1
|
Kamiński P, Lorek M, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Tkaczenko H, Owoc J, Woźniak A, Kurhaluk N. Role of antioxidants in the neurobiology of drug addiction: An update. Biomed Pharmacother 2024; 175:116604. [PMID: 38692055 DOI: 10.1016/j.biopha.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Relationships between protective enzymatic and non-enzymatic pro-antioxidant mechanisms and addictive substances use disorders (SUDs) are analyzed here, based on the results of previous research, as well as on the basis of our current own studies. This review introduces new aspects of comparative analysis of associations of pro-antixidant and neurobiological effects in patients taking psychoactive substances and complements very limited knowledge about relationships with SUDs from different regions, mainly Europe. In view of the few studies on relations between antioxidants and neurobiological processes acting in patients taking psychoactive substances, this review is important from the point of view of showing the state of knowledge, directions of diagnosis and treatment, and further research needed explanation. We found significant correlations between chemical elements, pro-antioxidative mechanisms, and lipoperoxidation in the development of disorders associated with use of addictive substances, therefore elements that show most relations (Pr, Na, Mn, Y, Sc, La, Cr, Al, Ca, Sb, Cd, Pb, As, Hg, Ni) may be significant factors shaping SUDs. The action of pro-antioxidant defense and lipid peroxidation depends on the pro-antioxidative activity of ions. We explain the strongest correlations between Mg and Sb, and lipoperoxidation in addicts, which proves their stimulating effect on lipoperoxidation and on the induction of oxidative stress. We discussed which mechanisms and neurobiological processes change susceptibility to SUDs. The innovation of this review is to show that addicted people have lower activity of dismutases and peroxidases than healthy ones, which indicates disorders of antioxidant system and depletion of enzymes after long-term tolerance of stressors. We explain higher level of catalases, reductases, ceruloplasmin, bilirubin, retinol, α-tocopherol and uric acid of addicts. In view of poorly understood factors affecting addiction, analysis of interactions allows for more effective understanding of pathogenetic mechanisms leading to formation of addiction and development the initiation of directed, more effective treatment (pharmacological, hormonal) and may be helpful in the diagnosis of psychoactive changes.
Collapse
Affiliation(s)
- Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland; University of Zielona Góra, Faculty of Biological Sciences, Institute of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran St. 1, Zielona Góra PL 65-516, Poland.
| | - Małgorzata Lorek
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Jędrzej Baszyński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Tadeusz Tadrowski
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Dermatology and Venereology, Faculty of Medicine M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Edward Jacek Gorzelańczyk
- Kazimierz Wielki University in Bydgoszcz, Institute of Philosophy, M.K. Ogińskiego St. 16, Bydgoszcz PL 85-092, Poland; Adam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science, Uniwersyt Poznański St, 4, Poznań PL 61-614, Poland; Primate Cardinal Stefan Wyszyński Provincial Hospital in Sieradz, Psychiatric Centre in Warta, Sieradzka St. 3, Warta PL 98-290, Poland; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Faculty of Pharmacy, Jagiellońska St. 15, Bydgoszcz PL 85-067, Poland
| | - Julia Feit
- Pallmed sp. z o.o., W. Roentgen St. 3, Bydgoszcz PL 85-796, Poland
| | - Halina Tkaczenko
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| | - Jakub Owoc
- National Institute of Geriatrics, Rheumatology and Rehabilitation named after prof. dr hab. Eleonora Reicher, MD, Spartańska St. 1, Warszawa PL 02-637, Poland
| | - Alina Woźniak
- Nicholaus Copernicus University, Collegium Medicum in Bydgoszcz, Department of Medical Biology and Biochemistry, M. Karłowicz St. 24, Bydgoszcz PL 85-092, Poland
| | - Natalia Kurhaluk
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| |
Collapse
|
2
|
Dorado-Martínez C, Montiel-Flores E, Ordoñez-Librado JL, Gutierrez-Valdez AL, Garcia-Caballero CA, Sanchez-Betancourt J, Reynoso-Erazo L, Tron-Alvarez R, Rodríguez-Lara V, Avila-Costa MR. Histological and Memory Alterations in an Innovative Alzheimer's Disease Animal Model by Vanadium Pentoxide Inhalation. J Alzheimers Dis 2024; 99:121-143. [PMID: 38640149 DOI: 10.3233/jad-230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-β (Aβ) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aβ plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.
Collapse
Affiliation(s)
- Claudia Dorado-Martínez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Enrique Montiel-Flores
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Jose Luis Ordoñez-Librado
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Ana Luisa Gutierrez-Valdez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | - Cesar Alfonso Garcia-Caballero
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| | | | - Leonardo Reynoso-Erazo
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Rocio Tron-Alvarez
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Vianey Rodríguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. Mex., Mexico
| |
Collapse
|
3
|
Zhang Q, Ma Y, Liu H, Gu J, Sun X. Comparison of the Effects on Bovine Serum Albumin Induced by Different Forms of Vanadium. Biol Trace Elem Res 2023; 201:3088-3098. [PMID: 35915278 DOI: 10.1007/s12011-022-03373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
Various forms of vanadium coexist in vivo, and the behavior mechanism is different. An investigation of the separate and simultaneous binding of three vanadium forms with bovine serum albumin (BSA) was performed. VO(acac)2/NaVO3/VOSO4 bound to site I of BSA, and their binding constants were 4.26 × 105, 9.18 × 103, and 4.31 × 102 L mol-1 at 298 K, respectively. VO(acac)2 had the strongest binding ability to BSA and had the most influence on the secondary structure of BSA and the microenvironment of around amino acid residues. The effect of NaVO3 and VOSO4 coexistence on the binding of VO(acac)2 to BSA was therefore further investigated. Both NaVO3 and VOSO4 had an effect on the binding of VO(acac)2 and BSA, with NaVO3 having the most noticeable effect. NaVO3 interfered with the binding process of VO(acac)2 and BSA, increased the binding constant, and changed the binding forces between them. Competition and allosteric effect may be responsible for the change of binding process between VO(acac)2 and BSA in the presence of NaVO3/VOSO4.
Collapse
Affiliation(s)
- Qionghua Zhang
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China.
| | - Xuekai Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| |
Collapse
|
4
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
5
|
Coyte RM, Harkness JS, Darrah TH. The Abundance of Trace Elements in Human Bone Relative to Bone Type and Bone Pathology. GEOHEALTH 2022; 6:e2021GH000556. [PMID: 35663618 PMCID: PMC9148180 DOI: 10.1029/2021gh000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
As the global population ages and the proportion of individuals afflicted with musculoskeletal disease spirals upward, there is an increasing interest in understanding and preventing bone-related diseases. Bone diseases, such as osteoporosis and osteoarthritis, are known to be influenced by a variety of factors including age, gender, nutrition, and genetics, but are also inherently linked to the human body's ability to produce biominerals of suitable quality. Because the crystal lattice structure and mineralogy of bone hydroxyapatite is surprisingly analogous to geological hydroxyapatite, trace element levels and exposure have long been proposed to influence the structure of biominerals as they do geological minerals (e.g., strontium substitution changes the crystal lattice of bone minerals, while toxic lead disrupt bone cellular processes leading to bone disease). Here, we explore the distribution of trace elements in human bones to evaluate the distribution of these elements with respect to bone type (cortical vs. trabecular) and bone disease (osteoarthritis vs. osteoporosis). We find higher concentrations of many metabolically active transition metals, as well as lead, in cortical bone compared to trabecular bone. When compared to patients who have osteoarthritis, and thus presumably normal bone minerals, osteoporosis patients have higher concentrations of scandium and chromium (Cr) in trabecular bone, and Cr and lead in cortical bone. Lower concentrations of barium and titanium are associated with osteoporotic trabecular bone. This survey is an exploratory cross-sectional geochemical examination of several trace element concentrations previously understudied in human bone minerals.
Collapse
Affiliation(s)
- Rachel M. Coyte
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| | - Jennifer S. Harkness
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
- Now at California Water Science CenterU.S. Geological SurveySacramentoCAUSA
| | - Thomas H. Darrah
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
- Global Water InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
6
|
Anti-Cancer Evaluation of Mineral Colloids Against MCF-7 Cell Lines: An Investigation Through Thermal Spring Water. Macromol Res 2022. [DOI: 10.1007/s13233-022-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Nature inspired poly (dopamine quinone -vanadyl) as new modifier for voltammetric determination of uric acid. Mikrochim Acta 2020; 187:411. [PMID: 32602064 DOI: 10.1007/s00604-020-04375-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
The preparation of a novel polymer (poly(dopamine quinone-vanadyl) (polyDQV)) bearing dopaminequinone and VOIV redox groups is described. PolyDQV was characterized using field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, UV-Vis spectroscopy as well as electrochemical methods such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity of polyDQV was studied toward electrooxidation of uric acid using differential pulse voltammetry as well as cyclic voltammetry. PolyDQV presents interesting electrocatalytic activity toward UA oxidation in phosphate buffer solution (0.1 M, pH 2) to a well-defined oxidation peak at 0.65 V (vs. Ag/AgCl). The polyDQV-modified carbon paste electrode (CPE/polyDQV) presents a precise linear signal-concentration relationship in the ranges of 0.3-5 μM and 5 to 200 μM with a detection limit (S/N = 3) of 0.02 μM. The %RSD values for ten replicate measurements of 0.5 and 50 μM UA were 1.8 and 3%, respectively, indicating good repeatability of analytical signals. Appropriate recovery values (in the range 96 to 103%) and good selectivity for UA over common coexisting species (such as ascorbic acid and dopamine) exhibit that CPE/polyDQV is a promising novel platform for sensing UA in human blood serum and urine samples. Graphical abstract.
Collapse
|
9
|
Dai X, Deng Q, Guo D, Ni L, Li J, Chen Z, Zhang L, Xu T, Song W, Luo Y, Hu L, Hu C, Yi G, Pan Z. Association of urinary metal profiles with serum uric acid: a cross-sectional study of traffic policemen in Wuhan, China. BMJ Open 2019; 9:e022542. [PMID: 31079077 PMCID: PMC6530447 DOI: 10.1136/bmjopen-2018-022542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Serum uric acid (SUA) is both a strong antioxidant and one of the key risk factors of cardiovascular diseases (CVDs). We aimed to investigate the associations of urinary metal profile with SUA in traffic policemen in Wuhan, China. DESIGN A cross-sectional study was carried out in traffic policemen. SETTING A seriously polluted Chinese city. PARTICIPANTS A total of 186 traffic policemen were recruited in this study. About 56 of them worked in the logistics department and the other 130 maintained traffic order or dealt with traffic accidents on the roads. All these subjects had worked as a policeman for at least 1 year. MAIN OUTCOME MEASURES SUA. RESULTS The significantly negative association of lead with SUA was consistent between single-metal and multiple-metal models (p=0.004 and p=0.020, respectively). Vanadium, chromium and tin were reversely associated with SUA levels in the single-metal models after false discovery rate (FDR) adjustment (all P_FDR < 0.05). One IQR increase in vanadium, chromium, tin and lead was associated with 26.9 µmol/L (95% CI -44.6 to -9.2; p=0.003), 27.4 µmol/L (95% CI -46.1 to -8.8; p=0.004), 11.2 µmol/L (95% CI -18.9 to -3.4; p=0.005) and 16.4 µmol/L (95% CI -27.6 to -5.2; p=0.004) decrease in SUA, respectively. Significant interaction between smoking and vanadium on decreased SUV was found (pfor interaction = 0.007 and p_FDR = 0.028). CONCLUSIONS Urinary vanadium, chromium, tin and lead were negatively associated with SUA. Vanadium and cigarette smoking jointly affected SUA levels. Further studies are needed to replicate these findings and to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Xiayun Dai
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Qifei Deng
- Faculty of Preventive Medicine, Guangzhou Key Laboratory of Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dongmei Guo
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Lei Ni
- Physical Examination Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Jichao Li
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Zhenlong Chen
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Ling Zhang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Tian Xu
- Radiology Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Weili Song
- Clinical Chemistry Laboratory, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Yongbin Luo
- Clinical Chemistry Laboratory, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Ling Hu
- Physical Examination Department, Wuhan Red Cross Hospital, Wuhan, China
| | - Caiying Hu
- Physical Examination Department, Wuhan Red Cross Hospital, Wuhan, China
| | - Guilin Yi
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| | - Zhiwei Pan
- Medical Department, Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, China
| |
Collapse
|
10
|
Sarkar S, Malovic E, Jin H, Kanthasamy A, Kanthasamy AG. The role of manganese in neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Ferrante M, Spena MT, Hernout BV, Grasso A, Messina A, Grasso R, Agnelli P, Brundo MV, Copat C. Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the eastern side of Sicily (Italy): A comparison between a control and a polluted area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:273-285. [PMID: 29751326 DOI: 10.1016/j.envpol.2018.04.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution is a topic of great interest because it directly affects the quality of ecosystems and of all living organisms at different trophic and systematic levels. Together with the global climate change, the long-term surviving of many species of plants and animals is threaten, distributional patterns at global and regional levels are altered and it results in local assemblages of species that are quite different from those that currently constitute coevolved communities. .For this study, the species Myotis myotis was used as bioindicator and it was sampled from two caves in the south-east of Sicily, Pipistrelli chosen as control area and Palombara chosen as polluted area, to measure the concentrations of trace elements in fur and liver tissues. Results showed higher content of essential elements in fur in bats sampled from Pipistrelli. Conversely, higher concentrations of toxic metals in liver such as As, Cd, Pb and Hg were measured in bat samples in Palombara cave, where specimens have a hunting area extended within the boundaries of the petrochemical plant. Nevertheless, we cannot consider Palombara population as polluted by metal contamination since their tissue concentrations are overall lower than toxic thresholds values suggested for small mammals. Likewise, we cannot exclude other kind of pollutants as potential stressors of the examined population, contributing with the decreasing of bat colonies in Sicily.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Maria Teresa Spena
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, Catania 95124, Italy
| | - Béatrice Veronique Hernout
- Texas A&M Galveston Campus, Department of Marine Biology, 1001 Texas Clipper Road Galveston, TX 77554, USA
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Andrea Messina
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, Catania 95124, Italy
| | - Rosario Grasso
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, Catania 95124, Italy
| | - Paolo Agnelli
- Museo di Storia Naturale dell'Università degli Studi di Firenze, Sezione di Zoologia "La Specola", Via Romana 17, 50125 Firenze, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Via Androne 81, Catania 95124, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy.
| |
Collapse
|