmar.s436808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose We aim to observe the potential survival benefits of driver gene-guided targeted therapy in advanced non-small cell lung cancer (NSCLC) patients compared to non-targeted therapy. Additionally, the study aims to assess whether Next-generation sequencing technology (NGS)-guided targeted therapy can provide survival advantages for advanced NSCLC patients compared to conventional Epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) gene detection. Methods Clinical data, genetic testing results, and treatment information of 1663 advanced lung cancer patients diagnosed by pathology from January 2013 to June 2019 in Jiangsu University Affiliated Lianyungang Hospital were collected. Propensity score matching survival analysis was used to evaluate the differences in overall survival(OS) between groups. Results In the unadjusted survival curve, targeted therapy patients had significantly longer median OS than non-targeted therapy patients (28.3 months vs 15.4 months, Hazard ratio (HR) = 0.5426, 95% confidence interval (CI) 0.4768-0.6176, P < 0.0001); the conclusion was the same after propensity score matching analysis, with targeted therapy group patients having significantly prolonged OS median (27.5 months vs 14.8 months, HR = 0.5572, 95% CI 0.4796-0.6474, P < 0.0001). In the unadjusted survival curve, the NGS group had a significantly prolonged median OS compared to the conventional gene detection group (23.4 months vs 21.2 months, HR = 1.243, 95% CI = 1.017-1.519, P = 0.0495). However, after propensity score matching analysis, no statistically significant difference existed in the median OS between the two patient groups (23.1 months vs 21.5 months, HR = 1.288, 95% CI = 0.9557-1.735, P = 0.0926). Further analysis demonstrated no advantage in the five-, three-, and two-year survival rates of the NGS group compared to conventional gene detection group patients. However, the one-year survival rate of the NGS group was significantly increased (83.2% vs 68.1%, HR = 0.4890, 95% CI = 0.3170-0.7544, P = 0.0015). Conclusion Driver gene-guided targeted precision therapy significantly prolonged the median OS of advanced NSCLC patients compared to non-targeted therapy. NGS detection did not improve the median OS of advanced NSCLC patients compared to conventional EGFR/ALK gene detection but increased the one-year survival rate of patients.
Collapse
Affiliation(s)
- Tingting Tu
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Dandan Chen
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Houjun Jiang
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Jianhua Ma
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Hongwei Wang
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Cheng Chen
- Department of Radiotherapy, Lianyungang Clinical Institute, Jiangsu University (The Second People’s Hospital of Lianyungang), Lianyungang, Jiangsu Province, People’s Republic of China
- Department of Radiotherapy, Lianyungang Cancer Hospital, Lianyungang, Jiangsu Province, People’s Republic of China
| |
Collapse
|
8
|
Joo MS, Pyo KH, Chung JM, Cho BC. Artificial intelligence-based non-small cell lung cancer transcriptome RNA-sequence analysis technology selection guide. Front Bioeng Biotechnol 2023; 11:1081950. [PMID: 36873350 PMCID: PMC9975749 DOI: 10.3389/fbioe.2023.1081950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The incidence and mortality rates of lung cancer are high worldwide, where non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases. Recent non-small cell lung cancer research has been focused on analyzing patient prognosis after surgery and identifying mechanisms in connection with clinical cohort and ribonucleic acid (RNA) sequencing data, including single-cell ribonucleic acid (scRNA) sequencing data. This paper investigates statistical techniques and artificial intelligence (AI) based non-small cell lung cancer transcriptome data analysis methods divided into target and analysis technology groups. The methodologies of transcriptome data were schematically categorized so researchers can easily match analysis methods according to their goals. The most widely known and frequently utilized transcriptome analysis goal is to find essential biomarkers and classify carcinomas and cluster NSCLC subtypes. Transcriptome analysis methods are divided into three major categories: Statistical analysis, machine learning, and deep learning. Specific models and ensemble techniques typically used in NSCLC analysis are summarized in this paper, with the intent to lay a foundation for advanced research by converging and linking the various analysis methods available.
Collapse
Affiliation(s)
- Min Soo Joo
- School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Department of Oncology, Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Moon Chung
- School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Emergency Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Chen S, Huang W, Liu Z, Jin M, Li J, Meng L, Li T, Diao Y, Gao H, Hong C, Zheng J, Li F, Zhang Y, Bi D, Teng L, Li X. Identification of nine mutant genes and establishment of three prediction models of organ tropism metastases of non-small cell lung cancer. Cancer Med 2022; 12:3089-3100. [PMID: 36161776 PMCID: PMC9939125 DOI: 10.1002/cam4.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Most Non-small cell lung cancer (NSCLC) patients tend to have metastases at the initial diagnosis. However, limited knowledge has been established regarding which factors, are associated with its metastases. This study aims to identify more biomarkers associated with its organ tropism metastasis and to establish models for prediction of its metastatic organs. METHODS We performed targeted next-generation sequencing (NGS) to detect genes related to lung cancer in 272 patients with primary advanced NSCLC from Northeast China. We adopted Fisher test, multivariate logistic regression analysis to identify metastasis-related gene mutations and to establish prediction models. RESULTS Mutations of EGFR (p = 0.0003, OR = 2.554) (especially EGFR L858R [p = 0.02, OR = 2.009]), ATM (p = 0.008, OR = 11.032), and JAK2 (p = 0.009, OR = Inf) were positively and of TP53 exon4mut (p = 0.001, OR = 0.173) was negatively correlated with lung metastasis, and those of CSF1R (p = 0.01, OR = Inf), KIT (p = 0.03, OR = 4.746), MYC (p = 0.05, OR = 7.938), and ERBB2 (p = 0.02, OR = 2.666) were positively correlated with pleural dissemination; those of TP53 (p = 0.01, OR = 0.417) was negatively, while of SMAD4 (p = 0.03, OR = 4.957) was positively correlated with brain metastasis of NSCLC. Additionally, smoking history (p = 0.004, OR = 0.004) was negatively correlated with pleural dissemination of NSCLC. Furthermore, models for prediction of lung metastasis (AUC = 0.706), pleural dissemination (AUC = 0.651), and brane metastasis (AUC = 0.629) were established. CONCLUSION Taken together, this study revealed nine mutant genes and smoking history associated with organ tropism metastases of NSCLC and provided three models for the prediction of metastatic organs. This study enables us to predict the organs to which non-small cell lung cancer metastasizes before it does develop.
Collapse
Affiliation(s)
- Shuchen Chen
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Wanyi Huang
- School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina,Department of Aging Science and Pharmacology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Zhenzhen Liu
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Meizi Jin
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Jielin Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Lihui Meng
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Ting Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Yuzhu Diao
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Hong Gao
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Chengyu Hong
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Jian Zheng
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Fei Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Yue Zhang
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Dan Bi
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Lin Teng
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Xiaoling Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| |
Collapse
|
10
|
Wang W, Pei Q, Wang L, Mu T, Feng H. Construction of a Prognostic Signature of 10 Autophagy-Related lncRNAs in Gastric Cancer. Int J Gen Med 2022; 15:3699-3710. [PMID: 35411177 PMCID: PMC8994655 DOI: 10.2147/ijgm.s348943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy plays a double-edged sword role in cancers. LncRNAs could regulate cancer initiation and development at various levels. However, the role of autophagy-related lncRNAs (ARlncs) in gastric cancer (GC) remains indistinct. Methods GC gene expression profile and clinical data were acquired from the Cancer Genome Atlas (TCGA). The prognostic signature composed of ARlncs was established via cox regression analysis. Kaplan–Meier (K-M) survival curve was adopted to show overall survival (OS). Independence and reliability of risk signature were visualized by cox regression analysis and ROC curve. A nomogram was constructed and the reliability was analyzed by ROC curve. Immune infiltrating cells and check points were also analyzed. Results A prognostic signature was constructed which stratified GC patients into high- and low-risk groups according to risk score calculated via the 10 ARlncs including LINC01094, AC068790.7, AC090772.1, AC005165.1, PVT1, LINC00106, AC026368.1, AC090912.3, AC013652.1, UICLM. Patients in high-risk group showed a poor prognosis (p<0.001). Cox regression analysis showed signature was an independent prognostic factor (p<0.001). Areas under curves (AUC) of ROC for risk signature for predicting OS outweighed age, gender, grade, T, M and N, which suggested the reliability of the signature. A nomogram was constructed with risk signature, T, M, N and age and its AUC of ROC for 1-, 3-, and 5-year was 0.700, 0.730, 0.757 respectively, which showed good reliability. Macrophage M2, T cell CD8+ and T cell CD4+ memory resting had greatest difference between the two risk groups according to CIBERSORE-ABS algorithm (p<0.001). CD274 (PD-L1), PDCD1 (PD-1) and PDCD1LG2 (PD-L2) were expressed higher in the high-risk group (p<0.05), which implied that immunotherapy may be a good choice for these patients. Conclusion The risk signature based on 10 ARlncs can serve as an efficacious prognostic predictor and guide the immunotherapies and precise treatment for GC patients.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qingshan Pei
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Lifen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Tong Mu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Hua Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Hua Feng, Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing 5 Road, Jinan, Shandong, 250021, People’s Republic of China, Tel +86 531-68773293, Fax +86 531-87906348, Email
| |
Collapse
|
11
|
Selvakumar SC, Preethi KA, Ross K, Tusubira D, Khan MWA, Mani P, Rao TN, Sekar D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer 2022; 21:83. [PMID: 35331236 PMCID: PMC8944095 DOI: 10.1186/s12943-022-01565-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is caused by a combination of genetic and epigenetic abnormalities. Current cancer therapies are limited due to the complexity of their mechanism, underlining the need for alternative therapeutic approaches. Interestingly, combining the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system with next-generation sequencing (NGS) has the potential to speed up the identification, validation, and targeting of high-value targets. Main text Personalized or precision medicine combines genetic information with phenotypic and environmental characteristics to produce healthcare tailored to the individual and eliminates the constraints of “one-size-fits-all” therapy. Precision medicine is now possible thanks to cancer genome sequencing. Having advantages over limited sample requirements and the recent development of biomarkers have made the use of NGS a major leap in personalized medicine. Tumor and cell-free DNA profiling using NGS, proteome and RNA analyses, and a better understanding of immunological systems, are all helping to improve cancer treatment choices. Finally, direct targeting of tumor genes in cancer cells with CRISPR/Cas9 may be achievable, allowing for eliminating genetic changes that lead to tumor growth and metastatic capability. Conclusion With NGS and CRISPR/Cas9, the goal is no longer to match the treatment for the diagnosed tumor but rather to build a treatment method that fits the tumor exactly. Hence, in this review, we have discussed the potential role of CRISPR/Cas9 and NGS in advancing personalized medicine.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Panagal Mani
- Department of Biotechnology, Annai College of Arts and Science, Kumbakonam, Tamilnadu, India
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh, 521001, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
12
|
Next-Generation Sequencing in Lung Cancer Patients: A Comparative Approach in NSCLC and SCLC Mutational Landscapes. J Pers Med 2022; 12:jpm12030453. [PMID: 35330454 PMCID: PMC8955273 DOI: 10.3390/jpm12030453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Lung cancer remains one of the most diagnosed malignancies, being the second most diagnosed cancer, while still being the leading cause of cancer-related deaths. Late diagnosis remains a problem, alongside the high mutational burden encountered in lung cancer. Methods: We assessed the genetic profile of cancer genes in lung cancer using The Cancer Genome Atlas (TCGA) datasets for mutations and validated the results in a separate cohort of 32 lung cancer patients using tumor tissue and whole blood samples for next-generation sequencing (NGS) experiments. Another separate cohort of 32 patients was analyzed to validate some of the molecular alterations depicted in the NGS experiment. Results: In the TCGA analysis, we identified the most commonly mutated genes in each lung cancer dataset, with differences among the three histotypes analyzed. NGS analysis revealed TP53, CSF1R, PIK3CA, FLT3, ERBB4, and KDR as being the genes most frequently mutated. We validated the c.1621A>C mutation in KIT. The correlation analysis indicated negative correlation between adenocarcinoma and altered PIK3CA (r = −0.50918; p = 0.0029). TCGA survival analysis indicated that NRAS and IDH2 (LUAD), STK11 and TP53 (LUSC), and T53 (SCLC) alterations are correlated with the survival of patients. Conclusions: The study revealed differences in the mutational landscape of lung cancer histotypes.
Collapse
|
13
|
He C, Wei C, Wen J, Chen S, Chen L, Wu Y, Shen Y, Bai H, Zhang Y, Chen X, Li X. Comprehensive analysis of NGS and ARMS-PCR for detecting EGFR mutations based on 4467 cases of NSCLC patients. J Cancer Res Clin Oncol 2022; 148:321-330. [PMID: 34693477 PMCID: PMC8800890 DOI: 10.1007/s00432-021-03818-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND By comparing the detection rate and type of targeted gene mutations in non-small cell lung cancer (NSCLC) between amplification refractory mutation system PCR (ARMS-PCR) and next-generation sequencing (NGS), the characteristics and application advantages of non-small cell lung cancer detection are explained, providing a basis for clinicians to effectively select the corresponding detection methods. METHODS AND MATERIALS The cases of targeted genes for lung cancer were selected from the First Affiliated Hospital of Chongqing Medical University from January 2016 to October 2020. A sample of 4467 cases was selected, and they were diagnosed with NSCLC by Pathological biopsy. Sample sources include surgical resection, bronchoscope biopsy, metastatic biopsy, blood, sputum, cytology of pleural effusion. Among them, 3665 cases were detected by ARMS-PCR technique, and 802 cases were detected by NGS technology. The detection rate and type of ARMS-PCR and NGS techniques for EGFR gene mutations (including exon 18, exon 19, exon 20, exon 21 and so on) in different NSCLC samples were compared, respectively. RESULTS The total mutation rate of EGFR gene detected by ARMS-PCR was 47.6% while 42.4% detected by NGS which indicated that there was a significant difference between the two methods in detecting total mutation of EGFR gene (P < 0.001). In different exons, the EGFR mutation rate detected by two methods is various. The mutation rate of exon 19 by ARMS-PCR detection was evidently higher than that of NGS detection, while the mutation rate of exons 20 and 21 by ARMS-PCR detection were statistically significantly lower than that of NGS detection. Moreover, the multiple mutation rate detected by NGS was 16.3% which was much higher than the 2.7% detected by ARMS-PCR with statistically different. CONCLUSION It showed that NGS could direct the drug use for the resistant patients. However, some rare loci could be detected by NGS but the importance and directed meaning are still unknown and the number of rare mutations is rare too. Further research on new biomarkers and technique is still needed for early diagnosis, directing drug use and assessing the therapy prognosis.
Collapse
Affiliation(s)
- Changlong He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Chengcheng Wei
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ling Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yue Wu
- Oncology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yifan Shen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huili Bai
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangli Zhang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xueping Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Zhou J, Cheng T, Li X, Hu J, Li E, Ding M, Shen R, Pineda JP, Li C, Lu S, Yu H, Sun J, Huang W, Wang X, Si H, Shi P, Liu J, Chang M, Dou M, Shi M, Chen X, Yung RC, Wang Q, Zhou N, Bai C. Epigenetic imprinting alterations as effective diagnostic biomarkers for early-stage lung cancer and small pulmonary nodules. Clin Epigenetics 2021; 13:220. [PMID: 34906185 PMCID: PMC8672623 DOI: 10.1186/s13148-021-01203-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/28/2021] [Indexed: 01/18/2023] Open
Abstract
Background Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insufficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression alterations of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions. Results Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue specimens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5–100.0%) and 92.1% specificity (95% CI 83.5–100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity (95% CI 91.6–100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 76.0–100.0%) noted for pulmonary nodules with diameters ≤ 2 cm. Conclusions Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate translational biomarkers for a more definitive diagnosis of suspicious lung lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01203-5.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200032, China
| | - Tong Cheng
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Xing Li
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Ming Ding
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rulong Shen
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - John P Pineda
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Chun Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shaohua Lu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy and Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, Jiangsu, China
| | - Xiaonan Wang
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Han Si
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Panying Shi
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
| | - Meijia Chang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Maosen Dou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meng Shi
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaofeng Chen
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rex C Yung
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21207, USA
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Ning Zhou
- Epigenetics Lab, Chinese Alliance Against Lung Cancer, 6th Floor, Building 5, No.66, Jinghuidongdao Road, Wuxi, 214135, Jiangsu, China.
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200032, China.
| |
Collapse
|
15
|
Xin C, Hu B, Sui M. Effect and mechanism of mir-574-5p regulating mpegs on drug resistance of pC9/h1993 cells. Panminerva Med 2021; 64:300-302. [PMID: 34664481 DOI: 10.23736/s0031-0808.21.04464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunxia Xin
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Baohong Hu
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Minghua Sui
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, China -
| |
Collapse
|
16
|
Pasmans CTB, Tops BBJ, Steeghs EMP, Coupé VMH, Grünberg K, de Jong EK, Schuuring EMD, Willems SM, Ligtenberg MJL, Retèl VP, van Snellenberg H, de Bruijn E, Cuppen E, Frederix GWJ. Micro-costing diagnostics in oncology: from single-gene testing to whole- genome sequencing. Expert Rev Pharmacoecon Outcomes Res 2021; 21:413-414. [PMID: 33852815 DOI: 10.1080/14737167.2021.1917385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: Predictive diagnostics play an increasingly important role in personalized medicine for cancer treatment. Whole-genome sequencing (WGS)-based treatment selection is expected to rapidly increase worldwide. This study aimed to calculate and compare the total cost of currently used diagnostic techniques and of WGS in treatment of non-small cell lung carcinoma (NSCLC), melanoma, colorectal cancer (CRC), and gastrointestinal stromal tumor (GIST) in the Netherlands.Methods: The activity-based costing (ABC) method was conducted to calculate total cost of included diagnostic techniques based on data provided by Dutch pathology laboratories and the Dutch-centralized cancer WGS facility. Costs were allocated to four categories: capital costs, maintenance costs, software costs, and operational costs.Results: The total cost per cancer patient per technique varied from € 58 (Sanger sequencing, three amplicons) to € 2925 (paired tumor-normal WGS). The operational costs accounted for the vast majority (over 90%) of the total per cancer patient technique costs.Conclusion: This study outlined in detail all costing aspects and cost prices of current and new diagnostic modalities used in treatment of NSCLC, melanoma, CRC, and GIST in the Netherlands. Detailed cost differences and value comparisons between these diagnostic techniques enable future economic evaluations to support decision-making.
Collapse
Affiliation(s)
- Clémence T B Pasmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Bilthoven, The Netherlands
| | - Elisabeth M P Steeghs
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, VU Amsterdam, Amsterdam, The Netherlands
| | - Katrien Grünberg
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ed M D Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,PALGA Foundation, Houten, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valesca P Retèl
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | | | | | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands.,Center for Molecular Medicine and Cancer Genomics Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Zhang L, Liu H, Tian Y, Wang H, Yang X. A novel NCOR2-NTRK1 fusion detected in a patient of lung adenocarcinoma and response to larotrectinib: a case report. BMC Pulm Med 2021; 21:125. [PMID: 33865348 PMCID: PMC8052639 DOI: 10.1186/s12890-021-01490-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The identification of NTRK fusions in tumours has become critically important due to the actionable events predictive of response to TRK inhibitor. It is not clear whether the NTRK breakpoint location is different for response to targeted therapy and NTRK fusions affects the efficacy of immunotherapy. CASE PRESENTATION Here we reported a 60-year-old female diagnosed with advanced lung adenocarcinoma. NGS-based molecular profiling identified a novel NCOR2-NTRK1 fusion and high tumor mutational burden (TMB) (58.58 mutations/Mb) in this case. Additionally, program death-ligand 1 (PD-L1) expression was detected in 20-30% of the tumor cells by immunohistochemical (IHC) staining. The patient received treatment with anti-PD-1 immune checkpoint inhibitor of camrelizumab. After two cycles of treatment, the CT scan showed some tumor nodules were still enlarged, indicating disease progression. She was then changed to TRK inhibitor larotrectinib. One month later, the CT scan showed the volume of some lesions started to decrease, and no metastasis lesions were found. The patient then continued the administration of larotrectinib, and some lesion sizes were significantly reduced or even disappeared in the next few months. Currently, this patient is still alive. CONCLUSIONS Altogether, this report provided a new driver of lung adenocarcinoma expanded the mutational spectrum of NTRK1 fusion variants and suggested using larotrectinib as the targeted therapy is more effective than anti-PD-1 inhibitor in lung adenocarcinoma harboring with NTRK fusion, positive PD-L1 expression, and high TMB simultaneously.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., 13 Kechuang Road, Beijing, 100176, People's Republic of China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., 13 Kechuang Road, Beijing, 100176, People's Republic of China.
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China.
| |
Collapse
|
18
|
van de Stadt EA, Yaqub M, Lammertsma AA, Poot AJ, Schuit RC, Remmelzwaal S, Schwarte LA, Smit EF, Hendrikse H, Bahce I. Identifying advanced stage NSCLC patients who benefit from afatinib therapy using 18F-afatinib PET/CT imaging. Lung Cancer 2021; 155:156-162. [PMID: 33836373 DOI: 10.1016/j.lungcan.2021.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) tumors harboring common (exon19del, L858R) and uncommon (e.g. G719X, L861Q) activating epidermal growth factor receptor (EGFR) mutations are best treated with EGFR tyrosine kinase inhibitors (TKI) such as the first-generation EGFR TKI erlotinib, second-generation afatinib or third-generation osimertinib. However, identifying these patients through biopsy is not always possible. Therefore, our aim was to evaluate whether 18F-afatinib PET/CT could identify patients with common and uncommon EGFR mutations. Furthermore, we evaluated the relation between tumor 18F-afatinib uptake and response to afatinib therapy. MATERIALS AND METHODS 18F-afatinib PET/CT was performed in 12 patients: 6 EGFR wild type (WT), 3 EGFR common and 3 EGFR uncommon mutations. Tumor uptake of 18F-afatinib was quantified using TBR_WB60-90 (tumor-to-whole blood activity ratio 60-90 min post-injection) for each tumor. Response was quantified per lesion using percentage of change (PC): [(response measurement (RM)-baseline measurement (BM))/BM]×100. Statistical analyses were performed using t-tests, correlation plots and sensitivity/specificity analysis. RESULTS Twenty-one tumors were identified. Injected dose was 348 ± 31 MBq. Group differences were significant between WT versus EGFR (common and uncommon) activating mutations (p = 0.03). There was no significant difference between EGFR common versus uncommon mutations (p = 0.94). A TBR_WB60-90 cut-off value of 6 showed the best relationship with response with a sensitivity of 70 %, a specificity of 100 % and a positive predictive value of 100 %. CONCLUSION 18F-afatinib uptake was higher in tumors with EGFR mutations (common and uncommon) compared to WT. Furthermore, a TBR_WB60-90 cut-off of 6 was found to best predict response to therapy. 18F-afatinib PET/CT could provide a means to identify EGFR mutation positive patients who benefit from afatinib therapy.
Collapse
Affiliation(s)
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Sharon Remmelzwaal
- Department of Epidemiology and Data Science, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Lothar A Schwarte
- Department of Anesthesiology, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Pulmonology, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Idris Bahce
- Department of Pulmonology, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Mograbi B, Heeke S, Hofman P. The Importance of STK11/ LKB1 Assessment in Non-Small Cell Lung Carcinomas. Diagnostics (Basel) 2021; 11:196. [PMID: 33572782 PMCID: PMC7912095 DOI: 10.3390/diagnostics11020196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the recent implementation of immunotherapy as a single treatment or in combination with chemotherapy for first-line treatment of advanced non-small cell lung cancer (NSCLC), many patients do not benefit from this regimen due to primary treatment resistance or toxicity. Consequently, there is an urgent need to develop efficient biomarkers that can select patients who will benefit from immunotherapy thereby providing the appropriate treatment and avoiding toxicity. One of the biomarkers recently described for the stratification of NSCLC patients undergoing immunotherapy are mutations in STK11/LKB1, which are often associated with a lack of response to immunotherapy in some patients. Therefore, the purpose of this review is to describe the different cellular mechanisms associated with STK11/LKB1 mutations, which may explain the lack of response to immunotherapy. Moreover the review addresses the co-occurrence of additional mutations that may influence the response to immunotherapy and the current clinical studies that have further explored STK11/LKB1 as a predictive biomarker. Additionally this work includes the opportunities and limitations to look for the STK11/LKB1 status in the therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Baharia Mograbi
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Hofman
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
- CHU Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
20
|
Li M, He F, Zhang Z, Xiang Z, Hu D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res 2020; 48:300060519897508. [PMID: 32020821 PMCID: PMC7111107 DOI: 10.1177/0300060519897508] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mingyao Li
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Fenyi He
- Department of Special Examination, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhanchun Zhang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhenfei Xiang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Danfei Hu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
21
|
Zhang X, Lian T, Fan W, Zhang G, Chen Z, Gou X, Jha RK. Long-Noncoding RNA CASC9 Promotes Progression of Non-Small Cell Lung Cancer by Promoting the Expression of CDC6 Through Binding to HuR. Cancer Manag Res 2020; 12:9033-9043. [PMID: 33061598 PMCID: PMC7524203 DOI: 10.2147/cmar.s268375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The long-noncoding RNAs (lncRNAs) have been identified as key players in diverse cellular processes in non-small cell lung cancer (NSCLC). However, the understanding of biological functions and detailed mechanisms of lncRNAs is still limited. Herein, the lncRNA cancer susceptibility candidate 9 (CASC9) on NSCLC progression is investigated. MATERIALS AND METHODS Expressions of CASC9, HuR and cell division cycle 6 (CDC6) in NSCLC tissues were detected with quantitative real-time polymerase chain reaction (qRT-PCR). The cell counting kit-8, transwell assays, and flow cytometry were used to examine cell proliferation, migration, and the cell cycle. Tumor growth in vivo was evaluated by xenograft tumor experiments and immunohistochemistry. RNA-binding protein immunoprecipitation (RIP) was used to identify the interaction between HuR and CDC6, and CASC9 and HuR. RESULTS CASC9, CDC6 and HuR expression were found significantly upregulated in NSCLC tissues, which predicted poorer 5-year overall survival in NSCLC patients. Inhibition of CASC9 significantly reduced the malignancy of NSCLC cells, such as proliferation, migration and cell cycle. In vivo experiments further demonstrated that CASC9 knockdown reduced the tumor growth and the Ki-67 expression. Moreover, CASC9 knockdown inhibited the expression of CDC6 which was detected overexpressed in NSCLC tumor tissues. Then, up-regulation of CDC6 could partly reverse the negative effects of CASC9 on cell proliferation, migration and cell cycle. RIP assay and rescue experiment showed that CASC9 regulated CDC via binding to HuR. CONCLUSION Our results indicate that CASC9 conferred an aggressive phenotype in NSCLC and might be a pivotal target for this disease.
Collapse
Affiliation(s)
- Xudong Zhang
- China-Neal Friendship Medical Research Center of Rajiv Kumar Jha, School of Clinical Medicine, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Wenjun Fan
- Department of Neurology, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Guangwei Zhang
- School of Public Health, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Ziwei Chen
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, People’s Republic of China
| | - Rajiv Kumar Jha
- China-Neal Friendship Medical Research Center of Rajiv Kumar Jha, School of Clinical Medicine, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
22
|
Ma K, Li S, Huo X, Guo M, Du X, Li C, Liu X, Lv J, Chen Z. Exploring the mechanism of cisplatin resistance by transcriptome sequencing and reversing the chemoresistance by autophagy inhibition in small cell lung cancer. Biochem Biophys Res Commun 2020; 533:474-480. [PMID: 32977950 DOI: 10.1016/j.bbrc.2020.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin plays a key role in treating small cell lung cancer (SCLC); however, the rapid development of cisplatin resistance limits its treatment effect. The detailed mechanisms of cisplatin-resistance, particularly in SCLC, remain unclear. We analyzed the differentially expressed genes (DEGs) between cisplatin-resistant small cell lung cancer cell line H446/CDDP and its parental cell line H446, using the transcriptome sequencing technique. Gene ontology (GO) analysis and the subsequent tests demonstrated that the functions of protein ubiquitination and autophagy are more active in the H446/CDDP cells. Autophagy plays a protective role in the H446/CDDP cells by using the autophagy inhibitors, 3-methyladenine and bafilomycin A1. Moreover, antimalarial drugs that inhibit autophagy by increasing the pH of lysosomes can also enhance cisplatin-induced cell death.
Collapse
Affiliation(s)
- Kaiyan Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Shuxin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China.
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, 100069, PR China.
| |
Collapse
|
23
|
Mendoza DP, Piotrowska Z, Lennerz JK, Digumarthy SR. Role of imaging biomarkers in mutation-driven non-small cell lung cancer. World J Clin Oncol 2020; 11:412-427. [PMID: 32821649 PMCID: PMC7407925 DOI: 10.5306/wjco.v11.i7.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/31/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. The treatment of non-small cell lung cancer (NSCLC), which accounts for a vast majority of lung cancers, has shifted to personalized, targeted therapy following discoveries of several targetable oncogenic mutations. Targeting of specific mutations has improved outcomes in many patients. This success has led to several target-specific agents replacing chemotherapy as first-line treatment in certain mutated NSCLC. Several researchers have reported that there may be imaging biomarkers that may be predictive of the presence of these mutations. These features, when present, have the potential in triaging patients into the most appropriate diagnostic and treatment algorithms. Distinct imaging features and patterns of metastases that have been associated with NSCLC with various targetable oncogenic mutations are presented in this review.
Collapse
Affiliation(s)
- Dexter P Mendoza
- Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Subba R Digumarthy
- Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
24
|
Guo W, Sun S, Guo L, Song P, Xue X, Zhang H, Zhang G, Wang Z, Qiu B, Tan F, Xue Q, Gao Y, Gao S, He J. Elevated TOP2A and UBE2C expressions correlate with poor prognosis in patients with surgically resected lung adenocarcinoma: a study based on immunohistochemical analysis and bioinformatics. J Cancer Res Clin Oncol 2020; 146:821-841. [PMID: 32103339 DOI: 10.1007/s00432-020-03147-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/01/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Lung cancer has the highest morbidity and mortality among all cancer types. Reliable prognostic biomarkers are needed to identify high-risk patients apart from TNM system for precision medicine. The present study is designed to identify robust prognostic biomarkers in lung adenocarcinoma (LUAD) based on integration of multiple GEO datasets, The Cancer Genome Atlas (TCGA) database and Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. METHODS Four LUAD GEO datasets (GSE10072, GSE2514, GSE43458, and GSE32863) and TCGA database were implemented to analyze the differently expressed genes (DEGs). Gene ontology, KEGG pathway, and protein-protein interaction network (PPI) were conducted based on the above DEGs. Hub genes were selected based on connectivity degree in the PPI network. Expression analysis and Kaplan-Meier survival analysis were conducted in CPTAC lung adenocarcinomas cohort. Kaplan-Meier survival analysis and Cox proportional hazards regression were performed on these hub genes using TCGA and our own cohort. RESULTS A total of 430 shared genes in all five datasets were identified as DEGs. Based on their PPI network, nine hub genes were selected and all of them were significantly associated with overall survival using GEPIA analysis. Two hub genes, TOP2A and UBE2C, were further combined and showed poorer prognosis in both TCGA dataset and our validated cohort. Analysis in CPTAC revealed that TOP2A and UBE2C were significantly highly expressed in tumor sample. Multivariable analysis suggested TOP2A and UBE2C as independent prognostic factors in LUAD. CONCLUSION Using data mining approach, we identified TOP2A and UBE2C as two robust prognostic factors in LUAD. We also demonstrated the TOP2A/UBE2C co-expression status in LUAD, and TOP2A/UBE2C co-expression correlated with poorer prognosis. More in-depth research is needed for transforming this result into clinical setting.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Sijin Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, The People's Republic of China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, The People's Republic of China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Bin Qiu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No. 17, Chaoyang District, Beijing, 100021, The People's Republic of China.
| |
Collapse
|
25
|
Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses 2020; 12:E211. [PMID: 32074965 PMCID: PMC7077230 DOI: 10.3390/v12020211] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.
Collapse
Affiliation(s)
- Daniel Kiselev
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alina Matsvay
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| | - Ivan Abramov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Vladimir Dedkov
- Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - German Shipulin
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Kamil Khafizov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| |
Collapse
|
26
|
Papadopoulou E, Tsoulos N, Tsantikidi K, Metaxa-Mariatou V, Stamou PE, Kladi-Skandali A, Kapeni E, Tsaousis G, Pentheroudakis G, Petrakis D, Lampropoulou DI, Aravantinos G, Varthalitis I, Kesisis G, Boukovinas I, Papakotoulas P, Katirtzoglou N, Athanasiadis E, Stavridi F, Christodoulou C, Koumarianou A, Eralp Y, Nasioulas G. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS One 2019; 14:e0226853. [PMID: 31860648 PMCID: PMC6924668 DOI: 10.1371/journal.pone.0226853] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Analysis of circulating tumor nucleic acids in plasma of Non-Small Cell Lung Cancer (NSCLC) patients is the most widespread and documented form of "liquid biopsy" and provides real-time information on the molecular profile of the tumor without an invasive tissue biopsy. Methods Liquid biopsy analysis was requested by the referral physician in 121 NSCLC patients at diagnosis and was performed using a sensitive Next Generation Sequencing assay. Additionally, a comparative analysis of NSCLC patients at relapse following EGFR Tyrosine Kinase Inhibitor (TKIs) treatment was performed in 50 patients by both the cobas and NGS platforms. Results At least one mutation was identified in almost 49% of the cases by the NGS approach in NSCLC patients analyzed at diagnosis. In 36 cases with paired tissue available a high concordance of 86.11% was observed for clinically relevant mutations, with a Positive Predictive Value (PPV) of 88.89%. Furthermore, a concordance rate of 82% between cobas and the NGS approach for the EGFR sensitizing mutations (in exons 18, 19, 21) was observed in patients with acquired resistance to EGFR TKIs, while this concordance was 94% for the p.T790M mutation, with NGS being able to detect this mutation in three 3 additional patients. Conclusions This study indicates the feasibility of circulating tumor nucleic acids (ctNA) analysis as a tumor biopsy surrogate in clinical practice for NSCLC personalized treatment decision making. The use of new sensitive NGS techniques can reliably detect tumor-derived mutations in liquid biopsy and provide clinically relevant information both before and after targeted treatment in patients with NSCLC. Thus, it could aid physicians in treatment decision making in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - George Pentheroudakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Dimitrios Petrakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | | | - George Kesisis
- Oncology Department, Saint Luke Private Hospital, Thessaloniki, Greece
| | | | - Pavlos Papakotoulas
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | | | | | - Flora Stavridi
- Fourth Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Yeşim Eralp
- Department of Medical Oncology, Istanbul University School of Medicine, İstanbul, Turkey
| | | |
Collapse
|
27
|
Wang H, Wang Z, Zhang G, Zhang M, Zhang X, Li H, Zheng X, Ma Z. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med 2019; 9:487-495. [PMID: 31769228 PMCID: PMC6970058 DOI: 10.1002/cam4.2706] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background A retrospective analysis verified the role of gene mutations in brain metastasis in patients with non‐small cell lung cancer (NSCLC). Methods Data from 552 patients with advanced NSCLC treated from January 2015 to June 2017 in the Affiliated Cancer Hospital of Zhengzhou University were retrospectively analyzed. Next‐generation sequencing was used to detect mutations in eight reported driver genes and various risk factors were evaluated. Results Of the 552 patients with advanced NSCLC, 153 (27.7%) had brain metastases. The univariate analysis showed that age (P = .008), gender (P = .016), smoking history (P = .010), lymph node metastasis (P = .003), and three driver genes, positive epidermal growth factor receptor (EGFR) mutation (P = .001), positive anaplastic lymphoma kinase (ALK) gene fusion (P = .021), and positive rearranged during transfection (RET) gene fusion (P = .003), were the factors influencing the incidence of brain metastasis. Logistic multivariate regression analysis revealed that positive EGFR mutation (P = .012), positive ALK gene fusion (P = .015), positive RET gene fusion (P = .003), pathological type (P = .009), lymph node N2‐3 metastasis (P < .001), and a younger age (P < .001) were independent risk factors for brain metastasis. In addition, a receiver operating characteristic (ROC) curve was plotted with the above factors with an area under the curve = 0.705 (P < .001). Conclusions An EGFR mutation, ALK gene fusion, and RET gene fusion in advanced NSCLC patients play roles in brain metastasis as positive driver genes. Impact An EGFR mutation, and ALK and RET gene fusions are risk factors for brain metastasis in advanced NSCLC patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ziqi Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Guowei Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mina Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojuan Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Haixia Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xuanxuan Zheng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
28
|
Cytryn S, Moreira A, Chachoua A, Sabari J. Common Germline Mutations in a Patient With Multiple Primary Lung Cancers. Clin Lung Cancer 2019; 21:e212-e215. [PMID: 32127285 DOI: 10.1016/j.cllc.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Samuel Cytryn
- Department of Internal Medicine, New York University Langone Health, New York, NY.
| | - Andre Moreira
- Department of Pathology, New York University Langone Health, New York, NY
| | - Abraham Chachoua
- Department of Medical Oncology, New York University Langone Health, New York, NY; New York University Perlmutter Cancer Center, New York, NY
| | - Joshua Sabari
- Department of Medical Oncology, New York University Langone Health, New York, NY; New York University Perlmutter Cancer Center, New York, NY
| |
Collapse
|
29
|
Nishino T, Tamada K, Maeda A, Abe T, Kiyonari H, Funahashi Y, Kaibuchi K, Takumi T, Konishi H. Behavioral analysis in mice deficient for GAREM2 (Grb2-associated regulator of Erk/MAPK subtype2) that is a subtype of highly expressing in the brain. Mol Brain 2019; 12:94. [PMID: 31718706 PMCID: PMC6852768 DOI: 10.1186/s13041-019-0512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/13/2019] [Indexed: 01/25/2023] Open
Abstract
Grb2-associated regulator of Erk/MAPK (GAREM), is an adaptor protein related to the several cell growth factor receptor-signaling. The GAREM family has two subtypes, GAREM1 and GAREM2, both encoded in the human and mouse genome. Recent genome-wide research identified GAREM2 as a candidate of neurodegenerative diseases. Here, we use knockout (KO) mice to show the role of GAREM2, that is highly expressed in the brain. According to the comprehensive behavioral battery, they exhibited less anxiety both in elevated plus maze and open field tests, mildly increased social approaching behavior in the reciprocal social interaction test, and longer latency to immobility in the tail suspension test as compared to wild-type (WT). Additionally, the extension of neurites in the primary cultured neurons was suppressed in ones derived from GAREM2 KO mice. Furthermore, we also identified Intersectin, as a binding partner of GAREM2 in this study. Intersectin is also a multi-domain adaptor protein that regulates endocytosis and cell signaling, which can potentially alter the subcellular localization of GAREM2. The important molecules, such as the neurotrophin receptor and Erk family, that are involved in the signaling pathway of the neural cell growth in the mouse brain, have been reported to participate in emotional behavior. As GAREM plays a role in the cellular growth factor receptor signaling pathway, GAREM2 may have a common role related to the transduction of Erk signaling in the higher brain functions.
Collapse
Affiliation(s)
- Tasuku Nishino
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Akane Maeda
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.,Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Hiroaki Konishi
- The Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| |
Collapse
|
30
|
Zhao Y, Zhu Z, Shi S, Wang J, Li N. Long non-coding RNA MEG3 regulates migration and invasion of lung cancer stem cells via miR-650/SLC34A2 axis. Biomed Pharmacother 2019; 120:109457. [PMID: 31585300 DOI: 10.1016/j.biopha.2019.109457] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA maternally expressed gene 3 (MEG3) is related to the occurrence and development of non-small cell lung cancer (NSCLC). However, the function and underlying molecular mechanisms of MEG3 in lung cancer stem cells (LCSCs) are still unclear. LCSCs were determined in lung cancer cells using fluorescence-activated cell sorting (FACS). qRT-PCR and western blot were performed to examine the expressions of MEG3, miR-650, solute carrier family 34 member 2 (SLC34A2), octamer-binding transcription factor 4 (Oct4), and CD133. Sphere assay was employed to evaluate sphere-forming ability. Cell migration and invasion were analyzed by Transwell assay. The relationships among MEG3, miR-650, and SLC34A2 were validated by luciferase reporter, RIP, and RNA pulldown assays. We found MEG3 was downregulated in LCSCs. MEG3 depletion strengthened stem cell-like characteristics and sphere-forming ability in LCCs. Upregulation of MEG3 suppressed migration and invasion in LCCs and LCSCs. miR-650 was bound to MEG3 and upregulated in LCSCs. miR-650 inhibitor alleviated si-MEG3-induced promotion of stem cell-like characteristics in lung cancer cells (LCCs) H1299. Furthermore, miR-650 mimic attenuated the MEG3 upregulation-mediated inhibition of migration and invasion. In addition, SLC34A2 was a target of miR-650 and downregulated in LCSCs. miR-650 mimic induced stem cell-like characteristics in LCCs, which was weakened by overexpression of SLC34A2. In contrast, the repression of SLC34A2 mitigated the miR-650 silencing-induced inhibition of migration and invasion in LCCs and LCSCs. Besides, MEG3 regulated SLC34A2 expression by sponging miR-650. Importantly, SLC34A2 weakened MEG3-mediated stem cell-like state and cell metastasis. Our data suggested MEG3 was involved in stem cell-like state of LCCs and curbed migration and invasion through miR-650/SLC34A2 axis in NSCLC.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenxing Zhu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shaomin Shi
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Wang
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Li
- Department of Respiratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
31
|
Ji X, Che N, lin R, Chen J, Wu X. Efficient ten-gene analysis of NSCLC tissue samples by next-generation sequencing. Pathol Res Pract 2019; 215:1066-1070. [DOI: 10.1016/j.prp.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
32
|
Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, Borghaei H, Jolivet J, Horn L, Mates M, Brahmer J, Rabinowitz I, Reddy PS, Chesney J, Orcutt J, Spigel DR, Reck M, O'Byrne KJ, Paz-Ares L, Hu W, Zerba K, Li X, Lestini B, Geese WJ, Szustakowski JD, Green G, Chang H, Ramalingam SS. First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. J Clin Oncol 2019; 37:992-1000. [PMID: 30785829 PMCID: PMC6494267 DOI: 10.1200/jco.18.01042] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE CheckMate 568 is an open-label phase II trial that evaluated the efficacy and safety of nivolumab plus low-dose ipilimumab as first-line treatment of advanced/metastatic non–small-cell lung cancer (NSCLC). We assessed the association of efficacy with programmed death ligand 1 (PD-L1) expression and tumor mutational burden (TMB). PATIENTS AND METHODS Two hundred eighty-eight patients with previously untreated, recurrent stage IIIB/IV NSCLC received nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks. The primary end point was objective response rate (ORR) in patients with 1% or more and less than 1% tumor PD-L1 expression. Efficacy on the basis of TMB (FoundationOne CDx assay) was a secondary end point. RESULTS Of treated patients with tumor available for testing, 252 patients (88%) of 288 were evaluable for PD-L1 expression and 98 patients (82%) of 120 for TMB. ORR was 30% overall and 41% and 15% in patients with 1% or greater and less than 1% tumor PD-L1 expression, respectively. ORR increased with higher TMB, plateauing at 10 or more mutations/megabase (mut/Mb). Regardless of PD-L1 expression, ORRs were higher in patients with TMB of 10 or more mut/Mb (n = 48: PD-L1, ≥ 1%, 48%; PD-L1, < 1%, 47%) versus TMB of fewer than 10 mut/Mb (n = 50: PD-L1, ≥ 1%, 18%; PD-L1, < 1%, 5%), and progression-free survival was longer in patients with TMB of 10 or more mut/Mb versus TMB of fewer than 10 mut/Mb (median, 7.1 v 2.6 months). Grade 3 to 4 treatment-related adverse events occurred in 29% of patients. CONCLUSION Nivolumab plus low-dose ipilimumab was effective and tolerable as a first-line treatment of advanced/metastatic NSCLC. TMB of 10 or more mut/Mb was associated with improved response and prolonged progression-free survival in both tumor PD-L1 expression 1% or greater and less than 1% subgroups and was thus identified as a potentially relevant cutoff in the assessment of TMB as a biomarker for first-line nivolumab plus ipilimumab.
Collapse
Affiliation(s)
- Neal Ready
- 1 Duke University Medical Center, Durham, NC
| | | | | | | | - Martin Gutierrez
- 5 John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
| | | | | | - Jacques Jolivet
- 8 St Jerome Medical Research Inc., Saint-Jérôme, Quebec, Canada
| | - Leora Horn
- 9 Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Mihaela Mates
- 10 Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Julie Brahmer
- 11 Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD
| | - Ian Rabinowitz
- 12 University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | | | - Jason Chesney
- 14 James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - James Orcutt
- 15 Charleston Hematology Oncology Associates, Charleston, SC
| | - David R Spigel
- 16 Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | - Martin Reck
- 17 LungenClinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | | | - Luis Paz-Ares
- 19 Hospital Universitario Doce de Octubre, Centro Nacional de Investigaciones Oncológicas, Universidad Complutense, CiberOnc, Madrid, Spain
| | - Wenhua Hu
- 20 Bristol-Myers Squibb, Princeton, NJ
| | - Kim Zerba
- 20 Bristol-Myers Squibb, Princeton, NJ
| | - Xuemei Li
- 20 Bristol-Myers Squibb, Princeton, NJ
| | | | | | | | | | - Han Chang
- 20 Bristol-Myers Squibb, Princeton, NJ
| | | |
Collapse
|
33
|
Wu Z, Yang Z, Li CS, Zhao W, Liang ZX, Dai Y, Zhu Q, Miao KL, Cui DH, Chen LA. Differences in the genomic profiles of cell-free DNA between plasma, sputum, urine, and tumor tissue in advanced NSCLC. Cancer Med 2019; 8:910-919. [PMID: 30767431 PMCID: PMC6434190 DOI: 10.1002/cam4.1935] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy has provided an efficient way for detection of gene alterations in advanced non-small-cell lung cancer (NSCLC). However, the correlation between systematic determination of somatic genomic alterations in liquid biopsy and tumor biopsy still remained unclear, and the concordance rate between cell-free DNA (cfDNA) and matched tumor tissue DNA needs to be increased. A prospective study was performed to detect differences in genetic profiles of cfDNA in sputum, plasma, urine, and tumor tissue from 50 advanced NSCLC patients in parallel by the same next-generation sequencing (NGS) platform. Driver genes alterations were identified in cfDNA sample and matched tumor sample, with an overall concordance rate of 86% in plasma cfDNA, 74% in sputum cfDNA, 70% in urine cfDNA, and 90% in cfDNA of combination of plasma, sputum, and urine. And the concordant rate of cfDNA in sputum in patients with smoking history was higher than that in patients without history of smoking (89% vs. 66%, P = 0.033) and equal to that in plasma cfDNA of the smoking patients (89% vs. 89%). In conclusion, sputum cfDNA can be considered as an alternative medium to liquid biopsy, while the complementarity of genomic profiles in cfDNA among plasma, sputum, and urine was beneficial to detect more diver genes alterations and improve the utility of liquid biopsy in advanced NSCLC (Liquid Biopsy for Detection of Driver Mutation in NSCLC; NCT02778854).
Collapse
Affiliation(s)
- Zhen Wu
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Zhen Yang
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Chun Sun Li
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Wei Zhao
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Zhi Xin Liang
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Yu Dai
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zhu
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Kai Ling Miao
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Dong Hua Cui
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| | - Liang An Chen
- Respiratory Department of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Zhang YC, Zhou Q, Wu YL. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer. J Hematol Oncol 2017; 10:167. [PMID: 29061113 PMCID: PMC5654124 DOI: 10.1186/s13045-017-0536-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
The treatment paradigm of non-small cell lung cancer (NSCLC) has evolved into oncogene-directed precision medicine. Identifying actionable genomic alterations is the initial step towards precision medicine. An important scientific progress in molecular profiling of NSCLC over the past decade is the shift from the traditional piecemeal fashion to massively parallel sequencing with the use of next-generation sequencing (NGS). Another technical advance is the development of liquid biopsy with great potential in providing a dynamic and comprehensive genomic profiling of NSCLC in a minimally invasive manner. The integration of NGS with liquid biopsy has been demonstrated to play emerging roles in genomic profiling of NSCLC by increasing evidences. This review summarized the potential applications of NGS-based liquid biopsy in the diagnosis and treatment of NSCLC including identifying actionable genomic alterations, tracking spatiotemporal tumor evolution, dynamically monitoring response and resistance to targeted therapies, and diagnostic value in early-stage NSCLC, and discussed emerging challenges to overcome in order to facilitate clinical translation in future.
Collapse
Affiliation(s)
- Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
35
|
Memon AA, Zhang H, Gu Y, Luo Q, Shi J, Deng Z, Ma J, Ma W. EGFR with TKI-sensitive mutations in exon 19 is highly expressed and frequently detected in Chinese patients with lung squamous carcinoma. Onco Targets Ther 2017; 10:4607-4613. [PMID: 29075127 PMCID: PMC5609803 DOI: 10.2147/ott.s130051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, tyrosine kinase inhibitors (TKIs) have been recommended as a first-line treatment for advanced non-small cell lung cancer (NSCLC), significantly improving the treatment outcomes of lung adenocarcinoma patients with the EGFR mutation. However, the application of TKIs for lung squamous cell carcinoma (SCC), the second largest pathological subtype of NSCLC, remains controversial because available data for the EGFR mutation profile and frequency in SCC patients are limited. In this study, 89 bronchoscopic-biopsy specimens from Chinese SCC male patients were assayed for EGFR exon 19 mutation, using improved polymerase chain reaction-denature gel gradient electrophoresis. EGFR exon 19 mutations were detected in 77 of 89 (86.5%) patients, and included six kinds of point mutations (11.6%) and two deletions (Del_747-751 [64.9%] and Del_746-751 [23.3%]). We found that the proportion of mutated EGFR varied from 0.98% to 100% in positive specimens and increased with the development of the disease. The difference of proportion between Stage IV patients and Stage II patients or Stage III patients was significant (P<0.001). These results provided valuable clues to explain the reason why patients harboring the same mutation responded distinctly to TKI treatment. Del_747-751 and Del_746-751 were the dominant mutations in the assayed SCC patients (76.4%), and both belong to the EGFR-TKI-sensitive mutation. Recently research demonstrated that Del_746-751 patients have better response to EGFR-TKI than Del_L747-751 patients. However, our study indicated that majority of SCC patients (55.5%) carried Del_ L747-751. We suggest that the unique clinic features of SCC should be further studied to reveal the mechanism of poorer treatment outcome of EGFR-TKI therapy, and that a better treatment plan and more specific, potent targeted drugs for lung SCC need to be developed.
Collapse
Affiliation(s)
- Aadil Ahmed Memon
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University
| | | | - Ye Gu
- Endoscope Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Qian Luo
- Core Facility and Technical Service Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University
| | - Jiajun Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University
| | - Jian Ma
- Pneumology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University
| |
Collapse
|
36
|
Reza Soroushmehr SM, Najarian K. Transforming big data into computational models for personalized medicine and health care. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757067 PMCID: PMC5067150 DOI: 10.31887/dcns.2016.18.3/ssoroushmehr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Health care systems generate a huge volume of different types of data. Due to the complexity and challenges inherent in studying medical information, it is not yet possible to create a comprehensive model capable of considering all the aspects of health care systems. There are different points of view regarding what the most efficient approaches toward utilization of this data would be. In this paper, we describe the potential role of big data approaches in improving health care systems and review the most common challenges facing the utilization of health care big data.
Collapse
Affiliation(s)
- S M Reza Soroushmehr
- Emergency Medicine Department, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bio-informatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayvan Najarian
- Emergency Medicine Department, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bio-informatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Sabari JK, Santini F, Bergagnini I, Lai WV, Arbour KC, Drilon A. Changing the Therapeutic Landscape in Non-small Cell Lung Cancers: the Evolution of Comprehensive Molecular Profiling Improves Access to Therapy. Curr Oncol Rep 2017; 19:24. [PMID: 28303491 PMCID: PMC6428198 DOI: 10.1007/s11912-017-0587-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting genomic alterations has led to a paradigm shift in the treatment of patients with lung cancer. In an effort to better identify potentially actionable alterations that may predict response to FDA-approved and or investigational therapies, many centers have migrated towards performing targeted exome sequencing in patients with stage IV disease. The implementation of next-generation sequencing (NGS) in the evaluation of tumor tissue from patients with NSCLC has led to the discovery of targetable alterations in tumors that previously had no known actionable targets by less comprehensive profiling. An improved understanding of the molecular pathways that drive oncogenesis in NSCLC and a revolution in the technological advances in NGS have led to the development of new therapies through biomarker-driven clinical trials. This review will focus on the advances in molecular profiling that continue to fuel the revolution of precision medicine, identifying targets such as MET exon 14 skipping alterations and select recurrent gene alterations with increasing frequency.
Collapse
Affiliation(s)
- Joshua K Sabari
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Fernando Santini
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Isabella Bergagnini
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - W Victoria Lai
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Kathryn C Arbour
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, 300 East 66th Street, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Shimoda Y, Nagashima T, Urakami K, Tanabe T, Saito J, Naruoka A, Serizawa M, Mochizuki T, Ohshima K, Ohnami S, Ohnami S, Kusuhara M, Yamaguchi K. Integrated next-generation sequencing analysis of whole exome and 409 cancer-related genes. Biomed Res 2017; 37:367-379. [PMID: 28003584 DOI: 10.2220/biomedres.37.367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of next-generation sequencing (NGS) techniques to analyze the genomes of cancer cells has identified numerous genomic alterations, including single-base substitutions, small insertions and deletions, amplification, recombination, and epigenetic modifications. NGS contributes to the clinical management of patients as well as new discoveries that identify the mechanisms of tumorigenesis. Moreover, analysis of gene panels targeting actionable mutations enhances efforts to optimize the selection of chemotherapeutic regimens. However, whole genome sequencing takes several days and costs at least $10,000, depending on sequence coverage. Therefore, laboratories with relatively limited resources must employ a more economical approach. For this purpose, we conducted an integrated nucleotide sequence analysis of a panel of 409-cancer related genes (409-CRG) combined with whole exome sequencing (WES). Analysis of the 409-CRG panel detected low-frequency variants with high sensitivity, and WES identified moderate and high frequency somatic variants as well as germline variants.
Collapse
Affiliation(s)
- Yuji Shimoda
- Cancer Diagnostics Reseach Division, Shizuoka Cancer Center Research Institute
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bogari NM. Next generation sequencing (NGS) in glucose-6-phosphate dehydrogenase (G6PD) deficiency studies. Bioinformation 2016; 12:41-43. [PMID: 28104958 PMCID: PMC5237645 DOI: 10.6026/97320630012041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly observed in human males. It is a genetic disorder affecting the red blood cells. The diagnosis of G6PD is usually based on blood analysis and there is no specific molecular or genetic test. The complete gene sequence of G6PD is known for different ethnicities. Known single nucleotide polymorphism (SNP) associated with G6PD is available in the public databases. Hence, robust, fast and efficient sequencing of G6PD is critical in disease diagnosis. The application of next generation sequencing (NGS) with its high reliability is useful in G6PD diagnosis.
Collapse
Affiliation(s)
- Neda M Bogari
- Faculty of Medicine, Department of Medical Genetics, Umm Al-Qura University, Makkah-24382, Kingdom of Saudi Arabia
| |
Collapse
|