1
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Updegrove TB, Ferreira CN, Ibrahim AM, Tai CH, Kruhlak MJ, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. PcdA promotes orthogonal division plane selection in Staphylococcus aureus. Nat Microbiol 2024; 9:2997-3012. [PMID: 39468247 DOI: 10.1038/s41564-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/30/2024] [Indexed: 10/30/2024]
Abstract
The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor. Molecular biology and imaging approaches revealed non-orthogonal division plane selection for pcdA mutant bacteria. PcdA is a structurally and functionally altered member of the McrB AAA+ NTPase family, which are often found as restriction enzyme subunits. PcdA interacts with the tubulin-like divisome component, FtsZ, and the structural protein, DivIVA; it also localizes to future cell division sites. PcdA multimerization, localization and function are NTPase activity-dependent. We propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Although pcdA deletion did not affect S. aureus growth in several laboratory conditions, its clustered growth pattern was disrupted, sensitivity to cell-wall-targeting antibiotics increased and virulence in mice decreased. We propose that the characteristic clustered growth pattern of S. aureus, which emerges from dividing in alternating orthogonal division planes, might protect the bacterium from host defences.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Amany M Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique M Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2024; 121:e2401831121. [PMID: 38875147 PMCID: PMC11194595 DOI: 10.1073/pnas.2401831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
Affiliation(s)
- Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Melissa M. Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Marc A. Touraev
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Sidney L. Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | | | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| |
Collapse
|
3
|
Muchová K, Pospíšil J, Kalocsaiová E, Chromiková Z, Žarnovičanová S, Šanderová H, Krásný L, Barák I. Spatio-temporal control of asymmetric septum positioning during sporulation in Bacillus subtilis. J Biol Chem 2024; 300:107339. [PMID: 38705388 PMCID: PMC11154705 DOI: 10.1016/j.jbc.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.
Collapse
Affiliation(s)
- Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evelína Kalocsaiová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Žarnovičanová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
4
|
Akinsemolu AA, Onyeaka H, Odion S, Adebanjo I. Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. J Basic Microbiol 2024; 64:e2300614. [PMID: 38507723 DOI: 10.1002/jobm.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
From its early identification by Christian Gottfried Ehrenberg to its current prominence in scientific research, Bacillus subtilis (B. subtilis) has emerged as a foundational model organism in microbiology. This comprehensive review delves deep into its genetic, physiological, and biochemical intricacies, revealing a sophisticated cellular blueprint. With the incorporation of advanced techniques such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 and integrative computational methodologies, the potential applications of B. subtilis span diverse sectors. These encompass its significant contributions to biotechnology, agriculture, and medical fields and its potential for aiding environmental cleanup efforts. Yet, as we move forward, we must grapple with concerns related to safety, ethics, and the practical implementation of our lab findings in everyday scenarios. As our understanding of B. subtilis deepens, it is evident that its contributions will be central to pioneering sustainable solutions for global challenges in the years to come.
Collapse
Affiliation(s)
- Adenike A Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Samuel Odion
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
- The Green Institute, Ondo, Ondo State, Nigeria
| | - Idris Adebanjo
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575112. [PMID: 38328058 PMCID: PMC10849506 DOI: 10.1101/2024.01.10.575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
|
6
|
Nußbaum P, Kureisaite-Ciziene D, Bellini D, van der Does C, Kojic M, Taib N, Yeates A, Tourte M, Gribaldo S, Loose M, Löwe J, Albers SV. Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nat Microbiol 2024; 9:698-711. [PMID: 38443575 DOI: 10.1038/s41564-024-01600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Chris van der Does
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marko Kojic
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anna Yeates
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Maxime Tourte
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Cramer K, Reinhardt SCM, Auer A, Shin JY, Jungmann R. Comparing divisome organization between vegetative and sporulating Bacillus subtilis at the nanoscale using DNA-PAINT. SCIENCE ADVANCES 2024; 10:eadk5847. [PMID: 38198550 PMCID: PMC10780868 DOI: 10.1126/sciadv.adk5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Spore-forming bacteria have two distinct division modes: sporulation and vegetative division. The placement of the foundational division machinery component (Z-ring) within the division plane is contingent on the division mode. However, investigating if and how division is performed differently between sporulating and vegetative cells remains challenging, particularly at the nanoscale. Here, we use DNA-PAINT super-resolution microscopy to compare the 3D assembly and distribution patterns of key division proteins SepF, ZapA, DivIVA, and FtsZ. We determine that ZapA and SepF placement within the division plane mimics that of the Z-ring in vegetative and sporulating cells. We find that DivIVA assemblies differ between vegetative and sporulating cells. Furthermore, we reveal that SepF assembles into ~50-nm arcs independent of division mode. We propose a nanoscale model in which symmetric or asymmetric placement of the Z-ring and early divisome proteins is a defining characteristic of vegetative or sporulating cells, respectively, and regulation of septal thickness differs between division modes.
Collapse
Affiliation(s)
- Kimberly Cramer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne C. M. Reinhardt
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Yen Shin
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
9
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
10
|
Kamal El-Sagheir AM, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. Rational design, synthesis, molecular modeling, biological activity, and mechanism of action of polypharmacological norfloxacin hydroxamic acid derivatives. RSC Med Chem 2023; 14:2593-2610. [PMID: 38099058 PMCID: PMC10718593 DOI: 10.1039/d3md00309d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 12/17/2023] Open
Abstract
Fluoroquinolones are broad-spectrum antibiotics that target gyrase and topoisomerase IV, involved in DNA compaction and segregation. We synthesized 28 novel norfloxacin hydroxamic acid derivatives with additional metal-chelating and hydrophobic pharmacophores, designed to enable interactions with additional drug targets. Several compounds showed equal or better activity than norfloxacin against Gram-positive, Gram-negative, and mycobacteria, with MICs as low as 0.18 μM. The most interesting derivatives were selected for in silico, in vitro, and in vivo mode of action studies. Molecular docking, enzyme inhibition, and bacterial cytological profiling confirmed inhibition of gyrase and topoisomerase IV for all except two tested derivatives (10f and 11f). Further phenotypic analysis revealed polypharmacological effects on peptidoglycan synthesis for four derivatives (16a, 17a, 17b, 20b). Interestingly, compounds 17a, 17b, and 20b, showed never seen before effects on cell wall synthetic enzymes, including MreB, MurG, and PonA, suggesting a novel mechanism of action, possibly impairing the lipid II cycle.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
| | | | - Ahmed S Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Jonatan Persson
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
11
|
Carter EW, Peraza OG, Wang N. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Nat Commun 2023; 14:7838. [PMID: 38030598 PMCID: PMC10687234 DOI: 10.1038/s41467-023-43648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.
Collapse
Affiliation(s)
- Erica W Carter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Orlene Guerra Peraza
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, US.
| |
Collapse
|
12
|
Kamal El-sagheir A, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. Design, Synthesis, Molecular Modeling, Biological Activity, and Mechanism of Action of Novel Amino Acid Derivatives of Norfloxacin. ACS OMEGA 2023; 8:43271-43284. [PMID: 38024743 PMCID: PMC10653056 DOI: 10.1021/acsomega.3c07221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Two series of N4-substituted piperazinyl amino acid derivatives of norfloxacin (24 new compounds) were designed and synthesized to attain structural surrogates with additional binding sites and enhanced antibacterial activity. Synthesized derivatives showed increased antibacterial and antimycobacterial activity compared to their lead structure, norfloxacin. Molecular modeling studies supported the notion that the derivatives can establish additional bonds with the target enzymes gyrase and topoisomerase IV. In vitro enzyme inhibition assays confirmed that the tested compounds were significant inhibitors of these enzymes. Inhibition of gyrase and topoisomerase IV was then confirmed in living bacterial cells using bacterial cytological profiling of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, revealing a typical topoisomerase inhibition phenotype characterized by severe nucleoid packing defects. Several derivatives exhibited additional effects on the Gram-positive cell wall synthesis machinery and/or the cytoplasmic membrane, which likely contributed to their increased antibacterial activity. While we could not identify specific cell wall or membrane targets, membrane depolarization was not observed. Our experiments further suggest that cell wall synthesis inhibition most likely occurs outside the membrane-bound lipid II cycle.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | | | - Ahmed S. Aboraia
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jonatan Persson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg 405 30, Sweden
| | - Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg 405 30, Sweden
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg 405 30, Sweden
| | - Farghaly A. Omar
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
13
|
Harpring M, Cox JV. Plasticity in the cell division processes of obligate intracellular bacteria. Front Cell Infect Microbiol 2023; 13:1205488. [PMID: 37876871 PMCID: PMC10591338 DOI: 10.3389/fcimb.2023.1205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Most bacteria divide through a highly conserved process called binary fission, in which there is symmetric growth of daughter cells and the synthesis of peptidoglycan at the mid-cell to enable cytokinesis. During this process, the parental cell replicates its chromosomal DNA and segregates replicated chromosomes into the daughter cells. The mechanisms that regulate binary fission have been extensively studied in several model organisms, including Eschericia coli, Bacillus subtilis, and Caulobacter crescentus. These analyses have revealed that a multi-protein complex called the divisome forms at the mid-cell to enable peptidoglycan synthesis and septation during division. In addition, rod-shaped bacteria form a multi-protein complex called the elongasome that drives sidewall peptidoglycan synthesis necessary for the maintenance of rod shape and the lengthening of the cell prior to division. In adapting to their intracellular niche, the obligate intracellular bacteria discussed here have eliminated one to several of the divisome gene products essential for binary fission in E. coli. In addition, genes that encode components of the elongasome, which were mostly lost as rod-shaped bacteria evolved into coccoid organisms, have been retained during the reductive evolutionary process that some coccoid obligate intracellular bacteria have undergone. Although the precise molecular mechanisms that regulate the division of obligate intracellular bacteria remain undefined, the studies summarized here indicate that obligate intracellular bacteria exhibit remarkable plasticity in their cell division processes.
Collapse
Affiliation(s)
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Castanheira S, García-Del Portillo F. Evidence of two differentially regulated elongasomes in Salmonella. Commun Biol 2023; 6:923. [PMID: 37689828 PMCID: PMC10492807 DOI: 10.1038/s42003-023-05308-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cell shape is genetically inherited by all forms of life. Some unicellular microbes increase niche adaptation altering shape whereas most show invariant morphology. A universal system of peptidoglycan synthases guided by cytoskeletal scaffolds defines bacterial shape. In rod-shaped bacteria, this system consists of two supramolecular complexes, the elongasome and divisome, which insert cell wall material along major and minor axes. Microbes with invariant shape are thought to use a single morphogenetic system irrespective of the occupied niche. Here, we provide evidence for two elongasomes that generate (rod) shape in the same bacterium. This phenomenon was unveiled in Salmonella, a pathogen that switches between extra- and intracellular lifestyles. The two elongasomes can be purified independently, respond to different environmental cues, and are directed by distinct peptidoglycan synthases: the canonical PBP2 and the pathogen-specific homologue PBP2SAL. The PBP2-elongasome responds to neutral pH whereas that directed by PBP2SAL assembles in acidic conditions. Moreover, the PBP2SAL-elongasome moves at a lower speed. Besides Salmonella, other human, animal, and plant pathogens encode alternative PBPs with predicted morphogenetic functions. Therefore, contrasting the view of morphological plasticity facilitating niche adaptation, some pathogens may have acquired alternative systems to preserve their shape in the host.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, Tai CH, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556088. [PMID: 37886572 PMCID: PMC10602043 DOI: 10.1101/2023.09.03.556088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Brandon R. Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Colby N. Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Dominique M. Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
16
|
Marathe A, Zarazúa-Osorio B, Srivastava P, Fujita M. The master regulator for entry into sporulation in Bacillus subtilis becomes a mother cell-specific transcription factor for forespore engulfment. Mol Microbiol 2023; 120:439-461. [PMID: 37485800 DOI: 10.1111/mmi.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.
Collapse
Affiliation(s)
- Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Harish BN, Nagesha SN, Ramesh BN, Shyamalamma S, Nagaraj MS, Girish HC, Pradeep C, Shiva Kumar KS, Tharun Kumar KS, Pavan SN, Kavan Kumar V. Molecular characterization and antifungal activity of lipopeptides produced from Bacillus subtilis against plant fungal pathogen Alternaria alternata. BMC Microbiol 2023; 23:179. [PMID: 37420194 PMCID: PMC10327374 DOI: 10.1186/s12866-023-02922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Over 380 host plant species have been known to develop leaf spots as a result of the fungus Alternaria alternata. It is an aspiring pathogen that affects a variety of hosts and causes rots, blights, and leaf spots on different plant sections. In this investigation, the lipopeptides from the B. subtilis strains T3, T4, T5, and T6 were evaluated for their antifungal activities. In the genomic DNA, iturin, surfactin, and fengycin genes were found recovered from B. subtilis bacterium by PCR amplification. From different B. subtilis strains, antifungal Lipopeptides were extracted, identified by HPLC, and quantified with values for T3 (24 g/ml), T4 (32 g/ml), T5 (28 g/ml), and T6 (18 g/ml). To test the antifungal activity, the isolated lipopeptides from the B. subtilis T3, T4, T5, and T6 strains were applied to Alternaria alternata at a concentration of 10 g/ml. Lipopeptides were found to suppress Alternaria alternata at rates of T3 (75.14%), T4 (75.93%), T5 (80.40%), and T6 (85.88%). The T6 strain outperformed the other three by having the highest antifungal activity against Alternaria alternata (85.88%).
Collapse
Affiliation(s)
- B N Harish
- University of Agricultural Sciences, Bangalore, 560065, India
| | - S N Nagesha
- University of Agricultural Sciences, Bangalore, 560065, India.
| | - B N Ramesh
- ICAR-AICRP on Post Harvest Technology, UAS, GKVK, Bengaluru, 560065, India
| | - S Shyamalamma
- University of Agricultural Sciences, Bangalore, 560065, India
| | - M S Nagaraj
- University of Agricultural Sciences, Bangalore, 560065, India
| | - H C Girish
- University of Agricultural Sciences, Bangalore, 560065, India
| | - C Pradeep
- University of Agricultural Sciences, Bangalore, 560065, India
| | | | | | - S N Pavan
- University of Agricultural Sciences, Bangalore, 560065, India
| | - V Kavan Kumar
- College of Technology and Engineering, MPUAT, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
18
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
19
|
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023; 13:biom13050720. [PMID: 37238589 DOI: 10.3390/biom13050720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Clémentine Delan-Forino
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Hakima Lakhal
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
20
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
21
|
Matos de Opitz CL, Sass P. Microscopy-Based Multiwell Assay to Characterize Disturbed Bacterial Morphogenesis Upon Antibiotic Action. Methods Mol Biol 2023; 2601:171-190. [PMID: 36445584 DOI: 10.1007/978-1-0716-2855-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The urgent need of new antimicrobial agents to combat life-threatening bacterial infections demands the identification and characterization of novel compounds that interfere with new and unprecedented target pathways or structures in multiresistant bacteria. Here, bacterial cell division has emerged as a new and promising target pathway for antibiotic intervention. Compounds, which inhibit division, commonly induce a characteristic filamentation phenotype of rod-shaped bacteria, such as Bacillus subtilis. Hence, this filamentation phenotype can be used to identify and characterize novel compounds that primarily target bacterial cell division. Since novel compounds of both synthetic and natural product origin are often available in small amounts only, thereby limiting the number of assays during mode of action studies, we here describe a semiautomated, microscopy-based approach that requires only small volumes of compounds to allow for the real-time observation of their effects on living bacteria, such as filamentation or cell lysis, in high-throughput 96-well-based formats. We provide a detailed workflow for the initial characterization of multiple compounds at once and further tools for the initial, microscopy-based characterization of their antibacterial mode of action.
Collapse
Affiliation(s)
- Cruz L Matos de Opitz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Yagüe P, Willemse J, Xiao X, Zhang L, Manteca A, van Wezel GP. FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2023; 116:1-19. [PMID: 36383329 PMCID: PMC9823044 DOI: 10.1007/s10482-022-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.
Collapse
Affiliation(s)
- Paula Yagüe
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Joost Willemse
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Xiansha Xiao
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Le Zhang
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Angel Manteca
- grid.10863.3c0000 0001 2164 6351Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gilles P. van Wezel
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| |
Collapse
|
23
|
MipZ caps the plus-end of FtsZ polymers to promote their rapid disassembly. Proc Natl Acad Sci U S A 2022; 119:e2208227119. [PMID: 36490318 PMCID: PMC9897490 DOI: 10.1073/pnas.2208227119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spatiotemporal regulation of cell division is a fundamental issue in cell biology. Bacteria have evolved a variety of different systems to achieve proper division site placement. In many cases, the underlying molecular mechanisms are still incompletely understood. In this study, we investigate the function of the cell division regulator MipZ from Caulobacter crescentus, a P-loop ATPase that inhibits the polymerization of the treadmilling tubulin homolog FtsZ near the cell poles, thereby limiting the assembly of the cytokinetic Z ring to the midcell region. We show that MipZ interacts with FtsZ in both its monomeric and polymeric forms and induces the disassembly of FtsZ polymers in a manner that is not dependent but enhanced by the FtsZ GTPase activity. Using a combination of biochemical and genetic approaches, we then map the MipZ-FtsZ interaction interface. Our results reveal that MipZ employs a patch of surface-exposed hydrophobic residues to interact with the C-terminal region of the FtsZ core domain. In doing so, it sequesters FtsZ monomers and caps the (+)-end of FtsZ polymers, thereby promoting their rapid disassembly. We further show that MipZ influences the conformational dynamics of interacting FtsZ molecules, which could potentially contribute to modulating their assembly kinetics. Together, our findings show that MipZ uses a combination of mechanisms to control FtsZ polymerization, which may be required to robustly regulate the spatiotemporal dynamics of Z ring assembly within the cell.
Collapse
|
24
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
25
|
Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT, Winkler ME. Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol 2022; 118:336-368. [PMID: 36001060 PMCID: PMC9804626 DOI: 10.1111/mmi.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023]
Abstract
RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.
Collapse
Affiliation(s)
- Melissa M. Lamanna
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Irfan Manzoor
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Merrin Joseph
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Ziyun A. Ye
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessia Zanardi
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Zhongqing Ren
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Xindan Wang
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Ho‐Ching T. Tsui
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Malcolm E. Winkler
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
26
|
MraZ Transcriptionally Controls the Critical Level of FtsL Required for Focusing Z-Rings and Kickstarting Septation in Bacillus subtilis. J Bacteriol 2022; 204:e0024322. [PMID: 35943250 PMCID: PMC9487581 DOI: 10.1128/jb.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.
Collapse
|
27
|
Hammond LR, Sacco MD, Khan SJ, Spanoudis C, Hough-Neidig A, Chen Y, Eswara PJ. GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0141322. [PMID: 35647874 PMCID: PMC9241681 DOI: 10.1128/spectrum.01413-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in noncanonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated spontaneous suppressors that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization, we identified several residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the WTA export protein TarG. We also identified a region in GpsB that is crucial for this interaction. Analysis of TarG localization in S. aureus suggests that WTA machinery is part of the divisome complex. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration. IMPORTANCE Cytokinesis in bacteria involves an intricate orchestration of several key cell division proteins and other factors involved in building a robust cell envelope. Presence of teichoic acids is a signature characteristic of the Gram-positive cell wall. By characterizing the role of Staphylococcus aureus GpsB, an essential cell division protein in this organism, we have uncovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export complex. We also show that this function of GpsB may be conserved in other GpsB homologs as GpsB and the WTA exporter complex follow similar localization patterns. It has been suggested that WTA acts as a molecular signal to control the activity of autolytic enzymes, especially during the separation of conjoined daughter cells. Thus, our results reveal that GpsB, in addition to playing a role in cell division, may also help coordinate WTA biogenesis.
Collapse
Affiliation(s)
- Lauren R. Hammond
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Michael D. Sacco
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sebastian J. Khan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Abigail Hough-Neidig
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
28
|
Tank RG, Lund VA, Kumar S, Turner RD, Lafage L, Pasquina Lemonche L, Bullough PA, Cadby A, Foster SJ, Hobbs JK. Correlative Super-Resolution Optical and Atomic Force Microscopy Reveals Relationships Between Bacterial Cell Wall Architecture and Synthesis in Bacillus subtilis. ACS NANO 2021; 15:16011-16018. [PMID: 34533301 PMCID: PMC8552488 DOI: 10.1021/acsnano.1c04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using "clickable" d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers.
Collapse
Affiliation(s)
- Raveen
K. G. Tank
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Victoria A. Lund
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Sandip Kumar
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert D. Turner
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department
of Computer Science, University of Sheffield, Sheffield, S1 4DP, United Kingdom
| | - Lucia Lafage
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Laia Pasquina Lemonche
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Per A. Bullough
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ashley Cadby
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Simon J. Foster
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
29
|
Delisle J, Cordier B, Audebert S, Pophillat M, Cluzel C, Espinosa L, Grangeasse C, Galinier A, Doan T. Characterization of TseB: A new actor in cell wall elongation in Bacillus subtilis. Mol Microbiol 2021; 116:1099-1112. [PMID: 34411374 DOI: 10.1111/mmi.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of β-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.
Collapse
Affiliation(s)
- Jordan Delisle
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS/Université Lyon I, Lyon, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Université Lyon I, Lyon, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
30
|
Power AL, Barber DG, Groenhof SRM, Wagley S, Liu P, Parker DA, Love J. The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes. Front Cell Infect Microbiol 2021; 11:716592. [PMID: 34368019 PMCID: PMC8335544 DOI: 10.3389/fcimb.2021.716592] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteria modify their morphology in response to various factors including growth stage, nutrient availability, predation, motility and long-term survival strategies. Morphological changes may also be associated with specific physiological phenotypes such as the formation of dormant or persister cells in a “viable but non-culturable” (VBNC) state which frequently display different shapes and size compared to their active counterparts. Such dormancy phenotypes can display various degrees of tolerance to antibiotics and therefore a detailed understanding of these phenotypes is crucial for combatting chronic infections and associated diseases. Cell shape and size are therefore more than simple phenotypic characteristics; they are important physiological properties for understanding bacterial life-strategies and pathologies. However, quantitative studies on the changes to cell morphologies during bacterial growth, persister cell formation and the VBNC state are few and severely constrained by current limitations in the most used investigative techniques of flow cytometry (FC) and light or electron microscopy. In this study, we applied high-throughput Imaging Flow Cytometry (IFC) to characterise and quantify, at single-cell level and over time, the phenotypic heterogeneity and morphological changes in cultured populations of four bacterial species, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus acidilactici and Escherichia coli. Morphologies in relation to growth stage and stress responses, cell integrity and metabolic activity were analysed. Additionally, we were able to identify and morphologically classify dormant cell phenotypes such as VBNC cells and monitor the resuscitation of persister cells in Escherichia coli following antibiotic treatment. We therefore demonstrate that IFC, with its high-throughput data collection and image capture capabilities, provides a platform by which a detailed understanding of changes in bacterial phenotypes and their physiological implications may be accurately monitored and quantified, leading to a better understanding of the role of phenotypic heterogeneity in the dynamic microbiome.
Collapse
Affiliation(s)
- Ann L Power
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel G Barber
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sophie R M Groenhof
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ping Liu
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - David A Parker
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - John Love
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
31
|
Visualization and Analysis of the Dynamic Assembly of a Heterologous Lantibiotic Biosynthesis Complex in Bacillus subtilis. mBio 2021; 12:e0121921. [PMID: 34281399 PMCID: PMC8406302 DOI: 10.1128/mbio.01219-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A membrane-associated lanthipeptide synthetase complex, consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT, has been described for nisin biosynthesis in the coccoid bacterium Lactococcus lactis. Here, we used advanced fluorescence microscopy to visualize the functional nisin biosynthesis machinery in rod-shaped cells and analyzed its spatial distribution and dynamics employing a platform we developed for heterologous production of nisin in Bacillus subtilis. We observed that NisT, as well as NisB and NisC, were all distributed in a punctate pattern along the cell periphery, opposed to the situation in coccoid cells. NisBTC proteins were found to be highly colocalized, being visualized at the same spots by dual fluorescence microscopy. In conjunction with the successful isolation of the biosynthetic complex NisBTC from the cell membrane, this corroborated that the visual bright foci were the sites for nisin maturation and transportation. A strategy of differential timing of expression was employed to demonstrate the in vivo dynamic assembly of NisBTC, revealing the recruitment by NisT of NisBC to the membrane. Additionally, by use of mutated proteins, the nucleotide binding domain (NBD) of NisT was found to function as a membrane anchor for NisB and/or NisC. We also show that the nisin biosynthesis sites are static and likely associated with proteins residing in lipid rafts. Based on these data, we propose a model for a three-phase production of modified precursor nisin in rod-shaped bacteria, presenting the assembly dynamics of NisBTC and emphasizing the crucial role of NisBC, next to NisT, in the process of precursor nisin translocation.
Collapse
|
32
|
Labana P, Dornan MH, Lafrenière M, Czarny TL, Brown ED, Pezacki JP, Boddy CN. Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chem Biol 2021; 28:1703-1715.e11. [PMID: 34293284 DOI: 10.1016/j.chembiol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023]
Abstract
Multi-drug-resistant bacteria present an urgent threat to modern medicine, creating a desperate need for antibiotics with new modes of action. As natural products remain an unsurpassed source for clinically viable antibiotic compounds, we investigate the mechanism of action of armeniaspirol. The armeniaspirols are a structurally unique class of Gram-positive antibiotic discovered from Streptomyces armeniacus for which resistance cannot be readily obtained. We show that armeniaspirol inhibits the ATP-dependent proteases ClpXP and ClpYQ in vitro and in the model Gram-positive Bacillus subtilis. This inhibition dysregulates the divisome and elongasome supported by an upregulation of key proteins FtsZ, DivIVA, and MreB inducing cell division arrest. The inhibition of ClpXP and ClpYQ to dysregulate cell division represents a unique antibiotic mechanism of action and armeniaspirol is the only known natural product inhibitor of the coveted anti-virulence target ClpP. Thus, armeniaspirol possesses a promising lead scaffold for antibiotic development with unique pharmacology.
Collapse
Affiliation(s)
- Puneet Labana
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mark H Dornan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew Lafrenière
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomasz L Czarny
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - John P Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
33
|
Abstract
Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance.
Collapse
|
34
|
Galinier A, Foulquier E, Pompeo F. Metabolic Control of Cell Elongation and Cell Division in Bacillus subtilis. Front Microbiol 2021; 12:697930. [PMID: 34248920 PMCID: PMC8270655 DOI: 10.3389/fmicb.2021.697930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
To survive and adapt to changing nutritional conditions, bacteria must rapidly modulate cell cycle processes, such as doubling time or cell size. Recent data have revealed that cellular metabolism is a central regulator of bacterial cell cycle. Indeed, proteins that can sense precursors or metabolites or enzymes, in addition to their enzymatic activities involved in metabolism, were shown to directly control cell cycle processes in response to changes in nutrient levels. Here we focus on cell elongation and cell division in the Gram-positive rod-shaped bacterium Bacillus subtilis and we report evidences linking these two cellular processes to environmental nutritional availability and thus metabolic cellular status.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
35
|
The archaeal protein SepF is essential for cell division in Haloferax volcanii. Nat Commun 2021; 12:3469. [PMID: 34103513 PMCID: PMC8187382 DOI: 10.1038/s41467-021-23686-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
In most bacteria, cell division depends on the tubulin homolog FtsZ and other proteins, such as SepF, that form a complex termed the divisome. Cell division also depends on FtsZ in many archaea, but other components of the divisome are unknown. Here, we demonstrate that a SepF homolog plays important roles in cell division in Haloferax volcanii, a halophilic archaeon that is known to have two FtsZ homologs with slightly different functions (FtsZ1 and FtsZ2). SepF co-localizes with both FtsZ1 and FtsZ2 at midcell. Attempts to generate a sepF deletion mutant were unsuccessful, suggesting an essential role. Indeed, SepF depletion leads to severe cell division defects and formation of large cells. Overexpression of FtsZ1-GFP or FtsZ2-GFP in SepF-depleted cells results in formation of filamentous cells with a high number of FtsZ1 rings, while the number of FtsZ2 rings is not affected. Pull-down assays support that SepF interacts with FtsZ2 but not with FtsZ1, although SepF appears delocalized in the absence of FtsZ1. Archaeal SepF homologs lack a glycine residue known to be important for polymerization and function in bacteria, and purified H. volcanii SepF forms dimers, suggesting that polymerization might not be important for the function of archaeal SepF.
Collapse
|
36
|
Abstract
The molecular mechanisms that help to place the division septum in bacteria is of fundamental importance to ensure cell proliferation and maintenance of cell shape and size. The Min protein system, found in many rod-shaped bacteria, is thought to play a major role in division site selection. Division site selection is a vital process to ensure generation of viable offspring. In many rod-shaped bacteria, a dynamic protein system, termed the Min system, acts as a central regulator of division site placement. The Min system is best studied in Escherichia coli, where it shows a remarkable oscillation from pole to pole with a time-averaged density minimum at midcell. Several components of the Min system are conserved in the Gram-positive model organism Bacillus subtilis. However, in B. subtilis, it is commonly believed that the system forms a stationary bipolar gradient from the cell poles to midcell. Here, we show that the Min system of B. subtilis localizes dynamically to active sites of division, often organized in clusters. We provide physical modeling using measured diffusion constants that describe the observed enrichment of the Min system at the septum. Mathematical modeling suggests that the observed localization pattern of Min proteins corresponds to a dynamic equilibrium state. Our data provide evidence for the importance of ongoing septation for the Min dynamics, consistent with a major role of the Min system in controlling active division sites but not cell pole areas.
Collapse
|
37
|
Tang Z, Wu Z, Sun H, Zhao L, Shang M, Shi M, Jiang H, Lin Z, Zhou X, Li X, Yu X, Huang Y. The storage stability of Bacillus subtilis spore displaying cysteine protease of Clonorchis sinensis and its effect on improving the gut microbiota of mice. Appl Microbiol Biotechnol 2021; 105:2513-2526. [PMID: 33606075 DOI: 10.1007/s00253-021-11126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 01/17/2023]
Abstract
Bacillus subtilis (B. subtilis) spore can serve as an ideal vehicle for expressing heterologous antigens, and elicit specific immune responses by oral administration. In previous studies, we successfully constructed the recombinant B. subtilis spores expressing cysteine protease of Clonorchis sinensis (C. sinensis, B.s-CsCP), and confirmed that oral administration of B.s-CsCP could elicit good protective immune responses in mice. In this study, Gram staining was used to observe the morphology of B.s-CsCP in different form, and the storage of liquid spores and lyophilized spores at different temperatures was compared. The mice were orally immunized with three different doses of spores (2×108, 1×109, and 5×109 CFU/day) for three times in total at biweekly interval. Then, antibody levels of mice were measured, the safety of spores was evaluated, and the changes of gut microbiota after oral gavage of spores (1×109 dose) were investigated. Results showed that B. subtilis was a typical Gram-positive bacterium, and its spore had good resistance to chemical dye. Liquid B. subtilis spores resuspended in sterile water could be stored for a long time at 4 °C or below, while lyophilized spores could be well stored even at RT and better at lower temperatures. Oral administration of B. subtilis spores to mice could stimulate both local mucosal and systemic immune responses in a dose-dependent manner without toxic side effects. Besides, beneficial bacteria producing butyrate such as Odoribacter were increased, while potential pathogens such as Escherichia-Shigella were decreased in mice intestine. Therefore, our work further confirmed that B. subtilis spores expressing CsCP could be a promising oral vaccine against C. sinensis with the advantages of stability, safety, easy storage, and promotion of intestinal health.Key Points• Recombinant CsCP B. subtilis spores could be easily preserved in either liquid or freeze-dried state.• Oral immunization of recombinant spores in mice could increase both local and system immune levels in a dose-dependent manner.• Oral administration of recombinant spores increased the number of beneficial bacteria and reduced the number of harmful bacteria in the intestinal tract of mice.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
| | - Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Bhambhani A, Iadicicco I, Lee J, Ahmed S, Belfatto M, Held D, Marconi A, Parks A, Stewart CR, Margolin W, Levin PA, Haeusser DP. Bacteriophage SP01 Gene Product 56 Inhibits Bacillus subtilis Cell Division by Interacting with FtsL and Disrupting Pbp2B and FtsW Recruitment. J Bacteriol 2020; 203:e00463-20. [PMID: 33077634 PMCID: PMC7950406 DOI: 10.1128/jb.00463-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Previous work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.
Collapse
Affiliation(s)
- Amit Bhambhani
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - Jules Lee
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Syed Ahmed
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Max Belfatto
- Biology Department, Canisius College, Buffalo, New York, USA
| | - David Held
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Alexia Marconi
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Aaron Parks
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, Texas, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
39
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
40
|
Molecular Characterization of the Burkholderia cenocepacia dcw Operon and FtsZ Interactors as New Targets for Novel Antimicrobial Design. Antibiotics (Basel) 2020; 9:antibiotics9120841. [PMID: 33255486 PMCID: PMC7761207 DOI: 10.3390/antibiotics9120841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The worldwide spread of antimicrobial resistance highlights the need of new druggable cellular targets. The increasing knowledge of bacterial cell division suggested the potentiality of this pathway as a pool of alternative drug targets, mainly based on the essentiality of these proteins, as well as on the divergence from their eukaryotic counterparts. People suffering from cystic fibrosis are particularly challenged by the lack of antibiotic alternatives. Among the opportunistic pathogens that colonize the lungs of these patients, Burkholderia cenocepacia is a well-known multi-drug resistant bacterium, particularly difficult to treat. Here we describe the organization of its division cell wall (dcw) cluster: we found that 15 genes of the dcw operon can be transcribed as a polycistronic mRNA from mraZ to ftsZ and that its transcription is under the control of a strong promoter regulated by MraZ. B. cenocepacia J2315 FtsZ was also shown to interact with the other components of the divisome machinery, with a few differences respect to other bacteria, such as the direct interaction with FtsQ. Using an in vitro sedimentation assay, we validated the role of SulA as FtsZ inhibitor, and the roles of FtsA and ZipA as tethers of FtsZ polymers. Together our results pave the way for future antimicrobial design based on the divisome as pool of antibiotic cellular targets.
Collapse
|
41
|
Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis. Sci Rep 2020; 10:15938. [PMID: 32994436 PMCID: PMC7525490 DOI: 10.1038/s41598-020-72854-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.
Collapse
|
42
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
43
|
Wu LJ, Lee S, Park S, Eland LE, Wipat A, Holden S, Errington J. Geometric principles underlying the proliferation of a model cell system. Nat Commun 2020; 11:4149. [PMID: 32811832 PMCID: PMC7434903 DOI: 10.1038/s41467-020-17988-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.
Collapse
Affiliation(s)
- Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| | - Seoungjun Lee
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.13097.3c0000 0001 2322 6764Present Address: Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX UK
| | - Sungshic Park
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Lucy E. Eland
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Anil Wipat
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Séamus Holden
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|
44
|
Sharma K, Sultana T, Dahms TES, Dillon JAR. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in Bacillus subtilis also affects cell length and interacts with DivIVA. Can J Microbiol 2020; 66:723-732. [PMID: 32762636 DOI: 10.1139/cjm-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CcpN is a transcriptional repressor in Bacillus subtilis that binds to the promoter region of gapB and pckA, downregulating their expression in the presence of glucose. CcpN also represses sr1, which encodes a small noncoding regulatory RNA that suppresses the arginine biosynthesis gene cluster. CcpN has homologues in other Gram-positive bacteria, including Enterococcus faecalis. We report the interaction of CcpN with DivIVA of B. subtilis as determined using bacterial two-hybrid and glutathione S-transferase pull-down assays. Insertional inactivation of CcpN leads to cell elongation and formation of straight chains of cells. These findings suggest that CcpN is a moonlighting protein involved in both gluconeogenesis and cell elongation.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, 3737 Wascana Parkway, University of Regina, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, 3737 Wascana Parkway, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
45
|
Abstract
Bacteria surround their cell membrane with a net-like peptidoglycan layer, called sacculus, to protect the cell from bursting and maintain its cell shape. Sacculus growth during elongation and cell division is mediated by dynamic and transient multiprotein complexes, the elongasome and divisome, respectively. In this Review we present our current understanding of how peptidoglycan synthases are regulated by multiple and specific interactions with cell morphogenesis proteins that are linked to a dynamic cytoskeletal protein, either the actin-like MreB or the tubulin-like FtsZ. Several peptidoglycan synthases and hydrolases require activation by outer-membrane-anchored lipoproteins. We also discuss how bacteria achieve robust cell wall growth under different conditions and stresses by maintaining multiple peptidoglycan enzymes and regulators as well as different peptidoglycan growth mechanisms, and we present the emerging role of LD-transpeptidases in peptidoglycan remodelling.
Collapse
|
46
|
Brzozowski RS, Tomlinson BR, Sacco MD, Chen JJ, Ali AN, Chen Y, Shaw LN, Eswara PJ. Interdependent YpsA- and YfhS-Mediated Cell Division and Cell Size Phenotypes in Bacillus subtilis. mSphere 2020; 5:e00655-20. [PMID: 32699122 PMCID: PMC7376506 DOI: 10.1128/msphere.00655-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/02/2022] Open
Abstract
Although many bacterial cell division factors have been uncovered over the years, evidence from recent studies points to the existence of yet-to-be-discovered factors involved in cell division regulation. Thus, it is important to identify factors and conditions that regulate cell division to obtain a better understanding of this fundamental biological process. We recently reported that in the Gram-positive organisms Bacillus subtilis and Staphylococcus aureus, increased production of YpsA resulted in cell division inhibition. In this study, we isolated spontaneous suppressor mutations to uncover critical residues of YpsA and the pathways through which YpsA may exert its function. Using this technique, we were able to isolate four unique intragenic suppressor mutations in ypsA (E55D, P79L, R111P, and G132E) that rendered the mutated YpsA nontoxic upon overproduction. We also isolated an extragenic suppressor mutation in yfhS, a gene that encodes a protein of unknown function. Subsequent analysis confirmed that cells lacking yfhS were unable to undergo filamentation in response to YpsA overproduction. We also serendipitously discovered that YfhS may play a role in cell size regulation. Finally, we provide evidence showing a mechanistic link between YpsA and YfhS.IMPORTANCEBacillus subtilis is a rod-shaped Gram-positive model organism. The factors fundamental to the maintenance of cell shape and cell division are of major interest. We show that increased expression of ypsA results in cell division inhibition and impairment of colony formation on solid medium. Colonies that do arise possess compensatory suppressor mutations. We have isolated multiple intragenic (within ypsA) mutants and an extragenic suppressor mutant. Further analysis of the extragenic suppressor mutation led to a protein of unknown function, YfhS, which appears to play a role in regulating cell size. In addition to confirming that the cell division phenotype associated with YpsA is disrupted in a yfhS-null strain, we also discovered that the cell size phenotype of the yfhS knockout mutant is abolished in a strain that also lacks ypsA This highlights a potential mechanistic link between these two proteins; however, the underlying molecular mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Michael D Sacco
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Judy J Chen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
47
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
48
|
Sauls JT, Cox SE, Do Q, Castillo V, Ghulam-Jelani Z, Jun S. Control of Bacillus subtilis Replication Initiation during Physiological Transitions and Perturbations. mBio 2019; 10:e02205-19. [PMID: 31848269 PMCID: PMC6918070 DOI: 10.1128/mbio.02205-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis and Escherichia coli are evolutionarily divergent model organisms whose analysis has enabled elucidation of fundamental differences between Gram-positive and Gram-negative bacteria, respectively. Despite their differences in cell cycle control at the molecular level, the two organisms follow the same phenomenological principle, known as the adder principle, for cell size homeostasis. We thus asked to what extent B. subtilis and E. coli share common physiological principles in coordinating growth and the cell cycle. We measured physiological parameters of B. subtilis under various steady-state growth conditions with and without translation inhibition at both the population and single-cell levels. These experiments revealed core physiological principles shared between B. subtilis and E. coli Specifically, both organisms maintain an invariant cell size per replication origin at initiation, under all steady-state conditions, and even during nutrient shifts at the single-cell level. Furthermore, the two organisms also inherit the same "hierarchy" of physiological parameters. On the basis of these findings, we suggest that the basic principles of coordination between growth and the cell cycle in bacteria may have been established early in evolutionary history.IMPORTANCE High-throughput, quantitative approaches have enabled the discovery of fundamental principles describing bacterial physiology. These principles provide a foundation for predicting the behavior of biological systems, a widely held aspiration. However, these approaches are often exclusively applied to the best-known model organism, E. coli In this report, we investigate to what extent quantitative principles discovered in Gram-negative E. coli are applicable to Gram-positive B. subtilis We found that these two extremely divergent bacterial species employ deeply similar strategies in order to coordinate growth, cell size, and the cell cycle. These similarities mean that the quantitative physiological principles described here can likely provide a beachhead for others who wish to understand additional, less-studied prokaryotes.
Collapse
Affiliation(s)
- John T Sauls
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Sarah E Cox
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Quynh Do
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Victoria Castillo
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Zulfar Ghulam-Jelani
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Suckjoon Jun
- Department of Physics, University of California, San Diego, La Jolla, California, USA
- Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
49
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
50
|
Rismondo J, Halbedel S, Gründling A. Cell Shape and Antibiotic Resistance Are Maintained by the Activity of Multiple FtsW and RodA Enzymes in Listeria monocytogenes. mBio 2019; 10:e01448-19. [PMID: 31387909 PMCID: PMC6686043 DOI: 10.1128/mbio.01448-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Rod-shaped bacteria have two modes of peptidoglycan synthesis: lateral synthesis and synthesis at the cell division site. These two processes are controlled by two macromolecular protein complexes, the elongasome and divisome. Recently, it has been shown that the Bacillus subtilis RodA protein, which forms part of the elongasome, has peptidoglycan glycosyltransferase activity. The cell division-specific RodA homolog FtsW fulfils a similar role at the divisome. The human pathogen Listeria monocytogenes carries genes that encode up to six FtsW/RodA homologs; however, their functions have not yet been investigated. Analysis of deletion and depletion strains led to the identification of the essential cell division-specific FtsW protein, FtsW1. Interestingly, L. monocytogenes carries a gene that encodes a second FtsW protein, FtsW2, which can compensate for the lack of FtsW1, when expressed from an inducible promoter. L. monocytogenes also possesses three RodA homologs, RodA1, RodA2, and RodA3, and their combined absence is lethal. Cells of a rodA1 rodA3 double mutant are shorter and have increased antibiotic and lysozyme sensitivity, probably due to a weakened cell wall. Results from promoter activity assays revealed that expression of rodA3 and ftsW2 is induced in the presence of antibiotics targeting penicillin binding proteins. Consistent with this, a rodA3 mutant was more susceptible to the β-lactam antibiotic cefuroxime. Interestingly, overexpression of RodA3 also led to increased cefuroxime sensitivity. Our study highlights that L. monocytogenes genes encode a multitude of functional FtsW and RodA enzymes to produce its rigid cell wall and that their expression needs to be tightly regulated to maintain growth, cell division, and antibiotic resistance.IMPORTANCE The human pathogen Listeria monocytogenes is usually treated with high doses of β-lactam antibiotics, often combined with gentamicin. However, these antibiotics only act bacteriostatically on L. monocytogenes, and the immune system is needed to clear the infection. Therefore, individuals with a compromised immune system are at risk to develop a severe form of Listeria infection, which can be fatal in up to 30% of cases. The development of new strategies to treat Listeria infections is necessary. Here we show that the expression of some of the FtsW and RodA enzymes of L. monocytogenes is induced by the presence of β-lactam antibiotics, and the combined absence of these enzymes makes bacteria more susceptible to this class of antibiotics. The development of antimicrobial agents that inhibit the activity or production of FtsW and RodA enzymes might therefore help to improve the treatment of Listeria infections and thereby lead to a reduction in mortality.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Angelika Gründling
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|