1
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
2
|
Zhang C, Yan W, Liu Y, Tang M, Teng Y, Wang F, Hu X, Zhao M, Yang J, Li Y. Structure-based design and synthesis of BML284 derivatives: A novel class of colchicine-site noncovalent tubulin degradation agents. Eur J Med Chem 2024; 268:116265. [PMID: 38430854 DOI: 10.1016/j.ejmech.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Our previous studies have demonstrated that BML284 is a colchicine-site tubulin degradation agent. To improve its antiproliferative properties, 45 derivatives or analogs of BML284 were designed and synthesized based on the cocrystal structure of BML284 and tubulin. Among them, 5i was the most potent derivative, with IC50 values ranging from 0.02 to 0.05 μM against the five tested tumor cell lines. Structure-activity relationship studies verified that the N1 atom of the pyrimidine ring was the key functional group for its tubulin degradation ability. The 5i-tubulin cocrystal complex revealed that the binding pattern of 5i to tubulin is similar to that of BML284. However, replacing the benzodioxole ring with an indole ring strengthened the hydrogen bond formed by the 2-amino group with E198, which improved the antiproliferative activity of 5i. Compound 5i effectively suppressed tumor growth at an intravenous dose of 40 mg/kg (every 2 days) in paclitaxel sensitive A2780S and paclitaxel resistant A2780T ovarian xenograft models, with tumor growth inhibition values of 79.4% and 82.0%, respectively, without apparent side effects, showing its potential to overcome multidrug resistance. This study provided a successful example of crystal structure-guided discovery of 5i as a colchicine-targeted tubulin degradation agent, expanding the scope of targeted protein degradation.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Liu
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaxin Teng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Yang J, Wu X, You J. Unveiling the potential of HSPA4: a comprehensive pan-cancer analysis of HSPA4 in diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:2517-2541. [PMID: 38305786 PMCID: PMC10911360 DOI: 10.18632/aging.205496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
With the global rise in cancer incidence and mortality rates, research on the topic has become increasingly urgent. Among the significant players in this field are heat shock proteins (HSPs), particularly HSPA4 from the HSP70 subfamily, which has recently garnered considerable interest for its role in cancer progression. However, despite numerous studies on HSPA4 in specific cancer types, a comprehensive analysis across all cancer types is lacking. This study employs various bioinformatics techniques to delve into the role of HSPA4 in pan-cancer. Our objective is to assess its potential in clinical diagnosis, prognosis, and as a future molecular target for therapy. The research findings reveal significant differences in HSPA4 expression across different cancer types, suggesting its diagnostic value and close association with cancer staging and patient survival rates. Furthermore, genetic variations and methylation status of HSPA4 play critical roles in tumorigenesis. Lastly, the interaction of HSPA4 with immune cells is linked to the tumor microenvironment (TME) and immunotherapy. In summary, HSPA4 emerges as a promising cancer biomarker and a vital member of the HSPs family, holding potential applications in diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxiao Wu
- Department of Rheumatology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jianhong You
- Department of Ultrasound, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
4
|
Feng S, Yuan S, Hou B, Liu Z, Xu Y, Hao S, Lu Y. CEP20 promotes invasion and metastasis of non-small cell lung cancer cells by depolymerizing microtubules. Sci Rep 2023; 13:17484. [PMID: 37838783 PMCID: PMC10576744 DOI: 10.1038/s41598-023-44754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, Lung cancer is the leading cause of cancer-related death and poses a direct health threat, non-small cell lung cancer (NSCLC) is the most common type. In this study, we demonstrated that centrosomal protein 20 (CEP20) is upregulated in NSCLC tissues and associated with cancer invasion metastasis. Notably, CEP20 depletion inhibited NSCLC cell proliferation, migration, and microtubule polymerization. Mechanistically, we discovered that CEP20 is critical in the development of NSCLC by regulating microtubule dynamics and cell adhesion-related signaling pathways. Furthermore, the knockdown or overexpression of CEP20 affects microtubule polymerization in A549 cell lines. Our research provides a promising therapeutic target for the diagnosis and treatment of lung cancer, as well as a theoretical and experimental basis for clinical application.
Collapse
Affiliation(s)
- Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China.
| | - Yunkun Lu
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China.
| |
Collapse
|
5
|
Mazzoccoli C, Crispo F, Laurenzana I, Pietrafesa M, Sisinni L, Lerose R, Telesca D, Milella MR, Liu T, Della Sala G, Sebastiani J, Silvestri R, La Regina G. Biological evaluation of [4-(4-aminophenyl)-1-(4-fluorophenyl)-1H-pyrrol-3-yl](3,4,5-trimethoxyphenyl)methanone as potential antineoplastic agent in 2D and 3D breast cancer models. Arch Pharm (Weinheim) 2023; 356:e2300354. [PMID: 37603378 DOI: 10.1002/ardp.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Targeting tubulin polymerization and depolymerization represents a promising approach to treat solid tumors. In this study, we investigated the molecular mechanisms underlying the anticancer effects of a structurally novel tubulin inhibitor, [4-(4-aminophenyl)-1-(4-fluorophenyl)-1H-pyrrol-3-yl](3,4,5-trimethoxyphenyl)methanone (ARDAP), in two- and three-dimensional MCF-7 breast cancer models. At sub-cytotoxic concentrations, ARDAP showed a marked decrease in cell proliferation, colony formation, and ATP intracellular content in MCF-7 cells, by acting through a cytostatic mechanism. Additionally, drug exposure caused blockage of the epithelial-to-mesenchymal transition (EMT). In 3D cell culture, ARDAP negatively affected tumor spheroid growth, with inhibition of spheroid formation and reduction of ATP concentration levels. Notably, ARDAP exposure promoted the differentiation of MCF-7 cells by inducing: (i) expression decrease of Oct4 and Sox2 stemness markers, both in 2D and 3D models, and (ii) downregulation of the stem cell surface marker CD133 in 2D cell cultures. Interestingly, treated MCF7 cells displayed a major sensitivity to cytotoxic effects of the conventional chemotherapeutic drug doxorubicin. In addition, although exhibiting growth inhibitory effects against breast cancer cells, ARDAP showed insignificant harm to MCF10A healthy cells. Collectively, our results highlight the potential of ARDAP to emerge as a new chemotherapeutic agent or adjuvant compound in chemotherapeutic treatments.
Collapse
Affiliation(s)
- Carmela Mazzoccoli
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Fabiana Crispo
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | | | - Lorenza Sisinni
- Clinical Pathology Unit, Azienda Sanitaria Locale, Potenza, Italy
| | - Rosa Lerose
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Donatella Telesca
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Maria R Milella
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Song J, Liu S, Ren Y, Zhang X, Zhao B, Wang X, Li Y. Organotin Benzohydroxamate Derivatives (OTBH) Target Colchicine-binding Site Exerting Potent Antitumor Activity both in Vitro and Vivo Revealed by Quantitative Proteomic Analysis. Eur J Pharm Sci 2023:106488. [PMID: 37302769 DOI: 10.1016/j.ejps.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
The activity of four typical organotin benzohydroxamate compounds (OTBH) with the different electronegativity of fluorine and chlorine atoms was assessed both in vitro and in vivo, revealing that they all exhibited notable antitumor effects. Furthermore, it was discovered that the biochemical capacity against cancer was influenced by their substituents' electronegativity and structural symmetry. For instance, benzohydroxamate derivatives with single chlorine at the fourth site on the benzene ring, two normal-butyl organic ligands, a symmetrical structure, and so on ([n-Bu2Sn[{4-ClC6H4C(O)NHO}2] (OTBH-1)) had stronger antitumor activity than others. Furthermore, the quantitative proteomic analysis discovered 203 proteins in HepG2 cells and 146 proteins in rat liver tissues that were differently identified before and after administration. Simultaneously, bioinformatics analysis of differentially expressed proteins demonstrated that the antiproliferative effects involved in the microtubule-based process, tight junction and its downstream apoptosis pathways. As predicted analytically, molecular docking indicated that ''-O-'' were the target docking atoms for the colchicine-binding site; meanwhile, this site was additionally verified by the EBI competition experiment and the microtubule assembly inhibition test. In conclusion, these derivatives promising for developing microtubule-targeting agents (MTAs) were shown to target the colchicine-binding site, impair cancer cell microtubule networks, and then halt mitosis and trigger apoptosis.
Collapse
Affiliation(s)
- Jiayu Song
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Shuran Liu
- Department of Automation, Tsinghua University, Beijing, 100000, 030001, P.R.China
| | - Yuan Ren
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Xiaohui Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Baojin Zhao
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Xinxu Wang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P.R.China.
| |
Collapse
|
7
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Skitchenko R, Dinikina Y, Smirnov S, Krapivin M, Smirnova A, Morgacheva D, Artomov M. Case report: Somatic mutations in microtubule dynamics-associated genes in patients with WNT-medulloblastoma tumors. Front Oncol 2023; 12:1085947. [PMID: 36713498 PMCID: PMC9877404 DOI: 10.3389/fonc.2022.1085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor which accounts for about 20% of all pediatric brain tumors and 63% of intracranial embryonal tumors. MB is considered to arise from precursor cell populations present during an early brain development. Most cases (~70%) of MB occur at the age of 1-4 and 5-9, but are also infrequently found in adults. Total annual frequency of pediatric tumors is about 5 cases per 1 million children. WNT-subtype of MB is characterized by a high probability of remission, with a long-term survival rate of about 90%. However, in some rare cases there may be increased metastatic activity, which dramatically reduces the likelihood of a favorable outcome. Here we report two cases of MB with a histological pattern consistent with desmoplastic/nodular (DP) and classic MB, and genetically classified as WNT-MB. Both cases showed putative causal somatic protein truncating mutations identified in microtubule-associated genes: ARID2, TUBB4A, and ANK3.
Collapse
Affiliation(s)
- Rostislav Skitchenko
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
| | - Yulia Dinikina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Sergey Smirnov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mikhail Krapivin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Anna Smirnova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Daria Morgacheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Mykyta Artomov
- Almazov National Medical Research Centre, St. Petersburg, Russia,Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia,The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, Ohio State University, Columbus, OH, United States,*Correspondence: Mykyta Artomov,
| |
Collapse
|
9
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Oliva P, Romagnoli R, Cacciari B, Manfredini S, Padroni C, Brancale A, Ferla S, Hamel E, Corallo D, Aveic S, Milan N, Mariotto E, Viola G, Bortolozzi R. Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents. Pharmaceutics 2022; 14:1191. [PMID: 35745764 PMCID: PMC9230136 DOI: 10.3390/pharmaceutics14061191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Two different series of fifty-two compounds, based on 3',4',5'-trimethoxyaniline (7a-ad) and variably substituted anilines (8a-v) at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-a]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4'-fluoroaniline (8q), 4'-fluoro-3'-chloroaniline (8r), 4'-chloroaniline (8s) and 4'-bromoaniline (8u), displayed the greatest antiproliferative activity with mean IC50's of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [3H]colchicine binding to tubulin were similar to that of CA-4. These data underlined that the 3',4',5'-trimethoxyanilino moiety at the 7-position of the [1,2,4]triazolo [1,5-a]pyrimidine system, which characterized compounds 7a-ad, was not essential for maintaining potent antiproliferative and antitubulin activities. Compounds 8q and 8r had high selectivity against cancer cells, and their interaction with tubulin led to the accumulation of HeLa cells in the G2/M phase of the cell cycle and to apoptotic cell death through the mitochondrial pathway. Finally, compound 8q significantly inhibited HeLa cell growth in zebrafish embryos.
Collapse
Affiliation(s)
- Paola Oliva
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Barbara Cacciari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Padroni
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit—An Evotec Company, Via A. Fleming, 37135 Verona, Italy;
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK;
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK;
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy; (D.C.); (S.A.)
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy; (D.C.); (S.A.)
| | - Noemi Milan
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
| | - Elena Mariotto
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Giampietro Viola
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Roberta Bortolozzi
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
11
|
Gao S, Wang S, Zhao Z, Zhang C, Liu Z, Ye P, Xu Z, Yi B, Jiao K, Naik GA, Wei S, Rais-Bahrami S, Bae S, Yang WH, Sonpavde G, Liu R, Wang L. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat Commun 2022; 13:2792. [PMID: 35589707 PMCID: PMC9120517 DOI: 10.1038/s41467-022-30409-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Human tubulin beta class IVa (TUBB4A) is a member of the β-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3β binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3β ubiquitination and degradation, leading to decreased activation of β-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression. The β-tubulin family protein TUBB4A is highly expressed in cancer but it’s molecular role is unclear. Here, the authors show that TUBB4A is required to protect the nucleus from genomic instability during migration and that it’s over expression promotes cancer progression.
Collapse
Affiliation(s)
- Song Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiying Zhao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhicao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ping Ye
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhifang Xu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baozhu Yi
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gurudatta A Naik
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | | | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Yang H. Tau and stathmin proteins in breast cancer: A potential therapeutic target. Clin Exp Pharmacol Physiol 2022; 49:445-452. [PMID: 35066919 DOI: 10.1111/1440-1681.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer is the most common malignant neoplasm among women, responsible for 30% of all malignant tumours, and the second most significant reason of cancer fatality in women. Treatment failure and tumour recurrence are common outcomes of chemotherapy when patients develop multidrug resistance (MDR). New therapeutic methods like molecularly targeted therapeutic interventions need a thorough understanding of malignant tumour's molecular processes. Numerous studies published in the last few years indicate that stathmin and tubulin-associated units (tau) are upregulated in a range of human malignant tumours, suggesting that they may enhance the incidence and progression of malignancies. By promoting cancer cell reproduction, infiltration and generating drug resistance, these proteins aid in the disease's development. Existing information on the expression of tau protein and stathmin in breast cancer, as well as their involvement in treatment methods, is summarized in this literature review.
Collapse
Affiliation(s)
- Hanzhao Yang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
N B, K R C. Antiviral, Anticancer and Hypotensive Potential of Diphyllin Glycosides and their Mechanisms of Action. Mini Rev Med Chem 2022; 22:1752-1771. [PMID: 35040401 DOI: 10.2174/1389557522666220117122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Diphyllin glycosides (DG) are the type of arylnaphthalene lignans isolated from different plants and their synthetic derivatives have shown effective antiviral, cytotoxic, hypotensive and diuretic effects at very low concentrations similar to standard drugs that are under clinical use. The biological activities of the DG interfere with signaling pathways of viral infection and cancer induction. The sugar moieties of DG enhance bioavailability and pharmacological activities. The promising results of DG at nanomolar concentrations under in vitro and in vivo conditions should be explored further with clinical trials to determine its toxic effects, pharmacokinetics and pharmacodynamics. This may identify suitable antiviral and anticancer drugs in the near future. Considering all these activities, the present review is focused on the chemical aspects of DG with a detailed account on the mechanisms of action of DG. An attempt is also made to comment on the status of clinical trials of DG along with the possible limitations in studies based on available literature through September 2020.
Collapse
Affiliation(s)
- Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| | - Chandrashekar K R
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| |
Collapse
|
14
|
Brown CJ, Simon T, Cilibrasi C, Lynch PJ, Harries RW, Graf AA, Large MJ, Ogilvie SP, Salvage JP, Dalton AB, Giamas G, King AAK. Tuneable synthetic reduced graphene oxide scaffolds elicit high levels of three-dimensional glioblastoma interconnectivity in vitro. J Mater Chem B 2021; 10:373-383. [PMID: 34931630 DOI: 10.1039/d1tb01266e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Three-dimensional tissue scaffolds have utilised nanomaterials to great effect over the last decade. In particular, scaffold design has evolved to consider mechanical structure, morphology, chemistry, electrical properties, and of course biocompatibility - all vital to the performance of the scaffold and how successful they are in developing cell cultures. We have developed an entirely synthetic and tuneable three-dimensional scaffold of reduced graphene oxide (rGO) that shows good biocompatibility, and favourable mechanical properties as well as reasonable electrical conductivity. Importantly, the synthesis is scaleable and suitable for producing scaffolds of any desired geometry and size, and we observe a high level of biocompatibility and cell proliferation for multiple cell lines. In particular, one of the most devastating forms of malignant brain cancer, glioblastoma (GBM), grows especially well on our rGO scaffold in vitro, and without the addition of response-specific growth factors. We have observed that our scaffold elicits spontaneous formation of a high degree of intercellular connections across the GBM culture. This phenomenon is not well documented in vitro and nothing similar has been observed in synthetic scaffolds without the use of response-specific growth factors - which risk obscuring any potential phenotypic behaviour of the cells. The use of scaffolds like ours, which are not subject to the limitations of existing two-dimensional substrate technologies, provide an excellent system for further investigation into the mechanisms behind the rapid proliferation and success of cancers like GBM. These synthetic scaffolds can advance our understanding of these malignancies in the pursuit of improved theranostics against them.
Collapse
Affiliation(s)
- Christopher J Brown
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Thomas Simon
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Peter J Lynch
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Rhiannon W Harries
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Aline Amorim Graf
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Matthew J Large
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Sean P Ogilvie
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Jonathan P Salvage
- School of Pharmacy and Biomolecular Sciences, University of Brighton, BN2 4GJ, UK
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice A K King
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK.
| |
Collapse
|
15
|
Trisciuoglio D, Degrassi F. The Tubulin Code and Tubulin-Modifying Enzymes in Autophagy and Cancer. Cancers (Basel) 2021; 14:cancers14010006. [PMID: 35008169 PMCID: PMC8750717 DOI: 10.3390/cancers14010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Microtubules are tubulin polymers that constitute the structure of eukaryotic cells. They control different cell functions that are often deregulated in cancer, such as cell shape, cell motility and the intracellular movement of organelles. Here, we focus on the crucial role of tubulin modifications in determining different cancer characteristics, including metastatic cell migration and therapy resistance. We also discuss the influence of microtubule modifications on the autophagic process—the cellular degradation pathway that influences cancer growth. We discuss findings showing that inducing microtubule modifications can be used as a means to kill cancer cells by inhibiting autophagy. Abstract Microtubules are key components of the cytoskeleton of eukaryotic cells. Microtubule dynamic instability together with the “tubulin code” generated by the choice of different α- and β- tubulin isoforms and tubulin post-translational modifications have essential roles in the control of a variety of cellular processes, such as cell shape, cell motility, and intracellular trafficking, that are deregulated in cancer. In this review, we will discuss available evidence that highlights the crucial role of the tubulin code in determining different cancer phenotypes, including metastatic cell migration, drug resistance, and tumor vascularization, and the influence of modulating tubulin-modifying enzymes on cancer cell survival and aggressiveness. We will also discuss the role of post-translationally modified microtubules in autophagy—the lysosomal-mediated cellular degradation pathway—that exerts a dual role in many cancer types, either promoting or suppressing cancer growth. We will give particular emphasis to the role of tubulin post-translational modifications and their regulating enzymes in controlling the different stages of the autophagic process in cancer cells, and consider how the experimental modulation of tubulin-modifying enzymes influences the autophagic process in cancer cells and impacts on cancer cell survival and thereby represents a new and fruitful avenue in cancer therapy.
Collapse
|
16
|
Wang Y, Sun J, Yang Y, Zebaze Dongmo S, Qian Y, Wang Z. Identification and Development of Subtypes with Poor Prognosis in Gastric Cancer Based on Both Hypoxia and Immune Cell Infiltration. Int J Gen Med 2021; 14:9379-9399. [PMID: 34908867 PMCID: PMC8664384 DOI: 10.2147/ijgm.s326647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hypoxia and immune cell infiltration play an important role in the progression and metastasis of gastric cancer. However, the molecular classification of gastric cancer combined with hypoxia and immune cell infiltration remains unknown. Materials and Methods ssGSEA was used to evaluate the hypoxic state and immune cell infiltration of 1059 gastric cancer samples collected from the GEO and TCGA database. Based on the results, unsupervised clustering was performed to obtain different gastric cancer subtypes. The differentially expressed genes related to OS between these subtypes were utilized for LASSO analysis to construct a prognostic signature (HIscore). Subsequently, small-molecule drugs were predicted using the Connectivity Map (CMAP) database. Results We obtained three hypoxic-immune infiltration patterns (HIcluster A-C) with different prognoses and classified them as low hypoxic/low immune, high hypoxic/high immune, and low hypoxic/high immune subtypes. Based on the differential genes between HIclusters, we have also obtained other three gastric cancer subtypes (genecluster A-C) and a 13-gene signature (HIscore). At the same time, we extensively explored the clinical and transcriptome traits in different clusters and groups with high or low HIscore. We proved that HIscore is an independent prognostic biomarker and an indicator of genome stability and EMT. Using the CMAP database, we found 96 small-molecule drugs that could reverse the poor prognosis and could serve as therapeutic drugs, especially for gastric cancer patients with high HIscore. Conclusion Our study evaluated the hypoxic state and immune cell infiltration in gastric tumors, and identified different gastric cancer subtypes. In addition, we established a hypoxia-immune signature to predict prognosis which is tightly linked to tumor EMT and genomic stability. Based on HIscore, we used the CMAP database to explore small-molecule drugs that may have the potential in serving as therapeutic drugs.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jingjing Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yang Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Sonia Zebaze Dongmo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhen Wang
- Department of General Surgery, Feixi County People's Hospital, Hefei, People's Republic of China
| |
Collapse
|
17
|
Ishay Y, Potruch A, Schwartz A, Berg M, Jamil K, Agus S, Ilan Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed Pharmacother 2021; 143:112228. [PMID: 34649354 PMCID: PMC8455249 DOI: 10.1016/j.biopha.2021.112228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Assaf Potruch
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Asaf Schwartz
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Marc Berg
- Altus Care powered by Oberon Sciences, Denmark, Israel; Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, USA.
| | - Khurram Jamil
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Samuel Agus
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
18
|
Rahimi N, Ho RXY, Chandler KB, De La Cena KOC, Amraei R, Mitchel AJ, Engblom N, Costello CE. The cell adhesion molecule TMIGD1 binds to moesin and regulates tubulin acetylation and cell migration. J Biomed Sci 2021; 28:61. [PMID: 34503512 PMCID: PMC8427838 DOI: 10.1186/s12929-021-00757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell–cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. Results TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. Conclusions TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00757-z.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA.
| | - Rachel X Y Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Ashley J Mitchel
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Nels Engblom
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Romagnoli R, Preti D, Hamel E, Bortolozzi R, Viola G, Brancale A, Ferla S, Morciano G, Pinton P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg Chem 2021; 112:104919. [PMID: 33957538 DOI: 10.1016/j.bioorg.2021.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy.
| | - Delia Preti
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128 Padova, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
21
|
Cytoskeletal Organization Correlates to Motility and Invasiveness of Malignant Mesothelioma Cells. Cancers (Basel) 2021; 13:cancers13040685. [PMID: 33567673 PMCID: PMC7915464 DOI: 10.3390/cancers13040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The cytoskeleton is responsible for maintaining normal tissue homeostasis by a tight regulation of cell morphogenesis and cell migration. This homeostasis is lost in cancer mainly because alterations in cytoskeletal dynamics are leading to an increased migratory and invasive capacity of cancer cells. The organization of the cytoskeleton is by large an unknown factor in malignant mesothelioma; therefore we sought to examine the cytoskeletal dynamics and invasive properties of different malignant mesothelioma cell lines originating from patients. Our data suggest that it is possible to classify malignant mesothelioma cell lines into separate categories using straight forward cell staining and analysis of the morphological and invasive capacity of mesothelioma cells. Early diagnosis and new diagnostic tools are urgently needed to effectively treat patients and we propose that the analyses described in this article could potentially provide diagnostic tools that can be further tested on patients. Abstract Malignant mesothelioma (MM) is a rare but highly aggressive cancer that primarily originates from the pleura, peritoneum or pericardium. There is a well-established link between asbestos exposure and progression of MM. Direct invasion of the surrounding tissues is the main feature of MM, which is dependent on dysregulated communication between the mesothelium and the microenvironment. This communication is dependent on the dynamic organization of the cytoskeleton. We have analyzed the organization and function of key cytoskeletal components in MM cell lines of increasing malignancies measured as migratory and invasive properties, and we show that highly malignant and invasive MM cells have an organization of the actin filament and vimentin systems that is distinct from the less malignant MM cell lines. In addition, the Hippo tumor suppressor pathway was inactivated in the invasive MM cells, which was seen as increased YAP nuclear localization.
Collapse
|
22
|
Zhu T, Wang SH, Li D, Wang SY, Liu X, Song J, Wang YT, Zhang SY. Progress of tubulin polymerization activity detection methods. Bioorg Med Chem Lett 2021; 37:127698. [PMID: 33468346 DOI: 10.1016/j.bmcl.2020.127698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Tubulin, an important target in tumor therapy, is one of the hotspots in the field of antineoplastic drugs in recent years, and it is of great significance to design and screen new inhibitors for this target. Natural products and chemical synthetic drugs are the main sources of tubulin inhibitors. However, due to the variety of compound structure types, it has always been difficult for researchers to screen out polymerization inhibitors with simple operation, high efficiency and low cost. A large number of articles have reported the screening methods of tubulin inhibitors and their biological activity. In this article, the biological activity detection methods of tubulin polymerization inhibitors are reviewed. Thus, it provides a theoretical basis for the further study of tubulin polymerization inhibitors and the selection of methods for tubulin inhibitors.
Collapse
Affiliation(s)
- Ting Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Hui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
23
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
24
|
Zhu H, Ying S, Zhou B, Liang X, He Q, Song P, Hu X, Shi K, Xiong M, Jin H, Pan Y. Discovery of novel 2-aryl-3-sulfonamido-pyridines (HoAns) as microtubule polymerization inhibitors with potent antitumor activities. Eur J Med Chem 2020; 211:113117. [PMID: 33360794 DOI: 10.1016/j.ejmech.2020.113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Microtubules play a vital role in cell mitosis. Drugs targeting taxol or vinca binding site of tubulin have been proved an effective way to against cancer. However, drug resistance and cancer recurrence are inevitable, there is an urgent need to search for new microtubule-targeting agents (MTAs). In our study, a series of novel 2-aryl-3-sulfonamido-pyridines (HoAns) had been designed, synthesized, and evaluated for their antiproliferative activities in vitro and in vivo. Among them, compound HoAn32 exhibited the most potent activity with IC50 values ranging from 0.170 to 1.193 μM in a panel of cancer cell lines. Mechanism studies indicated that compound HoAn32 bound to the colchicine site of β-tubulin, resulting in colony formation inhibition, G2/M phase cell cycle arrest, cell apoptosis as well as increased the generation of ROS in both RKO and SW620 cells. In addition, compound HoAn32 showed potent anti-vascular activity in vitro. Furthermore, compound HoAn32 also exhibited outstanding antitumor activity in SW620 xenograft tumor models without observable toxic effects, which was more potent than that of ABT-751. In conclusion, our findings suggest that compound HoAn32 may be a promising microtubule destabilizing agent and deserves for further development in cancer therapy.
Collapse
Affiliation(s)
- Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Bingluo Zhou
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Xiao Liang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Ping Song
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Keqiang Shi
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310020, PR China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
25
|
Reis K, Arbiser JL, Hjerpe A, Dobra K, Aspenström P. Inhibitors of cytoskeletal dynamics in malignant mesothelioma. Oncotarget 2020; 11:4637-4647. [PMID: 33400741 PMCID: PMC7747860 DOI: 10.18632/oncotarget.27843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
Malignant mesotheliomas (MMs) are highly aggressive mesenchymal tumors that originate from mesothelial cells lining serosal cavities; i.e., the pleura, peritoneum, and pericardium. Classically, there is a well-established link between asbestos exposure, oxidative stress, release of reactive oxygen species, and chronic inflammatory mediators that leads to progression of MMs. MMs have an intermediate phenotype, with co-expression of mesenchymal and epithelial markers and dysregulated communication between the mesothelium and the microenvironment. We have previously shown that the organization and function of key cytoskeletal components can distinguish highly invasive cell lines from those more indolent. Here, we used these tools to study three different types of small-molecule inhibitors, where their common feature is their influence on production of reactive oxygen species. One of these, imipramine blue, was particularly effective in counteracting some key malignant properties of highly invasive MM cells. This opens a new possibility for targeted inhibition of MMs based on well-established molecular mechanisms.
Collapse
Affiliation(s)
- Katarina Reis
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Papin S, Paganetti P. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sci 2020; 10:brainsci10110862. [PMID: 33207722 PMCID: PMC7696480 DOI: 10.3390/brainsci10110862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders and cancer may appear unrelated illnesses. Yet, epidemiologic studies indicate an inverse correlation between their respective incidences for specific cancers. Possibly explaining these findings, increasing evidence indicates that common molecular pathways are involved, often in opposite manner, in the pathogenesis of both disease families. Genetic mutations in the MAPT gene encoding for TAU protein cause an inherited form of frontotemporal dementia, a neurodegenerative disorder, but also increase the risk of developing cancer. Assigning TAU at the interface between cancer and neurodegenerative disorders, two major aging-linked disease families, offers a possible clue for the epidemiological observation inversely correlating these human illnesses. In addition, the expression level of TAU is recognized as a prognostic marker for cancer, as well as a modifier of cancer resistance to chemotherapy. Because of its microtubule-binding properties, TAU may interfere with the mechanism of action of taxanes, a class of chemotherapeutic drugs designed to stabilize the microtubule network and impair cell division. Indeed, a low TAU expression is associated to a better response to taxanes. Although TAU main binding partners are microtubules, TAU is able to relocate to subcellular sites devoid of microtubules and is also able to bind to cancer-linked proteins, suggesting a role of TAU in modulating microtubule-independent cellular pathways associated to oncogenesis. This concept is strengthened by experimental evidence linking TAU to P53 signaling, DNA stability and protection, processes that protect against cancer. This review aims at collecting literature data supporting the association between TAU and cancer. We will first summarize the evidence linking neurodegenerative disorders and cancer, then published data supporting a role of TAU as a modifier of the efficacy of chemotherapies and of the oncogenic process. We will finish by addressing from a mechanistic point of view the role of TAU in de-regulating critical cancer pathways, including the interaction of TAU with cancer-associated proteins.
Collapse
Affiliation(s)
- Stéphanie Papin
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
- Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-811-7250
| |
Collapse
|
27
|
Wu L, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Front Microbiol 2020; 11:1908. [PMID: 32849477 PMCID: PMC7427429 DOI: 10.3389/fmicb.2020.01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses are zoonotic pathogens that can cause a variety of diseases in humans and animals and severely damage health. Alphaherpesvirus infection is a slow and orderly process that can lie dormant for the lifetime of the host but may be reactivated when the immune system is compromised. All alphaherpesviruses feature a protein layer called the tegument that lies between the capsid and the envelope. Virus protein (VP) 22 is one of the most highly expressed tegument proteins; there are more than 2,000 copies of this protein in each viral particle. VP22 can interact with viral proteins, cellular proteins, and chromatin, and these interactions play important roles. This review summarizes the latest literature and discusses the roles of VP22 in viral gene transcription, protein synthesis, virion assembly, and viral cell-to-cell spread with the purpose of enhancing understanding of the life cycle of herpesviruses and other pathogens in host cells. The molecular interaction information herein provides important reference data.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Jacobs MN, Colacci A, Corvi R, Vaccari M, Aguila MC, Corvaro M, Delrue N, Desaulniers D, Ertych N, Jacobs A, Luijten M, Madia F, Nishikawa A, Ogawa K, Ohmori K, Paparella M, Sharma AK, Vasseur P. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch Toxicol 2020; 94:2899-2923. [PMID: 32594184 PMCID: PMC7395040 DOI: 10.1007/s00204-020-02784-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.
Collapse
Affiliation(s)
- Miriam N Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, UK.
| | - Annamaria Colacci
- Center for Environment, Prevention and Health, Regional Agency for Prevention, Environment and Energy Emilia Romagna Region (Arpae), Bologna, Italy
| | - Raffaella Corvi
- European Commission Joint Research Centre (EC JRC), Ispra, Italy
| | - Monica Vaccari
- Center for Environment, Prevention and Health, Regional Agency for Prevention, Environment and Energy Emilia Romagna Region (Arpae), Bologna, Italy
| | | | | | - Nathalie Delrue
- Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Abigail Jacobs
- US Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Federica Madia
- European Commission Joint Research Centre (EC JRC), Ispra, Italy
| | | | - Kumiko Ogawa
- National Institute of Health Sciences, Kawasaki, Japan
| | - Kiyomi Ohmori
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
29
|
Forkosh E, Kenig A, Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 2020; 8:e00616. [PMID: 32608157 PMCID: PMC7327382 DOI: 10.1002/prp2.616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are highly dynamic polymers that constitute the cellular cytoskeleton and play a role in multiple cellular functions. Variability characterizes biological systems and is considered a part of the normal function of cells and organs. Variability contributes to cell plasticity and is a mechanism for overcoming errors in cellular level assembly and function, and potentially the whole organ level. Dynamic instability is a feature of biological variability that characterizes the function of MTs. The dynamic behavior of MTs constitutes the basis for multiple biological processes that contribute to cellular plasticity and the timing of cell signaling. Colchicine is a MT-modifying drug that exerts anti-inflammatory and anti-cancer effects. This review discusses some of the functions of colchicine and presents a platform for introducing variability while targeting MTs in intestinal cells, the microbiome, the gut, and the systemic immune system. This platform can be used for implementing novel therapies, improving response to chronic MT-based therapies, overcoming drug resistance, exerting gut-based systemic immune responses, and generating patient-tailored dynamic therapeutic regimens.
Collapse
Affiliation(s)
- Esther Forkosh
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Ariel Kenig
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Yaron Ilan
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| |
Collapse
|
30
|
Altonsy MO, Ganguly A, Amrein M, Surmanowicz P, Li SS, Lauzon GJ, Mydlarski PR. Beta3-Tubulin is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375). Int J Mol Sci 2020; 21:ijms21051656. [PMID: 32121295 PMCID: PMC7084453 DOI: 10.3390/ijms21051656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.
Collapse
Affiliation(s)
- Mohammed O. Altonsy
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Zoology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Anutosh Ganguly
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Philip Surmanowicz
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gilles J. Lauzon
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - P. Régine Mydlarski
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Correspondence: ; Tel.: +1-403-955-8345; Fax: +1-403-955-8200
| |
Collapse
|
31
|
Hu X, Li L, Zhang Q, Wang Q, Feng Z, Xu Y, Xia Y, Yu L. Design, synthesis and biological evaluation of a novel tubulin inhibitor SKLB0565 targeting the colchicine binding site. Bioorg Chem 2020; 97:103695. [PMID: 32120073 DOI: 10.1016/j.bioorg.2020.103695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/05/2023]
Abstract
A series of 3-(((9H-purin-6-yl) amino) methyl) pyridin-2(1H)-one derivatives were designed, synthesized and confirmed as tubulin polymerization inhibitors. All compounds were evaluated for their anti-proliferative activities on three colorectal carcinoma (CRC) cell lines. Among these compounds, SKLB0565 displayed noteworthy potency against eight CRC cell lines with IC50 values ranging from 0.012 μM and 0.081 μM. Besides, SKLB0565 inhibited tubulin polymerization, caused G2/M phase cell cycle arrest, depolarized mitochondria and induced cell apoptosis in CRC cells. Furthermore, SKLB0565 suppressed cell migration and disrupted the capillary tube formation of human umbilical vein endothelial cells (HUVECs). Our data clarified that SKLB0565 is a promising anti-tubulin agent for CRC therapy which is worthy of further evaluation.
Collapse
Affiliation(s)
- Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Ying Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Yong Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China.
| |
Collapse
|
32
|
During mitosis ZEB1 "switches" from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118673. [PMID: 32057919 DOI: 10.1016/j.bbamcr.2020.118673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Microtubules are polymers of α/β-tubulin, with microtubule organization being regulated by microtubule-associated proteins (MAPs). Herein, we describe a novel role for the epithelial gene repressor, zinc finger E-box-binding homeobox 1 (ZEB1), that "switches" from a chromatin-associated protein during interphase, to a MAP that associates with α-, β- and γ-tubulin during mitosis. Additionally, ZEB1 was also demonstrated to associate with γ-tubulin at the microtubule organizing center (MTOC). Using confocal microscopy, ZEB1 localization was predominantly nuclear during interphase, with α/β-tubulin being primarily cytoplasmic and the association between these proteins being minimal. However, during the stages of mitosis, ZEB1 co-localization with α-, β-, and γ-tubulin was significantly increased, with the association commonly peaking during metaphase in multiple tumor cell-types. ZEB1 was also observed to accumulate in the cleavage furrow during cytokinesis. The increased interaction between ZEB1 and α-tubulin during mitosis was also confirmed using the proximity ligation assay. In contrast to ZEB1, its paralog ZEB2, was mainly perinuclear and cytoplasmic during interphase, showing some co-localization with α-tubulin during mitosis. Considering the association between ZEB1 with α/β/γ-tubulin during mitosis, studies investigated ZEB1's role in the cell cycle. Silencing ZEB1 resulted in a G2-M arrest, which could be mediated by the up-regulation of p21Waf1/Cip1 and p27Kip1 that are known downstream targets repressed by ZEB1. However, it cannot be excluded the G2/M arrest observed after ZEB1 silencing is not due to its roles as a MAP. Collectively, ZEB1 plays a role as a MAP during mitosis and could be functionally involved in this process.
Collapse
|
33
|
Brand F, Förster A, Christians A, Bucher M, Thomé CM, Raab MS, Westphal M, Pietsch T, von Deimling A, Reifenberger G, Claus P, Hentschel B, Weller M, Weber RG. FOCAD loss impacts microtubule assembly, G2/M progression and patient survival in astrocytic gliomas. Acta Neuropathol 2020; 139:175-192. [PMID: 31473790 DOI: 10.1007/s00401-019-02067-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
Abstract
In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.
Collapse
Affiliation(s)
- Frank Brand
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Bucher
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Carina M Thomé
- Neurology Clinic and National Center for Tumor Diseases, Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Claus
- Department of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ruthild G Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
34
|
Liang Z, Li X, Chen J, Cai H, Zhang L, Li C, Tong J, Hu W. PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer. Transl Cancer Res 2019; 8:2059-2072. [PMID: 35116955 PMCID: PMC8799135 DOI: 10.21037/tcr.2019.09.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Background This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Bioinformatics analysis was performed. Cell culture and plasmid construction were conducted for cell transfection. mRNA and protein expression, cell proliferation, migration, and cell cycle were detected. Mice models were also constructed. The relationship between PRC1 and the prognosis of NSCLC patients was analyzed. Results PRC1 expression was higher in tumor tissues than adjacent non-tumor tissues (P<0.05). Cells transfected with the high-expression PRC1 plasmid (TOPO-PRC1 group) had the stronger ability of proliferation and migration (P<0.05) along with a lower incidence of stay at the G2/M phase (P<0.05) than the low-expression PRC1 plasmid. Mice models showed tumors obtained from mice in the TOPO-PRC1 group significantly grew faster, larger, and heavier (P<0.05) than the low-expression PRC1 group. Among the 150 NSCLC patients, patients with the higher PRC1 expression were more likely to have lymph node metastasis occur (P<0.05) and progress into an advanced stage (P<0.05), and showed shorter survival (P<0.05). Moreover, the TOPO-PRC1 group had a lower phosphorylation level, and a lower expression of Cip1/p21 (P<0.05) and Kip1/p27 (P<0.01). Conclusions PRC1 could promote cell proliferation and cell cycle progression through FAK-paxillin pathway molecules and the regulation of the phosphorylation level of p21/p27-pRB family molecules. PRC1 might be a new and promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jian Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Haina Cai
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Liqun Zhang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Chenwei Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jingjie Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Wentao Hu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| |
Collapse
|
35
|
Traversi G, Staid DS, Fiore M, Percario Z, Trisciuoglio D, Antonioletti R, Morea V, Degrassi F, Cozzi R. A novel resveratrol derivative induces mitotic arrest, centrosome fragmentation and cancer cell death by inhibiting γ-tubulin. Cell Div 2019; 14:3. [PMID: 31007707 PMCID: PMC6457039 DOI: 10.1186/s13008-019-0046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Resveratrol and its natural stilbene-containing derivatives have been extensively investigated as potential chemotherapeutic agents. The synthetic manipulation of the stilbene scaffold has led to the generation of new analogues with improved anticancer activity and better bioavailability. In the present study we investigated the anticancer activity of a novel trimethoxystilbene derivative (3,4,4'-trimethoxylstilbene), where two methoxyl groups are adjacent on the benzene ring (ortho configuration), and compared its activity to 3,5,4'-trimethoxylstilbene, whose methoxyl groups are in meta configuration. Results We provide evidence that the presence of the two methoxyl groups in ortho configuration renders 3,4,4'-trimethoxystilbene more efficient than the meta isomer in inhibiting cell proliferation and producing apoptotic death in colorectal cancer cells. Confocal microscopy of α- and γ-tubulin staining shows that the novel compound strongly depolymerizes the mitotic spindle and produces fragmentation of the pericentrosomal material. Computer assisted docking studies indicate that both molecules potentially interact with γ-tubulin, and that 3,4,4'-trimethoxystilbene is likely to establish stronger interactions with the protein. Conclusions These findings demonstrate the ortho configuration confers higher specificity for γ-tubulin with respect to α-tubulin on 3,4,4' trimethoxystilbene, allowing it to be defined as a new γ-tubulin inhibitor. A strong interaction with γ-tubulin might be a defining feature of molecules with high anticancer activity, as shown for the 3,4,4' isomer.
Collapse
Affiliation(s)
| | - David Sasah Staid
- 2Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Mario Fiore
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Zulema Percario
- 1Department of Science, University of "Roma Tre", Rome, Italy
| | - Daniela Trisciuoglio
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy.,4Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Roberto Antonioletti
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Veronica Morea
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Francesca Degrassi
- 3Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), c/o Sapienza University of Rome, Rome, Italy
| | - Renata Cozzi
- 1Department of Science, University of "Roma Tre", Rome, Italy
| |
Collapse
|
36
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Ruksha K, Mezheyeuski A, Nerovnya A, Bich T, Tur G, Gorgun J, Luduena R, Portyanko A. Over-Expression of βII-Tubulin and Especially Its Localization in Cell Nuclei Correlates with Poorer Outcomes in Colorectal Cancer. Cells 2019; 8:cells8010025. [PMID: 30621030 PMCID: PMC6357106 DOI: 10.3390/cells8010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Tubulin is a heterodimer of α and β subunits, both existing as isotypes differing in amino acid sequence encoded by different genes. Specific isotypes of tubulin have associations with cancer that are not well understood. Previous studies found that βII-tubulin is expressed in a number of transformed cells and that this isotype is found in cell nuclei in non-microtubule form. The association of βII expression and its nuclear localization with cancer progression has not previously been addressed. We here used a monoclonal antibody to βII to examine patients with colorectal cancer and found that patients whose tumors over-express βII have a greatly decreased life expectancy which is even shorter in those patients with nuclear βII. Our results suggest that βII-tubulin may facilitate cancer growth and metastasis and, to accomplish this, may not need to be in microtubule form. Furthermore, βII expression and localization could be a useful prognostic marker. We also found that βII appears in the nuclei of otherwise normal cells adjacent to the tumor. It is possible therefore that cancer cells expressing βII influence nearby cells to do the same and to localize βII in their nuclei by an as yet uncharacterized regulatory pathway.
Collapse
Affiliation(s)
- Kseniya Ruksha
- N.N. Alexandrov National Cancer Centre of Belarus, 223040 Minsk, Belarus.
| | - Artur Mezheyeuski
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Alexander Nerovnya
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Tatyana Bich
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Gennady Tur
- Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus.
| | - Julia Gorgun
- Department of Gastroenterology and Nutrition, Belarusian Medical Academy of Post-Graduate Education, 220013 Minsk, Belarus.
| | - Richard Luduena
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| | - Anna Portyanko
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| |
Collapse
|
38
|
Allosteric Modulators of Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:313-334. [PMID: 31707709 DOI: 10.1007/978-981-13-8719-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) represent promising drug targets of broad-spectrum therapeutic interests due to their critical implications in both health and disease circumstances. Hence, they are widely accepted as the Holy Grail of drug development. Historically, PPIs were rendered "undruggable" for their large, flat, and pocket-less structures. Current attempts to drug these "intractable" targets include orthosteric and allosteric methodologies. Previous efforts employing orthosteric approaches like protein therapeutics and orthosteric small molecules frequently suffered from poor performance caused by the difficulties in directly targeting PPI interfaces. As structural biology progresses rapidly, allosteric modulators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have gradually established as a potential solution. Allosteric pockets are topologically distal from the PPI orthosteric sites, and their ligands do not need to compete with the PPI partners, which helps to improve the physiochemical and pharmacological properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is regarded as a tempting strategy in future PPI drug discovery. Here, we provide a comprehensive review of our representative achievements along the way we utilize allosteric effects to tame the difficult PPI systems into druggable targets. Importantly, we provide an in-depth mechanistic analysis of this success, which will be instructive to future related lead optimizations and drug design. Finally, we discuss the current challenges in allosteric PPI drug discovery. Their solutions as well as future perspectives are also presented.
Collapse
|
39
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
40
|
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Taja-Chayeb L, Morales-Barcenas R, Trejo-Becerril C, Perez-Cardenas E, Gonzalez-Fierro A, Dueñas-González A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27:475-489. [PMID: 29723075 DOI: 10.1080/13543784.2018.1471132] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cancer cells have increased glycolysis and glutaminolysis. Their third feature is increased de novo lipogenesis. As such, fatty acid (FA) synthesis enzymes are over-expressed in cancer and their depletion causes antitumor effects. As fatty acid synthase (FASN) plays a pivotal role in this process, it is an attractive target for cancer therapy. AREAS COVERED This is a review of the lipogenic phenotype of cancer and how this phenomenon can be exploited for cancer therapy using inhibitors of FASN, with particular emphasis on orlistat as a repurposing drug. EXPERT OPINION Disease stabilization only has been observed with a highly selective FASN inhibitor used as a single agent in clinical trials. It is too early to say whether the absence of tumor responses other than stabilization results because even full inhibition of FASN is not enough to elicit antitumor responses. The FASN inhibitor orlistat is a 'dirty' drug with target-off actions upon at least seven targets with a proven role in tumor biology. The development of orlistat formulations suited for its intravenous administration is a step ahead to shed light on the concept that drug promiscuity can or not be a virtue.
Collapse
Affiliation(s)
| | - Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Rocio Morales-Barcenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Alfonso Dueñas-González
- b Unit of Biomedical Research in Cancer , Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia , Mexico City , Mexico
| |
Collapse
|
41
|
Chen J, Castelvecchi GD, Li-Villarreal N, Raught B, Krezel AM, McNeill H, Solnica-Krezel L. Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 2018; 45:376-391.e5. [PMID: 29738714 PMCID: PMC5983389 DOI: 10.1016/j.devcel.2018.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gina D Castelvecchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|