1
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song G, Xu L, Zhu Z, Wang W, Mei Q, Xie M. Lactate metabolism and histone lactylation in the central nervous system disorders: impacts and molecular mechanisms. J Neuroinflammation 2024; 21:308. [PMID: 39609834 PMCID: PMC11605911 DOI: 10.1186/s12974-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuan Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Linyu Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
2
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
3
|
Sajad M, Zahoor I, Rashid F, Cerghet M, Rattan R, Giri S. Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination. Mol Neurobiol 2024; 61:397-410. [PMID: 37620688 DOI: 10.1007/s12035-023-03546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.
Collapse
Affiliation(s)
- M Sajad
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| | - Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ramandeep Rattan
- Gynecologic Oncology and Developmental Therapeutics Research Program, Henry Ford Health Hospital, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Non-genomic Effect of Estradiol on the Neurovascular Unit and Possible Involvement in the Cerebral Vascular Accident. Mol Neurobiol 2023; 60:1964-1985. [PMID: 36596967 DOI: 10.1007/s12035-022-03178-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Cerebrovascular diseases, such as ischemic cerebral vascular accident (CVA), are responsible for causing high rates of morbidity, mortality, and disability in the population. The neurovascular unit (NVU) during and after ischemic CVA plays crucial roles in cell regulation and preservation, the immune and inflammatory response, and cell and/or tissue survival and repair. Cellular responses to 17β-estradiol (E2) can be triggered by two mechanisms: one called classical or genomic, which is due to the activation of the "classical" nuclear estrogen receptors α (ERα) and β (ERβ), and the non-genomic or rapid mechanism, which is due to the activation of the G protein-coupled estrogen receptor 1 (GPER) that is located in the plasma membrane and some in intracellular membranes, such as in the Golgi apparatus and endoplasmic reticulum. Nuclear receptors can regulate gene expression and cellular functions. On the contrary, activating the GPER by E2 and/or its G-1 agonist triggers several rapid cell signaling pathways. Therefore, E2 or its G-1 agonist, by mediating GPER activation and/or expression, can influence several NVU cell types. Most studies argue that the activation of the GPER may be used as a potential therapeutic target in various pathologies, such as CVA. Thus, with this review, we aimed to summarize the existing literature on the role of GPER mediated by E2 and/or its agonist G-1 in the physiology and pathophysiology of NVU.
Collapse
|
5
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Baldassarro VA, Cescatti M, Rocco ML, Aloe L, Lorenzini L, Giardino L, Calzà L. Nerve growth factor promotes differentiation and protects the oligodendrocyte precursor cells from in vitro hypoxia/ischemia. Front Neurosci 2023; 17:1111170. [PMID: 36875668 PMCID: PMC9978228 DOI: 10.3389/fnins.2023.1111170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.,IRET Foundation, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Montecatone Rehabilitation Institute, Bologna, Italy
| |
Collapse
|
7
|
Lim RG, Al-Dalahmah O, Wu J, Gold MP, Reidling JC, Tang G, Adam M, Dansu DK, Park HJ, Casaccia P, Miramontes R, Reyes-Ortiz AM, Lau A, Hickman RA, Khan F, Paryani F, Tang A, Ofori K, Miyoshi E, Michael N, McClure N, Flowers XE, Vonsattel JP, Davidson S, Menon V, Swarup V, Fraenkel E, Goldman JE, Thompson LM. Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. Nat Commun 2022; 13:7791. [PMID: 36543778 PMCID: PMC9772349 DOI: 10.1038/s41467-022-35388-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states. OL-lineage regulators OLIG1 and OLIG2 are negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD mouse NeuN-negative cells shows decreased accessibility regulated by OL maturation genes. The data implicates glucose and lipid metabolism in abnormal cell maturation and identify PRKCE and Thiamine Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology. Our insights into HD OL pathology spans multiple brain regions and link OL maturation deficits to abnormal thiamine metabolism.
Collapse
Affiliation(s)
- Ryan G Lim
- UCI MIND, University of California Irvine, Irvine, CA, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Guomei Tang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David K Dansu
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | - Hye-Jin Park
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | - Patrizia Casaccia
- Advanced Science Research Center at the City University of New York, New York, NY, USA
| | | | - Andrea M Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Richard A Hickman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Fahad Paryani
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nicolette McClure
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Xena E Flowers
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Vilas Menon
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Vivek Swarup
- UCI MIND, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, New York, NY, USA.
| | - Leslie M Thompson
- UCI MIND, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Center University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Oleuropein Activates Neonatal Neocortical Proteasomes, but Proteasome Gene Targeting by AAV9 Is Variable in a Clinically Relevant Piglet Model of Brain Hypoxia-Ischemia and Hypothermia. Cells 2021; 10:cells10082120. [PMID: 34440889 PMCID: PMC8391411 DOI: 10.3390/cells10082120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/26/2022] Open
Abstract
Cerebral hypoxia-ischemia (HI) compromises the proteasome in a clinically relevant neonatal piglet model. Protecting and activating proteasomes could be an adjunct therapy to hypothermia. We investigated whether chymotrypsin-like proteasome activity differs regionally and developmentally in the neonatal brain. We also tested whether neonatal brain proteasomes can be modulated by oleuropein, an experimental pleiotropic neuroprotective drug, or by targeting a proteasome subunit gene using recombinant adeno-associated virus-9 (AAV). During post-HI hypothermia, we treated piglets with oleuropein, used AAV-short hairpin RNA (shRNA) to knock down proteasome activator 28γ (PA28γ), or enforced PA28γ using AAV-PA28γ with green fluorescent protein (GFP). Neonatal neocortex and subcortical white matter had greater proteasome activity than did liver and kidney. Neonatal white matter had higher proteasome activity than did juvenile white matter. Lower arterial pH 1 h after HI correlated with greater subsequent cortical proteasome activity. With increasing brain homogenate protein input into the assay, the initial proteasome activity increased only among shams, whereas HI increased total kinetic proteasome activity. OLE increased the initial neocortical proteasome activity after hypothermia. AAV drove GFP expression, and white matter PA28γ levels correlated with proteasome activity and subunit levels. However, AAV proteasome modulation varied. Thus, neonatal neocortical proteasomes can be pharmacologically activated. HI slows the initial proteasome performance, but then augments ongoing catalytic activity. AAV-mediated genetic manipulation in the piglet brain holds promise, though proteasome gene targeting requires further development.
Collapse
|
9
|
Ulloa-Navas MJ, Pérez-Borredá P, Morales-Gallel R, Saurí-Tamarit A, García-Tárraga P, Gutiérrez-Martín AJ, Herranz-Pérez V, García-Verdugo JM. Ultrastructural Characterization of Human Oligodendrocytes and Their Progenitor Cells by Pre-embedding Immunogold. Front Neuroanat 2021; 15:696376. [PMID: 34248510 PMCID: PMC8262677 DOI: 10.3389/fnana.2021.696376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. They provide trophic, metabolic, and structural support to neurons. In several pathologies such as multiple sclerosis (MS), these cells are severely affected and fail to remyelinate, thereby leading to neuronal death. The gold standard for studying remyelination is the g-ratio, which is measured by means of transmission electron microscopy (TEM). Therefore, studying the fine structure of the oligodendrocyte population in the human brain at different stages through TEM is a key feature in this field of study. Here we study the ultrastructure of oligodendrocytes, its progenitors, and myelin in 10 samples of human white matter using nine different markers of the oligodendrocyte lineage (NG2, PDGFRα, A2B5, Sox10, Olig2, BCAS1, APC-(CC1), MAG, and MBP). Our findings show that human oligodendrocytes constitute a very heterogeneous population within the human white matter and that its stages of differentiation present characteristic features that can be used to identify them by TEM. This study sheds light on how these cells interact with other cells within the human brain and clarify their fine characteristics from other glial cell types.
Collapse
Affiliation(s)
- María J Ulloa-Navas
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | - Pedro Pérez-Borredá
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain.,Neurosurgery Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Raquel Morales-Gallel
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | - Ana Saurí-Tamarit
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain
| | | | | | - Vicente Herranz-Pérez
- Laboratory of Compared Neurobiology, University of Valencia-CIBERNED, Paterna, Spain.,Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | | |
Collapse
|
10
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
11
|
Tiberi M, Chiurchiù V. Specialized Pro-resolving Lipid Mediators and Glial Cells: Emerging Candidates for Brain Homeostasis and Repair. Front Cell Neurosci 2021; 15:673549. [PMID: 33981203 PMCID: PMC8107215 DOI: 10.3389/fncel.2021.673549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and oligodendrocytes are known to play critical roles in the central nervous system development, homeostasis and response to injury. In addition to their well-defined functions in synaptic signaling, blood-brain barrier control and myelination, it is now becoming clear that both glial cells also actively produce a wide range of immune-regulatory factors and engage in an intricate communication with neurons, microglia or with infiltrated immune cells, thus taking a center stage in both inflammation and resolution processes occurring within the brain. Resolution of inflammation is operated by the superfamily of specialized pro-resolving lipid mediators (SPMs), that include lipoxins, resolvins, protectins and maresins, and that altogether activate a series of cellular and molecular events that lead to spontaneous regression of inflammatory processes and restoration of tissue homeostasis. Here, we review the manifold effects of SPMs on modulation of astrocytes and oligodendrocytes, along with the mechanisms through which they either inhibit inflammatory pathways or induce the activation of protective ones. Furthermore, the possible role of SPMs in modulating the cross-talk between microglia, astrocytes and oligodendrocytes is also summarized. This SPM-mediated mechanism uncovers novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
12
|
Tepavčević V. Oligodendroglial Energy Metabolism and (re)Myelination. Life (Basel) 2021; 11:238. [PMID: 33805670 PMCID: PMC7998845 DOI: 10.3390/life11030238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) myelin has a crucial role in accelerating the propagation of action potentials and providing trophic support to the axons. Defective myelination and lack of myelin regeneration following demyelination can both lead to axonal pathology and neurodegeneration. Energy deficit has been evoked as an important contributor to various CNS disorders, including multiple sclerosis (MS). Thus, dysregulation of energy homeostasis in oligodendroglia may be an important contributor to myelin dysfunction and lack of repair observed in the disease. This article will focus on energy metabolism pathways in oligodendroglial cells and highlight differences dependent on the maturation stage of the cell. In addition, it will emphasize that the use of alternative energy sources by oligodendroglia may be required to save glucose for functions that cannot be fulfilled by other metabolites, thus ensuring sufficient energy input for both myelin synthesis and trophic support to the axons. Finally, it will point out that neuropathological findings in a subtype of MS lesions likely reflect defective oligodendroglial energy homeostasis in the disease.
Collapse
Affiliation(s)
- Vanja Tepavčević
- Achucarro Basque Center for Neuroscience, University of the Basque Country, Parque Cientifico de la UPV/EHU, Barrio Sarriena s/n, Edificio Sede, Planta 3, 48940 Leioa, Spain
| |
Collapse
|
13
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
14
|
Bentsen MA, Rausch DM, Mirzadeh Z, Muta K, Scarlett JM, Brown JM, Herranz-Pérez V, Baquero AF, Thompson J, Alonge KM, Faber CL, Kaiyala KJ, Bennett C, Pyke C, Ratner C, Egerod KL, Holst B, Meek TH, Kutlu B, Zhang Y, Sparso T, Grove KL, Morton GJ, Kornum BR, García-Verdugo JM, Secher A, Jorgensen R, Schwartz MW, Pers TH. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat Commun 2020; 11:4458. [PMID: 32895383 PMCID: PMC7477234 DOI: 10.1038/s41467-020-17720-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.
Collapse
MESH Headings
- Agouti-Related Protein/metabolism
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Blood Glucose/analysis
- Cell Communication
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Dietary Sucrose/administration & dosage
- Dietary Sucrose/adverse effects
- Fibroblast Growth Factor 1/administration & dosage
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/pathology
- Injections, Intraventricular
- Leptin/genetics
- Male
- Melanocortins/metabolism
- Melanocyte-Stimulating Hormones/administration & dosage
- Mice
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- RNA-Seq
- Receptor, Melanocortin, Type 4/genetics
- Receptors, Melanocortin/antagonists & inhibitors
- Receptors, Melanocortin/metabolism
- Recombinant Proteins/administration & dosage
- Remission Induction/methods
- Signal Transduction/drug effects
- Single-Cell Analysis
- Stereotaxic Techniques
- Transcriptome/drug effects
Collapse
Affiliation(s)
- Marie A Bentsen
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kenjiro Muta
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jarrad M Scarlett
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny M Brown
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Vicente Herranz-Pérez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Predepartamental Unit of Medicine, Jaume I University, Castelló de la Plana, Spain
| | - Arian F Baquero
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Jonatan Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimberly M Alonge
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Chelsea L Faber
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Camdin Bennett
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Charles Pyke
- Pathology & Imaging, Global Discovery and Development Sciences, Novo Nordisk A/S, Maaloev, Denmark
| | - Cecilia Ratner
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H Meek
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Burak Kutlu
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Yu Zhang
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Thomas Sparso
- Bioinformatics and Data Mining, Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Kevin L Grove
- Obesity Research Unit, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Gregory J Morton
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Anna Secher
- Diabetes Research, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Rasmus Jorgensen
- Diabetes Research, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- Cytoki Pharma, Copenhagen, Denmark
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Adineh M, DeCastro A, Buchsbaum BR, Lehrer DS. Relationship between white matter glucose metabolism and fractional anisotropy in healthy and schizophrenia subjects. Psychiatry Res Neuroimaging 2020; 299:111060. [PMID: 32135405 DOI: 10.1016/j.pscychresns.2020.111060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
Decreased fractional anisotropy and increased glucose utilization in the white matter have been reported in schizophrenia. These findings may be indicative of an inverse relationship between these measures of white matter integrity and metabolism. We used 18F-fluorodeoxyglucose positron emission tomography and diffusion-tensor imaging in 19 healthy and 25 schizophrenia subjects to assess and compare coterritorial correlation patterns between glucose utilization and fractional anisotropy on a voxel-by-voxel basis and across a range of automatically placed representative white matter regions of interest. We found a pattern of predominantly negative correlations between white matter metabolism and fractional anisotropy in both healthy and schizophrenia subjects. The overall strength of the relationship was attenuated in subjects with schizophrenia, who displayed significantly fewer and weaker correlations in all regions assessed with the exception of the corpus callosum. This attenuation was most prominent in the left prefrontal white matter and this region also best predicted the diagnosis of schizophrenia. There exists an inverse relationship between the measures of white matter integrity and metabolism, which may therefore be physiologically linked. In subjects with schizophrenia, hypermetabolism in the white matter may be a function of lower white matter integrity, with lower efficiency and increased energetic cost of task-related computations.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Monte S Buchsbaum
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Mehdi Adineh
- Wallace-Kettering Neuroscience Institute, Kettering Medical Center, Kettering, OH 45429
| | - Alex DeCastro
- NeuroPET Center, Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
16
|
Holton KF, Kirkland AE. Moving past antioxidant supplementation for the dietary treatment of multiple sclerosis. Mult Scler 2019; 26:1012-1023. [PMID: 31823691 DOI: 10.1177/1352458519893925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current research has demonstrated the definitive presence of oxidative stress in multiple sclerosis (MS). This finding has led to clinical trial research which has indicated that specific antioxidants have the ability to effectively reduce markers of oxidative stress. However, few interventions testing antioxidant supplements have shown efficacy for reducing the symptom burden in the disorder. This paper quickly reviews what is currently known about oxidative stress and antioxidants in MS, explains which nutrients are critical for the creation and maintenance of the myelin sheath, describes potential negative effectors in the diet which may be contributing to oxidative stress, and how these aspects of diet, combined with current knowledge on antioxidants, may be able to be combined into a whole food dietary intervention which can be tested for efficacy in MS.
Collapse
Affiliation(s)
- Kathleen F Holton
- Department of Health Studies and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Anna E Kirkland
- Department of Psychology, American University, Washington, DC, USA
| |
Collapse
|