1
|
Llanquinao J, Jara C, Cortés-Díaz D, Kerr B, Tapia-Rojas C. Contrasting Effects of an Atherogenic Diet and High-Protein/Unsaturated Fatty Acids Diet on the Accelerated Aging Mouse Model SAMP8 Phenotype. Neurol Int 2024; 16:1066-1085. [PMID: 39452682 PMCID: PMC11510401 DOI: 10.3390/neurolint16050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Aging has been extensively studied, with a growing interest in memory impairment by a neurobiological approach. Mitochondrial dysfunction is a hallmark of aging, contributing to the aging phenotype; therefore, mitochondrial interventions seem fundamental. The diet is a physiological approximation for modifying mitochondria, which could impact the age-related phenotype. Methods: We studied two diets with low-carbohydrate and high-fat compositions, differing in the amount of protein and the fat type disposable-the atherogenic diet Cocoa (high protein/high saturated fat/high cholesterol) and the South Beach diet (very high-protein/high-unsaturated fat)-on oxidative stress, mitochondrial state, and hippocampus-dependent memory in 3-month-old Senescence-Accelerated Mouse Model (SAMP8) seed over 3 months to determine their pro- or anti-aging effects. Results: Despite its bad reputation, the Cocoa diet reduces the reactive oxygen species (ROS) content without impacting the energy state and hippocampus-dependent spatial acuity. In contrast to the beneficial impact proposed for the South Beach diet, it induced a pro-aging phenotype, increasing oxidative damage and the levels of NR2B subunit of the NMDA, impairing energy and spatial acuity. Surprisingly, despite the negative changes observed with both diets, this led to subtle memory impairment, suggesting the activation of compensatory mechanisms preventing more severe cognitive decline. Conclusions: Our results demonstrated that diets usually considered good could be detrimental to the onset of aging. Also, probably due to the brain plasticity of non-aged animals, they compensate for the damage, preventing a more aggravated phenotype. Nevertheless, these silent changes could predispose or increase the risk of suffering pathologies at advanced age.
Collapse
Affiliation(s)
- Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia-Santiago 7510157, Chile; (J.L.); (C.J.); (D.C.-D.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida (FCV), Avenida Del Valle Norte #725, Huechuraba, Santiago 8580702, Chile
| |
Collapse
|
2
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
3
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Spatial Dissection of the Distinct Cellular Responses to Normal Aging and Alzheimer's Disease in Human Prefrontal Cortex at Single-Nucleus Resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24306783. [PMID: 38826275 PMCID: PMC11142279 DOI: 10.1101/2024.05.21.24306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-β (Aβ), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aβ clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aβ plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S. Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
4
|
Zhu Z, Zhang Y, Li J, Han Y, Wang L, Zhang Y, Geng H, Zheng Y, Wang X, Sun C, Li B, Chen P. Mass spectrometry imaging-based metabolomics highlights spatial metabolic alterations in three types of liver injuries. J Pharm Biomed Anal 2024; 242:116030. [PMID: 38382318 DOI: 10.1016/j.jpba.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Liver's distinctive function renders it highly susceptible to diverse damage sources. Characterizing the metabolic profiles and spatial signatures in different liver injuries is imperative for early diagnosis and etiology-oriented treatment. In this comparative study, we conducted whole-body spatial metabolomics on zebrafish with liver injury induced by ethanol (EtOH), acetaminophen (APAP), and thioacetamide (TAA). The two specific levels, the whole-body and liver-specific metabolic profiles, as well as their regional distributions, were systematically mapped in situ by mass spectrometry imaging, which is distinct from conventional LC-MS and GC-MS methods. We found that liver injury regions exhibited more pronounced metabolic reprogramming than the entire organism, leading to significant alterations in eight fatty acids, three phospholipids, and four low-molecular-weight metabolites. More importantly, fatty acids as well as small molecule metabolites including glutamine, glutamate, taurine and malic acid displayed contrasting changes between alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). In addition, phospholipids, including Lyso PC (16:0) and Lyso PE (18:0), demonstrated notable down-regulation in all damaged liver, whereas PC (34:1) underwent upregulation. This study not only deepens insights into distinct potential biomarkers for liver injuries, but also underscores spatial metabolomics as a powerful tool to elucidate possible pathogenic mechanisms in other metabolic diseases.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhao Han
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yaqi Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyuan Geng
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yurong Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baoguo Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Panpan Chen
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
5
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
6
|
Lu Z, Zheng Y, Zheng J, Liang Q, Zhen Q, Cui M, Yang H, Wu H, Tian C, Zhu K, Bian C, Du L, Wu H, Guo X. Theabrownin from Fu Brick tea ameliorates high-fat induced insulin resistance, hepatic steatosis, and inflammation in mice by altering the composition and metabolites of gut microbiota. Food Funct 2024; 15:4421-4435. [PMID: 38563324 DOI: 10.1039/d3fo05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.
Collapse
Affiliation(s)
- Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengjie Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haoru Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haotian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Cuixia Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Kangming Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| |
Collapse
|
7
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Cicalini I, Moffa S, Tommolini ML, Valentinuzzi S, Zucchelli M, Bucci I, Chiacchiaretta P, Fontana A, Federici L, De Laurenzi V, Del Boccio P, Rossi C, Pieragostino D. Impact of Maternal Lifestyle and Dietary Habits during Pregnancy on Newborn Metabolic Profile. Nutrients 2023; 15:nu15102297. [PMID: 37242180 DOI: 10.3390/nu15102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Expanded newborn screening (NBS) is a preventive program that allows for the early identification of over 40 congenital endocrine-metabolic diseases by analyzing dried blood spot samples collected from the newborn's heel within 48-72 h of birth. The determination of amino acids and acyl-carnitines by Flow Injection Analysis Tandem Mass Spectrometry (FIA-MS/MS) may also highlight metabolic alterations resulting from external factors, such as maternal nutrition. In the present study, we developed a questionnaire to investigate the eating habits of 109 women during pregnancy and statistically correlated the results from the investigation on dietary habits with the data obtained by the NBS laboratory of Abruzzo region (Italy). Parameters such as smoking, physical activity, and the intake of iodized salt, drugs, and supplements were analyzed. This study aimed to highlight how maternal lifestyle, diet, and drug intake during pregnancy may affect the neonatal metabolic profile, possibly generating false positive or false negative results in the NBS test. The results pointed out how the knowledge of maternal nutrition and lifestyle may also be precious in preventing misinterpretations of the neonatal metabolic profile, thereby reducing unnecessary stress for newborns and their parents and limiting costs for the health system.
Collapse
Affiliation(s)
- Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Samanta Moffa
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Lucia Tommolini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Rossi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Bai Z, Ma X, Yan R, Lei W, Zhang Y, Ren Y, Liu S. Metabolomic profiling of early inactive hepatic alveolar and cystic echinococcosis. Acta Trop 2023; 242:106875. [PMID: 36940858 DOI: 10.1016/j.actatropica.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Hepatic alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses and leading causes of parasitic liver damage. They pose a high mortality risk due to invisible clinical signs, especially at the early inactive stage. However, the specific metabolic profiles induced by inactive AE and CE lesions remain largely unclear. Therefore, we used gas chromatography-mass spectrometry-based metabolomic profiling to identify the global metabolic variations in AE and CE patient sera to differentiate between the two diseases and reveal the mechanisms underlying their pathogenesis. In addition, specific serum biomarkers of inactive hepatic AE and CE were screened using receiver operating curves, which can contribute to the clinical diagnosis of both diseases, especially in the earlier phase. These differential metabolites are involved in glycine, serine, tyrosine, and phenylalanine metabolism. Further analysis of key metabolic pathways showed that inactive AE lesions strongly alter amino acid metabolism in the host. CE lesions have an altered metabolism of oxidative stress response. These changes suggest these metabolite-associated pathways can serve as biomarkers to distinguish individuals with inactive AE and CE from healthy populations. This study also investigated the differences in serum metabolic profiles in patients with CE and AE. The biomarkers identified belonged to different metabolic pathways, including lipid, carnitine, androgen, and bile acid metabolism. Taken together, by investigating the different phenotypes of CE and AE with metabolomic profiling, serum biomarkers facilitating early diagnosis were identified.
Collapse
Affiliation(s)
- Zhenzhong Bai
- Research Center for High-Altitude Medicine, Medical College, Qinghai University, Xining, Qinghai, China 810001
| | - Xiao Ma
- Department of Hydatid Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, China, 810001
| | - Ranran Yan
- Research Center for High-Altitude Medicine, Medical College, Qinghai University, Xining, Qinghai, China 810001
| | - Wen Lei
- Department of Hydatid Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, China, 810001
| | - Yifan Zhang
- Department of Medical Imaging PET-CT Center, Qinghai Provincial People's Hospital, Xining, Qinghai, China, 810001
| | - Yanming Ren
- Research Center for High-Altitude Medicine, Medical College, Qinghai University, Xining, Qinghai, China 810001.
| | - Shou Liu
- Research Center for High-Altitude Medicine, Medical College, Qinghai University, Xining, Qinghai, China 810001; Department of Public Health, Plateau Medical Research Center, Medical College, Qinghai University, Xining, Qinghai, China, 810001.
| |
Collapse
|
10
|
Matias I, Diniz LP, Araujo APB, Damico IV, de Moura P, Cabral-Miranda F, Diniz F, Parmeggiani B, de Mello Coelho V, Leite REP, Suemoto CK, Ferreira GC, Kubrusly RCC, Gomes FCA. Age-Associated Upregulation of Glutamate Transporters and Glutamine Synthetase in Senescent Astrocytes In Vitro and in the Mouse and Human Hippocampus. ASN Neuro 2023; 15:17590914231157974. [PMID: 36815213 PMCID: PMC9950616 DOI: 10.1177/17590914231157974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission. However, the mechanisms of glutamate homeostasis in brain aging are still poorly understood. Herein, we showed that mouse senescent astrocytes in vitro undergo upregulation of GLT-1, GLAST, and glutamine synthetase (GS), along with the increased enzymatic activity of GS and [3H]-D-aspartate uptake. Furthermore, we observed higher levels of GS and increased [3H]-D-aspartate uptake in the hippocampus of aged mice, although the activity of GS was similar between young and old mice. Analysis of a previously available RNAseq dataset of mice at different ages revealed upregulation of GLAST and GS mRNA levels in hippocampal astrocytes during aging. Corroborating these rodent data, we showed an increased number of GS + cells, and GS and GLT-1 levels/intensity in the hippocampus of elderly humans. Our data suggest that aged astrocytes undergo molecular and functional changes that control glutamate-glutamine homeostasis upon brain aging.
Collapse
Affiliation(s)
- Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Bergamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Isabella Vivarini Damico
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Pâmella de Moura
- Instituto Biomédico, Universidade Federal
Fluminense, Niterói, Brasil
| | - Felipe Cabral-Miranda
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Fabiola Diniz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Belisa Parmeggiani
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Valeria de Mello Coelho
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | - Renata E. P. Leite
- Biobanco para Estudos em Envelhecimento, Faculdade de Medicina da Universidade de
São Paulo, São Paulo, Brasil
- Divisão de Geriatria, Faculdade de Medicina da Universidade de São
Paulo, São Paulo, Brasil
| | - Claudia K. Suemoto
- Divisão de Geriatria, Faculdade de Medicina da Universidade de São
Paulo, São Paulo, Brasil
| | - Gustavo Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, Brasil
| | | | | |
Collapse
|
11
|
Vitali T, Vanoni MA, Bellosta P. Quantitation of Glutamine Synthetase 1 Activity in Drosophila melanogaster. Methods Mol Biol 2023; 2675:237-260. [PMID: 37258768 DOI: 10.1007/978-1-0716-3247-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protocols to assay the activity of glutamine synthetase (GS) are presented as they have been used in our laboratory to correlate the expression levels of the gene encoding Drosophila GS1 gene, the GS1 protein levels, and its activity in extracts of larvae and heads from Drosophila melanogaster. The assays are based on the glutamine synthetase-catalyzed formation of γ-glutamylhydroxylamine in the presence of ATP, L-glutamate, and hydroxylamine, in which hydroxylamine substitutes for ammonia in the reaction. Formation of γ-glutamylhydroxylamine is monitored spectrophotometrically in discontinuous assays upon complex formation with FeCl3. Fixed-time assays and those based on monitoring the time-course of product formation at different reaction times are described. The protocols can be adapted to quantify glutamine synthetase activity on biological materials other than Drosophila.
Collapse
Affiliation(s)
- Teresa Vitali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
- Department of Medicine, New York University-Langone Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies. Eur Arch Psychiatry Clin Neurosci 2022; 272:1395-1411. [PMID: 35322293 DOI: 10.1007/s00406-022-01397-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
One of the main challenges in investigating the neurobiology of ADHD is our limited capacity to study its neurochemistry in vivo. Magnetic resonance spectroscopy (MRS) estimates metabolite concentrations within the brain, but approaches and findings have been heterogeneous. To assess differences in brain metabolites between patients with ADHD and healthy controls, we searched 12 databases screening for MRS studies. Studies were divided into 'children and adolescents' and 'adults' and meta-analyses were performed for each brain region with more than five studies. The quality of studies was assessed by the Newcastle-Ottawa Scale. Thirty-three studies met our eligibility criteria, including 874 patients with ADHD. Primary analyses revealed that the right medial frontal area of children with ADHD presented higher concentrations of a composite of glutamate and glutamine (p = 0.02, SMD = 0.53). Glutamate might be implicated in pruning and neurodegenerative processes as an excitotoxin, while glutamine excess might signal a glutamate depletion that could hinder neurotrophic activity. Both neuro metabolites could be implicated in the differential cortical thinning observed in patients with ADHD across all ages. Notably, more homogeneous designs and reporting guidelines are the key factors to determine how suitable MRS is for research and, perhaps, for clinical psychiatry. Results of this meta-analysis provided an overall map of the brain regions evaluated so far, addressed the role of glutamatergic metabolites in the pathophysiology of ADHD, and pointed to new perspectives for consistent use of the tool in the field.
Collapse
|
13
|
Huang W, Wang Z, Wang G, Li K, Jin Y, Zhao F. Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119813. [PMID: 35868470 DOI: 10.1016/j.envpol.2022.119813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca2+. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Weiyu Huang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zijiang Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Kunyang Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
14
|
Li RF, Gui F, Yu C, Luo YM, Guo L. Protective role of muscones on astrocytes under a mechanical-chemical damage model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:927. [PMID: 36172099 PMCID: PMC9511184 DOI: 10.21037/atm-22-3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Background Traumatic spinal cord injury (SCI) is a major clinical concern and a life-changing neurological condition with substantial socioeconomic implications. The initial mechanical force applied to the spinal cord at the time of injury is known as the primary injury. After the primary injury, ischemia and hypoxia induce cell death and autolysis, which are associated with the release of a group of inflammatory factors and biologically active substances, such as superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and tumor necrosis factor-α (TNF-α). These processes are called the secondary injury, and may lead to an excess of extracellular glutamate (Glu), which in turn promotes the neuronal injuries. Muscone has been shown to have anti-inflammatory effects in the treatment of brain diseases and other diseases. However, to date, no study has examined the effects of muscone in the treatment of SCI. Methods Astrocytes were separated and purified by the method of short-term exposure combining with differential sticking wall. Astrocyte was identified by glial fibers acidic protein (GFAP) selecting cell immunochemical staining. A mechanical-chemical damage (MCD) model was established via the primary spinal astrocytes of rats, and treatment was administered with different concentrations of muscone. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was detected at 6, 12, 24, 48 and 72 h. SOD, MDA, LDH, TNF-alpha and intracellular calcium was detected at 3, 6 and 12 h. Glu in supernatant was detected respectively at 3, 6 and 12 h by enzyme-linked immunosorbent assay (ELISA) method. Intracellular calcium was detected respectively at 3, 6 and 12 h by flow cytometry method. MRNA expression of excitatory amino acid transporters (EAATs) and GFAP were detected by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and protein expression of those by western blot at 6 h. Results Muscone reduced the levels of LDH, TNF-α, and MDA after injury, and upregulated the level of SOD. Muscone also reduced the density of extracellular Glu and suppressed the intracellular calcium level. Additionally, it decreased the expression levels of EAATs and GFAPs. Conclusions Muscone has a protective effect on astrocytes in a MCD and inhibits astrocytes’ proliferation.
Collapse
Affiliation(s)
- Rui-Fu Li
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Gui
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Meng Luo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Guo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
16
|
Bauminger H, Gaisler-Salomon I. Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia. Int J Mol Sci 2022; 23:8617. [PMID: 35955750 PMCID: PMC9368772 DOI: 10.3390/ijms23158617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive deficits are core symptoms of schizophrenia but remain poorly addressed by dopamine-based antipsychotic medications. Glutamate abnormalities are implicated in schizophrenia-related cognitive deficits. While the role of the NMDA receptor has been extensively studied, less attention was given to other components that control glutamate homeostasis. Glutamate dynamics at the tripartite synapse include presynaptic and postsynaptic components and are tightly regulated by neuron-astrocyte crosstalk. Here, we delineate the role of glutamate homeostasis at the tripartite synapse in schizophrenia-related cognitive dysfunction. We focus on cognitive domains that can be readily measured in humans and rodents, i.e., working memory, recognition memory, cognitive flexibility, and response inhibition. We describe tasks used to measure cognitive function in these domains in humans and rodents, and the relevance of glutamate alterations in these domains. Next, we delve into glutamate tripartite synaptic components and summarize findings that implicate the relevance of these components to specific cognitive domains. These collective findings indicate that neuron-astrocyte crosstalk at the tripartite synapse is essential for cognition, and that pre- and postsynaptic components play a critical role in maintaining glutamate homeostasis and cognitive well-being. The contribution of these components to cognitive function should be considered in order to better understand the role played by glutamate signaling in cognition and develop efficient pharmacological treatment avenues for schizophrenia treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
17
|
Elsaid S, Rubin-Kahana DS, Kloiber S, Kennedy SH, Chavez S, Le Foll B. Neurochemical Alterations in Social Anxiety Disorder (SAD): A Systematic Review of Proton Magnetic Resonance Spectroscopic Studies. Int J Mol Sci 2022; 23:ijms23094754. [PMID: 35563145 PMCID: PMC9105768 DOI: 10.3390/ijms23094754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Objective: Considering that current knowledge of mechanisms involved in the molecular pathogenesis of Social Anxiety Disorder (SAD) is limited, we conducted a systematic review to evaluate cumulative data obtained by Proton Magnetic Resonance Spectroscopic (1H MRS) studies. (2) Methods: A computer-based literature search of Medline, EMBASE, PsycInfo, and ProQuest was performed. Only cross-sectional studies using 1H MRS techniques in participants with SAD and healthy controls (HCs) were selected. (3) Results: The search generated eight studies. The results indicated regional abnormalities in the ‘fear neurocircuitry’ in patients with SAD. The implicated regions included the anterior cingulate cortex (ACC), dorsomedial prefrontal cortex (dmPFC), dorsolateral prefrontal cortex (dlPFC), insula, occipital cortex (OC), as well as the subcortical regions, including the thalamus, caudate, and the putamen. (4) Conclusions: The evidence derived from eight studies suggests that possible pathophysiological mechanisms of SAD include impairments in the integrity and function of neurons and glial cells, including disturbances in energy metabolism, maintenance of phospholipid membranes, dysregulations of second messenger systems, and excitatory/inhibitory neurocircuitry. Conducting more cross-sectional studies with larger sample sizes is warranted given the limited evidence in this area of research.
Collapse
Affiliation(s)
- Sonja Elsaid
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Dafna S. Rubin-Kahana
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Stefan Kloiber
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sidney H. Kennedy
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON M5B 1M4, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON M5B 1T8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Sofia Chavez
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
- Correspondence: ; Tel.: +1-416-535-8501 (ext. 33111)
| |
Collapse
|
18
|
NMR-based metabonomics reveals the dynamic effect of electro-acupuncture on central nervous system in gastric mucosal lesions (GML) rats. Chin Med 2022; 17:37. [PMID: 35313919 PMCID: PMC8935774 DOI: 10.1186/s13020-022-00593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric mucosal lesions (GML) are common in gastric diseases and seriously affect the quality of life. There are inevitable side effects in drug therapy. Acupuncture is an important part of traditional Chinese medicine. Electro-acupuncture (EA) has unique curative effect in treatment of GML. However, there are still few reports on the central mechanism of electro-acupuncture in treatment of GML. In this study, NMR metabonomics was used to explore the central metabolic change mechanism of electro-acupuncture in treatment of GML. METHODS SD rats were randomly divided into Control, GML and EA groups. According to different intervention time, each group was further divided into 3 subgroups. This study mainly established GML model rats by 75% ethanol. Dynamic expressions of metabolites in cerebral cortex and medulla were observed by 1D 1H Nuclear Magnetic Resonance (NMR) metabolomics, combined with gastric mucosal histopathological examination to evaluate the time-effect relationship of electro-acupuncture at Zusanli (ST36) and Liangmen (ST21) points for 1 day, 4 days and 7 days treatment of GML. RESULTS The results showed that the repair effect of electro-acupuncture on gastric mucosal injury was the most obvious in 4 days and stable in 7 days, and 4 days electro-acupuncture can effectively inhibit GML gastric mucosal inflammation and the expression of inflammatory cells. Meanwhile, the NMR spectrum results of medulla and cerebral cortex showed that, 21 potential metabolites were identified to participate in the mechanism of pathogenesis of GML and the regulation of electro-acupuncture, including 15 in medulla and 10 in cerebral cortex. Metabolic pathway analysis showed that the differential metabolites involved 19 metabolic pathways, which could be divided into energy, neurotransmitters, cells and cell membrane and antioxidation according to their functions. The correlation analysis of stomach, medulla and cerebral cortex shows that the stimulation signal of GML may reach the cerebral cortex from the stomach through medulla, and electro-acupuncture can treat GML by regulating the central nervous system (CNS). CONCLUSIONS 4 days electro-acupuncture treatment can significantly improve gastric mucosal injury, and the curative effect tends to be stable in 7 days treatment. Meanwhile, the pathogenesis of GML and the efficacy of electro-acupuncture involve metabolic pathways such as energy, neurotransmitters, cells and antioxidation, and electro-acupuncture can treat GML by regulating CNS.
Collapse
|
19
|
Rabas N, Palmer S, Mitchell L, Ismail S, Gohlke A, Riley JS, Tait SW, Gammage P, Soares LL, Macpherson IR, Norman JC. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J Cell Biol 2021; 220:e202006049. [PMID: 34623384 PMCID: PMC8641410 DOI: 10.1083/jcb.202006049] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
The cystine-glutamate antiporter, xCT, supports a glutathione synthesis program enabling cancer cells to cope with metabolically stressful microenvironments. Up-regulated xCT, in combination with glutaminolysis, leads to increased extracellular glutamate, which promotes invasive behavior by activating metabotropic glutamate receptor 3 (mGluR3). Here we show that activation of mGluR3 in breast cancer cells activates Rab27-dependent release of extracellular vesicles (EVs), which can transfer invasive characteristics to "recipient" tumor cells. These EVs contain mitochondrial DNA (mtDNA), which is packaged via a PINK1-dependent mechanism. We highlight mtDNA as a key EV cargo necessary and sufficient for intercellular transfer of invasive behavior by activating Toll-like receptor 9 in recipient cells, and this involves increased endosomal trafficking of pro-invasive receptors. We propose that an EV-mediated mechanism, through which altered cellular metabolism in one cell influences endosomal trafficking in other cells, is key to generation and dissemination of pro-invasive microenvironments during mammary carcinoma progression.
Collapse
Affiliation(s)
| | - Sarah Palmer
- Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | - Joel S. Riley
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W.G. Tait
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Payam Gammage
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber Soares
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Iain R. Macpherson
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C. Norman
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Sahu PK, Hoffmann A, Majhi M, Pattnaik R, Patterson C, Mahanta KC, Mohanty AK, Mohanty RR, Joshi S, Mohanty A, Bage J, Maharana S, Seitz A, Bendszus M, Sullivan SA, Turnbull IW, Dondorp AM, Gupta H, Pirpamer L, Mohanty S, Wassmer SC. Brain Magnetic Resonance Imaging Reveals Different Courses of Disease in Pediatric and Adult Cerebral Malaria. Clin Infect Dis 2021; 73:e2387-e2396. [PMID: 33321516 PMCID: PMC8492227 DOI: 10.1093/cid/ciaa1647] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cerebral malaria is a common presentation of severe Plasmodium falciparum infection and remains an important cause of death in the tropics. Key aspects of its pathogenesis are still incompletely understood, but severe brain swelling identified by magnetic resonance imaging (MRI) was associated with a fatal outcome in African children. In contrast, neuroimaging investigations failed to identify cerebral features associated with fatality in Asian adults. METHODS Quantitative MRI with brain volume assessment and apparent diffusion coefficient (ADC) histogram analyses were performed for the first time in 65 patients with cerebral malaria to compare disease signatures between children and adults from the same cohort, as well as between fatal and nonfatal cases. RESULTS We found an age-dependent decrease in brain swelling during acute cerebral malaria, and brain volumes did not differ between fatal and nonfatal cases across both age groups. In nonfatal disease, reversible, hypoxia-induced cytotoxic edema occurred predominantly in the white matter in children, and in the basal ganglia in adults. In fatal cases, quantitative ADC histogram analyses also demonstrated different end-stage patterns between adults and children: Severe hypoxia, evidenced by global ADC decrease and elevated plasma levels of lipocalin-2 and microRNA-150, was associated with a fatal outcome in adults. In fatal pediatric disease, our results corroborate an increase in brain volume, leading to augmented cerebral pressure, brainstem herniation, and death. CONCLUSIONS Our findings suggest distinct pathogenic patterns in pediatric and adult cerebral malaria with a stronger cytotoxic component in adults, supporting the development of age-specific adjunct therapies.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Angelika Hoffmann
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Megharay Majhi
- Department of Radiology, Ispat General Hospital, Rourkela, Odisha, India
| | | | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kishore C Mahanta
- Department of Radiology, Ispat General Hospital, Rourkela, Odisha, India
| | - Akshaya K Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rashmi R Mohanty
- Department of Ophthalmology, Ispat General Hospital, Rourkela, Odisha, India
| | - Sonia Joshi
- Department of Ophthalmology, Ispat General Hospital, Rourkela, Odisha, India
| | - Anita Mohanty
- Department of Intensive Care, Ispat General Hospital, Rourkela, Odisha, India
| | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ian W Turnbull
- North Manchester General Hospital, Manchester, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, Odisha, India
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Singh-Mallah G, Ardalan M, Kang D, Singh K, McMahon CD, Mallard C, Guan J. Administration of cyclic glycine-proline during infancy improves adult spatial memory, astrocyte plasticity, vascularization and GluR-1 expression in rats. Nutr Neurosci 2021; 25:2517-2527. [PMID: 34565308 DOI: 10.1080/1028415x.2021.1980845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclic glycine-proline (cGP) is a natural nutrient of breast milk and plays a role in regulating the function of insulin-like growth factor-1 (IGF-1). IGF-1 function is essential for post-natal brain development and adult cognitive function. We evaluated the effects of cGP on spatial memory and histological changes in the hippocampus of the adult rats following infancy administration. Infant rats were treated with either cGP or saline between post-natal days 8 and 22 via oral administration to lactating dams. The spatial memory was evaluated between post-natal days 70 and 75 using Morris water maze tests. The changes of capillaries, astrocytes, synaptophysin and glutamate receptor-1 were examined in the CA1 stratum radiatum of the hippocampus. Compared to saline-treated group, cGP-treated group showed higher path efficiency of entry and lower average heading errors to the platform zone. cGP-treated group also showed longer, larger and more astrocytic processes, more capillaries and higher glutamate receptor-1 expression. The rats made less average heading error to the platform zone have more capillaries, larger and longer astrocytic branches. Thus cGP treatment/supplementation during infancy moderately improved adulthood spatial memory. This long-lasting effect of cGP on memory could be mediated via promoting astrocytic plasticity, vascularization and glutamate trafficking. Therefore, cGP may have a role in regulating IGF-1 function during brain development.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand.,Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kuljeet Singh
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Christopher D McMahon
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Covelo A, Eraso-Pichot A, Fernández-Moncada I, Serrat R, Marsicano G. CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology 2021; 195:108678. [PMID: 34157362 DOI: 10.1016/j.neuropharm.2021.108678] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) is involved in a variety of brain functions, mainly through the activation of the type-1 cannabinoid receptors (CB1R). CB1R are highly expressed throughout the brain at different structural, cellular and subcellular locations and its activity and expression levels have a direct impact in synaptic activity and behavior. In the last few decades, astrocytes have arisen as active players of brain physiology through their participation in the tripartite synapse and through their metabolic interaction with neurons. Here, we discuss some of the mechanisms by which astroglial CB1R at different subcellular locations, regulate astrocyte calcium signals and have an impact on gliotransmission and metabolic regulation. In addition, we discuss evidence pointing at astrocytes as potential important sources of endocannabinoid synthesis and release. Thus, we summarize recent findings that add further complexity and establish that the ECS is a fundamental effector of astrocyte functions in the brain. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Ana Covelo
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Abel Eraso-Pichot
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Ignacio Fernández-Moncada
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Román Serrat
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, 33077, Bordeaux, France
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France.
| |
Collapse
|
23
|
Ersche KD, Lim TV, Murley AG, Rua C, Vaghi MM, White TL, Williams GB, Robbins TW. Reduced Glutamate Turnover in the Putamen Is Linked With Automatic Habits in Human Cocaine Addiction. Biol Psychiatry 2021; 89:970-979. [PMID: 33581835 PMCID: PMC8083107 DOI: 10.1016/j.biopsych.2020.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The balance between goal-directed behavior and habits has been hypothesized to be biased toward the latter in individuals with cocaine use disorder (CUD), suggesting possible neurochemical changes in the putamen, which may contribute to their compulsive behavior. METHODS We assessed habitual behavior in 48 patients with CUD and 42 healthy control participants using a contingency degradation paradigm and the Creature of Habit Scale. In a subgroup of this sample (CUD: n = 21; control participants: n = 22), we also measured glutamate and glutamine concentrations in the left putamen using ultra-high-field (7T) magnetic resonance spectroscopy. We hypothesized that increased habitual tendencies in patients with CUD would be associated with abnormal glutamatergic metabolites in the putamen. RESULTS Compared with their non-drug-using peers, patients with CUD exhibited greater habitual tendencies during contingency degradation, which correlated with increased levels of self-reported daily habits. We further identified a significant reduction in glutamate concentration and glutamate turnover (glutamate-to-glutamine ratio) in the putamen in patients with CUD, which was significantly related to the level of self-reported daily habits. CONCLUSIONS Patients with CUD exhibit enhanced habitual behavior, as assessed both by questionnaire and by a laboratory paradigm of contingency degradation. This automatic habitual tendency is related to a reduced glutamate turnover in the putamen, suggesting a dysregulation of habits caused by chronic cocaine use.
Collapse
Affiliation(s)
- Karen D Ersche
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Tsen Vei Lim
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G Murley
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Matilde M Vaghi
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, Stanford University, Stanford, California
| | - Tara L White
- Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island
| | - Guy B Williams
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Kan NE, Khachatryan ZV, Chagovets VV, Starodubtseva NL, Amiraslanov EY, Tyutyunnik VL, Lomova NA, Frankevich VE. [Analysis of metabolic pathways in intrauterine growth restriction]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:174-180. [PMID: 32420900 DOI: 10.18097/pbmc20206602174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective was to analyze metabolic pathways based on a study of the metabolomic profile of pregnant women with intrauterine growth restriction. The metabolic profile of pregnant women with fetal growth restriction has been analyzed using liquid chromatography-mass spectrometry. At the second stage pathways were identified using SMPDB and MetaboAnalyst databases to clarify the relationship between metabolites. Biological networks allow to determine the effect of proteins on the metabolic pathways involved in pathogenesis of IUGR and determine the epigenetic mechanisms of its formation.
Collapse
Affiliation(s)
- N E Kan
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Z V Khachatryan
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V V Chagovets
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - N L Starodubtseva
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - E Yu Amiraslanov
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V L Tyutyunnik
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - N A Lomova
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - V E Frankevich
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
25
|
Souza MM, Vechiato FMV, Debarba LK, Leao RM, Dias MVS, Pereira AA, Cruz JC, Elias LLK, Antunes-Rodrigues J, Ruginsk SG. Effects of Hyperosmolality on Hypothalamic Astrocytic Area, mRNA Expression and Glutamate Balance In Vitro. Neuroscience 2020; 442:286-295. [PMID: 32599125 DOI: 10.1016/j.neuroscience.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.
Collapse
Affiliation(s)
- M M Souza
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - F M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - R M Leao
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - M V S Dias
- Natural Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - A A Pereira
- Food and Drugs Department, Pharmaceutical Sciences Faculty, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - J C Cruz
- Biotechnology Center, Department of Biotechnology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
27
|
Dobolyi A, Bago A, Palkovits M, Nemeria NS, Jordan F, Doczi J, Ambrus A, Adam-Vizi V, Chinopoulos C. Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Struct Funct 2020; 225:639-667. [PMID: 31982949 PMCID: PMC7046601 DOI: 10.1007/s00429-020-02026-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
The ketoglutarate dehydrogenase complex (KGDHC) consists of three different subunits encoded by OGDH (or OGDHL), DLST, and DLD, combined in different stoichiometries. DLD subunit is shared between KGDHC and pyruvate dehydrogenase complex, branched-chain alpha-keto acid dehydrogenase complex, and the glycine cleavage system. Despite KGDHC's implication in neurodegenerative diseases, cell-specific localization of its subunits in the adult human brain has never been investigated. Here, we show that immunoreactivity of all known isoforms of OGDHL, OGDH, and DLST was detected exclusively in neurons of surgical human cortical tissue samples identified by their morphology and visualized by double labeling with fluorescent Nissl, while being absent from glia expressing GFAP, Aldhl1, myelin basic protein, Olig2, or IBA1. In contrast, DLD immunoreactivity was evident in both neurons and glia. Specificity of anti-KGDHC subunits antisera was verified by a decrease in staining of siRNA-treated human cancer cell lines directed against the respective coding gene products; furthermore, immunoreactivity of KGDHC subunits in human fibroblasts co-localized > 99% with mitotracker orange, while western blotting of 63 post-mortem brain samples and purified recombinant proteins afforded further assurance regarding antisera monospecificity. KGDHC subunit immunoreactivity correlated with data from the Human Protein Atlas as well as RNA-Seq data from the Allen Brain Atlas corresponding to genes coding for KGDHC components. Protein lysine succinylation, however, was immunohistochemically evident in all cortical cells; this was unexpected, because this posttranslational modification requires succinyl-CoA, the product of KGDHC. In view of the fact that glia of the human brain cortex lack succinate-CoA ligase, an enzyme producing succinyl-CoA when operating in reverse, protein lysine succinylation in these cells must exclusively rely on propionate and/or ketone body metabolism or some other yet to be discovered pathway encompassing succinyl-CoA.
Collapse
Affiliation(s)
- Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eotvos Lorand University, Budapest, 1117, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Attila Bago
- National Institute of Neurosurgery, Budapest, 1145, Hungary
| | - Miklos Palkovits
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eotvos Lorand University, Budapest, 1117, Hungary
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ, 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ, 07102-1811, USA
| | - Judit Doczi
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest, 1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest, 1094, Hungary
- MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest, 1094, Hungary
- MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto st. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
28
|
Maul S, Giegling I, Rujescu D. Proton Magnetic Resonance Spectroscopy in Common Dementias-Current Status and Perspectives. Front Psychiatry 2020; 11:769. [PMID: 32848938 PMCID: PMC7424040 DOI: 10.3389/fpsyt.2020.00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia occurs mainly in the elderly and is associated with cognitive decline and impairment of activities of daily living. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia (VD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). To date, there are no causal options for therapy, but drug and non-drug treatments can positively modulate the course of the disease. Valid biomarkers are needed for the earliest possible and reliable diagnosis, but so far, such biomarkers have only been established for AD and require invasive and expensive procedures. In this context, proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive and widely available technique for investigating the biochemical milieu of brain tissue in vivo. Numerous studies have been conducted for AD, but for VD, DLB, and FTD the number of studies is limited. Nevertheless, MRS can detect measurable metabolic alterations in common dementias. However, most of the studies conducted are too heterogeneous to assess the potential use of MRS technology in clinical applications. In the future, technological advances may increase the value of MRS in dementia diagnosis and treatment. This review summarizes the results of MRS studies conducted in common dementias and discusses the reasons for the lack of transfer into clinical routine.
Collapse
Affiliation(s)
- Stephan Maul
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ina Giegling
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dan Rujescu
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Seyfried TN, Shelton L, Arismendi-Morillo G, Kalamian M, Elsakka A, Maroon J, Mukherjee P. Provocative Question: Should Ketogenic Metabolic Therapy Become the Standard of Care for Glioblastoma? Neurochem Res 2019; 44:2392-2404. [PMID: 31025151 DOI: 10.1007/s11064-019-02795-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The current standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema and inflammation. The SOC disrupts the glutamate-glutamine cycle thus increasing availability of glucose and glutamine in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival for patients with GBM.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Laura Shelton
- Human Metabolome Technologies America, 24 Denby Rd., Boston, MA, 02134, USA
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, 526, Venezuela
| | | | - Ahmed Elsakka
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St., Pittsburgh, PA, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
30
|
Zimmermann SC, Duvall B, Tsukamoto T. Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. J Med Chem 2018; 62:46-59. [PMID: 29969024 DOI: 10.1021/acs.jmedchem.8b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kidney-type glutaminase (GLS), the first enzyme in the glutaminolysis pathway, catalyzes the hydrolysis of glutamine to glutamate. GLS was found to be upregulated in many glutamine-dependent cancer cells. Therefore, selective inhibition of GLS has gained substantial interest as a therapeutic approach targeting cancer metabolism. Bis-2-[5-(phenylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide (BPTES), despite its poor physicochemical properties, has served as a key molecular template in subsequent efforts to identify more potent and drug-like allosteric GLS inhibitors. This review article provides an overview of the progress made to date in the development of GLS inhibitors and highlights the remarkable transformation of the unfavorable lead into "druglike" compounds guided by systematic SAR studies.
Collapse
|
31
|
Scimemi A. Astrocytes and the Warning Signs of Intracerebral Hemorrhagic Stroke. Neural Plast 2018; 2018:7301623. [PMID: 29531526 PMCID: PMC5817320 DOI: 10.1155/2018/7301623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Two decades into the two thousands, intracerebral hemorrhagic stroke (ICH) continues to reap lives across the globe. In the US, nearly 12,000 people suffer from ICH every year. Half of them survive, but many are left with permanent physical and cognitive disabilities, the severity of which depends on the location and broadness of the brain region affected by the hemorrhage. The ongoing efforts to identify risk factors for hemorrhagic stroke have been instrumental for the development of new medical practices to prevent, aid the recovery and reduce the risk of recurring ICH. Recent efforts approach the study of ICH from a different angle, providing information on how we can limit brain damage by manipulating astrocyte receptors. These results provide a novel understanding of how astrocytes contribute to brain injury and recovery from small ICH. Here, we discuss current knowledge on the risk factors and molecular pathology of ICH and the functional properties of astrocytes and their role in ICH. Last, we discuss candidate astrocyte receptors that may prove to be valuable therapeutic targets to treat ICH. Together, these findings provide basic and clinical scientists useful information for the future development of strategies to improve the detection of small ICH, limit brain damage, and prevent the onset of more severe episodes of brain hemorrhage.
Collapse
Affiliation(s)
- Annalisa Scimemi
- SUNY Albany, Department of Biology, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
32
|
Schousboe A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett 2018; 689:11-13. [PMID: 29378296 DOI: 10.1016/j.neulet.2018.01.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
Neurotransmission mediated by the two amino acids glutamate and GABA is based on recycling of the two signaling molecules between the presynaptic nerve endings and the surrounding astrocytes. During the recycling process, a fraction of the transmitter pool is lost since both transmitters undergo oxidative metabolism. This loss must be replenished by de novo synthesis which involves the action of pyruvate carboxylase, aminotransferases, glutamate dehydrogenase and glutamine synthetase. Among these enzymes, pyruvate carboxylase and glutamine synthetase are selectively expressed in astrocytes and thus these cells are obligatory partners in synaptic replenishment of both glutamate and GABA. The cycling processes also involve transporters for glutamate, GABA and glutamine and the operation of these transporters is discussed. Additionally, astrocytes appear to be essential for production of the neuromodulators, citrate, glycine and d-serine, aspects that will be briefly discussed.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
33
|
Abstract
In vivo Magnetic Resonance Spectroscopy (MRS) allows the non-invasive detection and quantification of a number of metabolites from localized volumes within a living organism. MRS localization techniques can be divided into two main groups, single voxel and multi-voxel. Single voxel techniques provide the metabolic profile from a specific small volume, whereas multi-voxel techniques are used to obtain the spatial distribution of metabolites throughout a large volume subdivided into small contiguous voxels. This chapter describes standard protocols for the acquisition and processing of in vivo single voxel1H MRS data from the rodent brain.
Collapse
Affiliation(s)
- M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - María Luisa García-Martín
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
34
|
Yuan S, Zhang ZW, Li ZL. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:231. [PMID: 28785203 PMCID: PMC5519524 DOI: 10.3389/fnmol.2017.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although we know that amyotrophic lateral sclerosis (ALS) is correlated with the glutamate-mediated corticomotor neuronal hyperexcitability, detailed ALS pathology remains largely unexplained. While a number of drugs have been developed, no cure exists so far. Here, we propose a hypothesis of neuronal cell death—incomplete autophagy positive-feedback loop—and summarize the role of the neuron-astrocyte glutamate-glutamine cycle in ALS. The disruption of these two cycles might ideally retard ALS progression. Cerebrovascular injuries (such as multiple embolization sessions and strokes) induce neuronal cell death and the subsequent autophagy. ALS impairs autophagosome-lysosome fusion and leads to magnified cell death. Trehalose rescues this impaired fusion step, significantly delaying the onset of the disease, although it does not affect the duration of the disease. Therefore, trehalose might be a prophylactic drug for ALS. Given that a major part of neuronal glutamate is converted from glutamine through neuronal glutaminase (GA), GA inhibitors may decrease the neuronal glutamate accumulation, and, therefore, might be therapeutic ALS drugs. Of these, Ebselen is the most promising one with strong antioxidant properties.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military RegionLanzhou, China
| |
Collapse
|