1
|
Kameli N, Basode VK, Abdulhaq A, Alamoudi MUA, Zain KAM, Ghzwani AH. Prevalence of toxigenic Clostridium difficile in hospitalized patients in the southwestern province of Saudi Arabia: Confirmation using the GeneXpert analysis. Libyan J Med 2024; 19:2294571. [PMID: 38112195 DOI: 10.1080/19932820.2023.2294571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
Clostridium difficile (Clostridioides difficile) is a leading cause of nosocomial infections in hospitalized patients worldwide. Stool samples were collected from 112 inpatients admitted to different hospitals and were screened for C. difficile GDH + toxin A + B by immunoassay, and all positive samples by immunoassay were processed for molecular detection of C. difficile using the GeneXpert assay. C. difficile strains were detected in 12 (10.71%) out of 112 stool samples using the GDH + toxin A + B immunoassay method and toxigenic C. difficile was confirmed in 5 stool samples using the GeneXpert molecular assay. C. difficile strains were also detected in 7 (8.97%) out of 78 stool samples from intensive care unit patients, 3 (25%) out of 12 stool samples from internal medicine ward patients, 1 (11.11%) out of 9 stool samples from surgery ward patients, and 1 (10%) out of 10 stool samples from isolation ward patients using the GDH + toxin A + B immunoassay method and the toxigenic C. difficile strain was confirmed in 1, 2, 1, and 1 stool samples, respectively, using the GeneXpert molecular assay. Toxigenic C. difficile was confirmed in patients at 4 (51.14%) out of 7 hospitals. In the present study, we also analyzed the clinical information of patients with C. difficile-positive stool samples who were receiving one or more antibiotics during hospitalization. The binary toxin gene (cdt), the tcdC gene, and the C. difficile strain polymerase chain reaction (PCR) ribotype 027 were not detected using the GeneXpert molecular assay among 12 C. difficile-positive samples by immunoassay. This study should aid in the prevention of unnecessary empiric therapy and increase the understanding of the toxigenic C. difficile burden on the healthcare system in the southwestern province of Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Ahmed Abdulhaq
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammed Uthman A Alamoudi
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Khalid Amaash Mohammed Zain
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Ahmad Hassn Ghzwani
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Manthey CF, Epple HJ, Keller KM, Lübbert C, Posovszky C, Ramharter M, Reuken P, Suerbaum S, Vehreschild M, Weinke T, Addo MM, Stallmach A, Lohse AW. S2k-Leitlinie Gastrointestinale Infektionen der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1090-1149. [PMID: 38976986 DOI: 10.1055/a-2240-1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Carolin F Manthey
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Gemeinschaftspraxis Innere Medizin Witten, Witten, Deutschland
| | - Hans-Jörg Epple
- Antibiotic Stewardship, Vorstand Krankenversorgung, Universitätsmedizin Berlin, Berlin, Deutschland
| | - Klaus-Michael Keller
- Klinik für Kinder- und Jugendmedizin, Helios Dr. Horst Schmidt Kliniken, Klinik für Kinder- und Jugendmedizin, Wiesbaden, Deutschland
| | - Christoph Lübbert
- Bereich Infektiologie und Tropenmedizin, Medizinische Klinik I (Hämatologie, Zelltherapie, Infektiologie und Hämostaseologie), Universitätsklinikum Leipzig, Leipzig, Deutschland
| | | | - Michael Ramharter
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Philipp Reuken
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Sebastian Suerbaum
- Universität München, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Deutschland
| | - Maria Vehreschild
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Weinke
- Klinik für Gastroenterologie und Infektiologie, Klinikum Ernst von Bergmann, Potsdam, Deutschland
| | - Marylyn M Addo
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Institut für Infektionsforschung und Impfstoffentwicklung Sektion Infektiologie, I. Med. Klinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Andreas Stallmach
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Ansgar W Lohse
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
3
|
Hunault L, England P, Barbut F, Iannascoli B, Godon O, Déjardin F, Thomas C, Dupuy B, Guo C, Macdonald L, Gorochov G, Sterlin D, Bruhns P. A monoclonal antibody collection for C. difficile typing ? Gut Pathog 2024; 16:4. [PMID: 38243246 PMCID: PMC10797914 DOI: 10.1186/s13099-023-00592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in adults. Various C. difficile strains circulate currently, associated with different outcomes and antibiotic resistance profiles. However, most studies still focus on the reference strain 630 that does not circulate anymore, partly due to the lack of immunological tools to study current clinically important C. difficile PCR ribotypes. The goal of this study was to generate monoclonal antibodies recognizing various epidemic ribotypes of C. difficile. To do so, we immunized mice expressing human variable antibody genes with the Low Molecular Weight (LMW) subunit of the surface layer protein SlpA from various C. difficile strains. Monoclonal antibodies purified from hybridomas bound LMW with high-affinity and whole bacteria from current C. difficile ribotypes with different cross-specificities. This first collection of anti-C. difficile mAbs represent valuable tools for basic and clinical research.
Collapse
Affiliation(s)
- Lise Hunault
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015, Paris, France
| | - Frédéric Barbut
- National Reference Laboratory for Clostridium difficile, 75012, Paris, France
- Université Paris Cité, INSERM UMR-1139, Paris, France
| | - Bruno Iannascoli
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
| | - Ophélie Godon
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
| | - François Déjardin
- Production and Purification of Recombinant Proteins Facility, Institut Pasteur, 75015, Paris, France
| | - Christophe Thomas
- Production and Purification of Recombinant Proteins Facility, Institut Pasteur, 75015, Paris, France
| | - Bruno Dupuy
- UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, 75015, Paris, France
| | | | | | - Guy Gorochov
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France.
| | - Delphine Sterlin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France
| | - Pierre Bruhns
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France.
| |
Collapse
|
4
|
Abad-Fau A, Sevilla E, Martín-Burriel I, Moreno B, Bolea R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023; 11:1752. [PMID: 37512924 PMCID: PMC10384772 DOI: 10.3390/microorganisms11071752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Eloísa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Marcos P, Doyle A, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023; 11:1296. [PMID: 37317270 DOI: 10.3390/microorganisms11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to characterize C. difficile isolates from the farm, abattoir, and retail outlets in Ireland in terms of ribotype and antibiotic resistance (vancomycin, erythromycin, metronidazole, moxifloxacin, clindamycin, and rifampicin) using PCR and E-test methods, respectively. The most common ribotype in all stages of the food chain (including retail foods) was 078 and a variant (RT078/4). Less commonly reported (014/0, 002/1, 049, and 205) and novel (RT530, 547, and 683) ribotypes were also detected, but at lower frequencies. Approximately 72% (26/36 tested) of the isolates tested were resistant to at least one antibiotic, with the majority of these (65%; 17/26) displaying a multi-drug (three to five antibiotics) resistant phenotype. It was concluded that ribotype 078, a hypervirulent strain commonly associated with C. difficile infection (CDI) in Ireland, was the most frequent ribotype along the food chain, resistance to clinically important antibiotics was common in C. difficile food chain isolates, and there was no relationship between ribotype and antibiotic resistance profile.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Aoife Doyle
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
| |
Collapse
|
6
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:ijms24098155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
7
|
High Prevalence of Clostridioides difficile Ribotype 176 in the University Hospital in Kosice. Pathogens 2023; 12:pathogens12030430. [PMID: 36986352 PMCID: PMC10055383 DOI: 10.3390/pathogens12030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Dysbiosis of the gut microbiota, caused by antibiotics, plays a key role in the establishment of Clostridioides difficile CD). Toxin-producing strains are involved in the pathogenesis of Clostridioides difficile infection (CDI), one of the most common hospital-acquired infections. We cultured a total of 84 C. difficile isolates from stool samples of patients hospitalized at Louis Pasteur University Hospital in Kosice, Slovakia, that were suspected of CDI and further characterized by molecular methods. The presence of genes encoding toxin A, toxin B, and binary toxin was assessed by toxin-specific PCR. CD ribotypes were detected using capillary-based electrophoresis ribotyping. A total of 96.4% of CD isolates carried genes encoding toxins A and B, and 54.8% of them were positive for the binary toxin. PCR ribotyping showed the presence of three major ribotypes: RT 176 (n = 40, 47.6%); RT 001 (n = 23, 27.4%); and RT 014 (n = 7, 8.3%). Ribotype 176 predominated among clinical CD isolates in our hospital. The proportion of RT 176 and RT 001 in four hospital departments with the highest incidence of CDI cases was very specific, pointing to local CDI outbreaks. Based on our data, previous use of antibiotics represents a significant risk factor for the development of CDI in patients over 65 years of age.
Collapse
|
8
|
Crivaro AN, Carasi P, Salto I, Hugo A, Soldavini Pelichotti PC, Bengoa A, Fragomeno M, Serradell MA, Minnaard J, Rolny I, Alul E, Arregui L, Fabra Martinez ME, Moreno Valero OJ, Facente A, Magariños F, Jewtuchowicz V, Pérez PF, Trejo FM. Clostridioides difficile: Characterization of the circulating toxinotypes in an Argentinean public hospital. Rev Argent Microbiol 2023; 55:73-82. [PMID: 35840437 DOI: 10.1016/j.ram.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Clostridioides difficile is a spore-forming anaerobe microorganism associated to nosocomial diarrhea. Its virulence is mainly associated with TcdA and TcdB toxins, encoded by their respective tcdA and tcdB genes. These genes are part of the pathogenicity locus (PaLoc). Our aim was to characterize relevant C. difficile toxinotypes circulating in the hospital setting. The tcdA and tcdB genes were amplified and digested with different restriction enzymes: EcoRI for tcdA; HincII and AccI for tcdB. In addition, the presence of the cdtB (binary toxin) gene, TcdA and TcdB toxins by dot blot and the cytotoxic effect of culture supernatants on Vero cells, were evaluated. Altogether, these studies revealed three different circulating toxinotypes according to Rupnik's classification: 0, I and VIII, being the latter the most prevalent one. Even though more studies are certainly necessary (e.g. sequencing analysis), it is worth noting that the occurrence of toxinotype I could be related to the introduction of bacteria from different geographical origins. The multivariate analysis conducted on the laboratory values of individuals infected with the most prevalent toxinotype (VIII) showed that the isolates associated with fatal outcomes (GCD13, GCD14 and GCD22) are located in regions of the biplots related to altered laboratory values at admission. In other patients, although laboratory values at admission were not correlated, levels of urea, creatinine and white blood cells were positively correlated after the infection was diagnosed. Our study reveals the circulation of different toxinotypes of C. difficile strains in this public hospital. The variety of toxinotypes can arise from pre-existing microorganisms as well as through the introduction of bacteria from other geographical regions. The existence of microorganisms with different pathogenic potential is relevant for the control, follow-up, and treatment of the infections.
Collapse
Affiliation(s)
- Andrea N Crivaro
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Paula Carasi
- IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Ileana Salto
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
| | - Ayelen Hugo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| | - P Cecilia Soldavini Pelichotti
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| | - Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| | - Melisa Fragomeno
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| | - María A Serradell
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina
| | - Jessica Minnaard
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| | - Ivanna Rolny
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; IIFP, Universidad Nacional de La Plata, CONICET, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Eduardo Alul
- Luisa G de Gandulfo Hospital, Lomas de Zamora, Buenos Aires, Argentina
| | - Leandro Arregui
- Luisa G de Gandulfo Hospital, Lomas de Zamora, Buenos Aires, Argentina
| | | | | | - Andrea Facente
- Luisa G de Gandulfo Hospital, Lomas de Zamora, Buenos Aires, Argentina
| | | | | | - Pablo F Pérez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina.
| | - Fernando M Trejo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP-CIC PBA, 47 y 116 (s/n), La Plata 1900, Argentina
| |
Collapse
|
9
|
Horvat S, Mahnic A, Makuc D, Pečnik K, Plavec J, Rupnik M. Children gut microbiota exhibits a different composition and metabolic profile after in vitro exposure to Clostridioides difficile and increases its sporulation. Front Microbiol 2022; 13:1042526. [PMID: 36569098 PMCID: PMC9780542 DOI: 10.3389/fmicb.2022.1042526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (Clostridium difficile) infection (CDI) is one of the main public health concerns in adults, while children under 2 years of age are often colonized asymptomatically. In both adults and children, CDI is strongly associated with disturbances in gut microbiota. In this study, an in-vitro model of children gut microbiota was challenged with vegetative cells or a conditioned media of six different toxigenic C. difficile strains belonging to the ribotypes 027, 078, and 176. In the presence of C. difficile or conditioned medium the children gut microbiota diversity decreased and all main phyla (Bacteroidetes, Firmicutes, and Proteobacteria) were affected. The NMR metabolic spectra divided C. difficile exposed children gut microbiota into three clusters. The grouping correlated with nine metabolites (short chain fatty acids, ethanol, phenolic acids and tyramine). All strains were able to grow in the presence of children gut microbiota and showed a high sporulation rate of up to 57%. This high sporulation rate in combination with high asymptomatic carriage in children could contribute to the understanding of the reported role of children in C. difficile transmissions.
Collapse
Affiliation(s)
- Sabina Horvat
- Department of Microbiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleksander Mahnic
- Department of Microbiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia,Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Maribor, Slovenia
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Klemen Pečnik
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Maja Rupnik
- Department of Microbiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia,Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Maribor, Slovenia,*Correspondence: Maja Rupnik,
| |
Collapse
|
10
|
Mitchell M, Nguyen SV, Macori G, Bolton D, McMullan G, Drudy D, Fanning S. Clostridioides difficile as a Potential Pathogen of Importance to One Health: A Review. Foodborne Pathog Dis 2022; 19:806-816. [PMID: 36516404 DOI: 10.1089/fpd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile (basonym Clostridium) is a bacterial enteropathogen associated with cases of C. difficile infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, C. difficile was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, C. difficile spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products. Furthermore, evidence has emerged of hypervirulent ribotypes (RTs), such as RT078, similar to those cultured in asymptomatic carriers, also being identified in these environments. This finding may reflect on adaptations arising in these bacteria following selection pressures encountered in these niches, and which occurs due to an increase in antimicrobial usage in both clinical and veterinary settings. As C. difficile continues to adapt to new ecological niches, the taxonomy of this genus has also been evolving. To help understand the transmission and virulence potential of these bacteria of importance to veterinary public health, strategies applying multi-omics-based technologies may prove useful. These approaches may extend our current understanding of this recognized nosocomial pathogen, perhaps redefining it as a zoonotic bacterium. In this review, a brief background on the epidemiological presentation of C. difficile will be highlighted, followed by a review of C. difficile in food-producing animals and food products. The current state of C. difficile taxonomy will provide evidence of Clade 5 (ST11/RT078) delineation, as well as background on the genomic elements linked to C. difficile virulence and ongoing speciation. Recent studies applying second- and third-generation sequencing technologies will be highlighted, and which will further strengthen the argument made by many throughout the world regarding this pathogen and its consideration within a One Health dimension.
Collapse
Affiliation(s)
- Molly Mitchell
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,District of Columbia Department of Forensic Sciences, Public Health Laboratory, Washington, District of Columbia, USA
| | - Guerrino Macori
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | | - Geoff McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
12
|
Enkirch T, Mernelius S, Magnusson C, Kühlmann‐Berenzon S, Bengnér M, Åkerlund T, Rizzardi K. Molecular epidemiology of community- and hospital-associated Clostridioides difficile infections in Jönköping, Sweden, October 2017 - March 2018. APMIS 2022; 130:661-670. [PMID: 35980252 PMCID: PMC9826108 DOI: 10.1111/apm.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
Clostridioides difficile infections (CDIs) in Sweden are mostly hospital-associated (HA) with limited knowledge regarding community-associated (CA) infections. Here, we investigated the molecular epidemiology of clinical isolates of CA-CDI and HA-CDI in a Swedish county. Data and isolates (n = 156) of CDI patients (n = 122) from Jönköping county, October 2017-March 2018, were collected and classified as CA (without previous hospital care or onset ≤2 days after admission or >12 weeks after discharge from hospital) or HA (onset >3 days after hospital admission or within 4 weeks after discharge). Molecular characterization of isolates included PCR ribotyping (n = 156 isolates) and whole genome sequencing with single nucleotide polymorphisms (SNP) analysis (n = 53 isolates). We classified 47 patients (39%) as CA-CDI and 75 (61%) as HA-CDI. Between CA-CDI and HA-CDI patients, we observed no statistically significant differences regarding gender, age, 30-day mortality or recurrence. Ribotype 005 (RR 3.1; 95% CI: 1.79-5.24) and 020 (RR 2.5; 95% CI: 1.31-4.63) were significantly associated with CA-CDI. SNP analysis identified seven clusters (0-2 SNP difference) involving 17/53 isolates of both CA-CDI and HA-CDI. Molecular epidemiology differed between CA-CDI and HA-CDI and WGS analysis suggests transmission of CDI within and between hospitals and communities.
Collapse
Affiliation(s)
- Theresa Enkirch
- Public Health Agency of SwedenSolnaSweden,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC)StockholmSweden
| | - Sara Mernelius
- Laboratory MedicineRegion Jönköping CountyJönköpingSweden,Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Cecilia Magnusson
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden,Department of Infectious DiseasesRegion Jönköping CountyJönköpingSweden
| | | | - Malin Bengnér
- Office for Control of Communicable DiseasesRegion Jönköping CountyJönköpingSweden
| | | | | |
Collapse
|
13
|
Calderaro A, Buttrini M, Farina B, Montecchini S, Martinelli M, Arcangeletti MC, Chezzi C, De Conto F. Characterization of Clostridioides difficile Strains from an Outbreak Using MALDI-TOF Mass Spectrometry. Microorganisms 2022; 10:microorganisms10071477. [PMID: 35889196 PMCID: PMC9320467 DOI: 10.3390/microorganisms10071477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The epidemiology of Clostridioides difficile infection (CDI) has changed over the last two decades, due to the emergence of C. difficile strains with clinical relevance and responsible for nosocomial outbreaks with severe outcomes. This study reports an outbreak occurred in a Long-term Care Unit from February to March 2022 and tracked by using a Matrix-Assisted Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) typing approach (T-MALDI); subsequently, a characterization of the toxigenic and antimicrobial susceptibility profiles of the C. difficile isolates was performed. A total of 143 faecal samples belonging to 112 patients was evaluated and C. difficile DNA was detected in 51 samples (46 patients). Twenty-nine C. difficile isolates were obtained, and three different clusters were revealed by T-MALDI. The most representative cluster accounted 22 strains and was considered to be epidemic, in agreement with PCR-Ribotyping. Such epidemic strains were susceptible to vancomycin (MIC ≤ 0.5 mg/mL) and metronidazole (MIC ≤ 1 mg/mL), but not to moxifloxacin (MIC > 32 mg/mL). Moreover, they produced only the Toxin A and, additionally, the binary toxin. To our knowledge, this is the first reported outbreak referable to a tcdA+/tcdB-/cdt+ genotypic profile. In light of these results, T-MALDI is a valid and rapid approach for discovering and tracking outbreaks.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
- Correspondence: ; Tel.: +39-0521-033499; Fax: +39-0521-993620
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
| | - Benedetta Farina
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
| | - Sara Montecchini
- Unit of Clinical Virology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | - Monica Martinelli
- Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | - Maria Cristina Arcangeletti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (M.B.); (B.F.); (M.C.A.); (C.C.); (F.D.C.)
| |
Collapse
|
14
|
Giles J, Roberts A. Clostridioides difficile: Current overview and future perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:215-245. [PMID: 35305720 DOI: 10.1016/bs.apcsb.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most common world-wide cause of antibiotic-associated infectious diarrhea and colitis is the toxin producing bacterium, Clostridioides difficile (C. difficile). Here we review the background and characteristics of the bacterium and the toxins produced together with the epidemiology and the complex pathogenesis that leads to a broad clinical spectrum of disease. The review describes the difficulties faced in obtaining a quick and accurate diagnosis despite the range of sensitive and specific diagnostic tools available. We also discuss the problem of disease recurrence and the importance of disease prevention. The high rates of infection recurrence mean that treatment strategies are constantly under review and we outline the diverse treatment options that are currently in use and explore the emerging treatment options of pulsed antibiotic use, microbial replacement therapies and the use of monoclonal antibodies. We summarize the future direction of treatment strategies which include the development of novel antibiotics, the administration of oral polyclonal antibody formulations, the use of vaccines, the administration of competitive non-toxigenic spores and the neutralization of antibiotics at the microbiota level. Future successful treatments will likely involve a combination of therapies to provide the most effective and robust approach to C. difficile management.
Collapse
Affiliation(s)
- Joanna Giles
- MicroPharm Ltd, Newcastle Emlyn, United Kingdom.
| | - April Roberts
- Toxins Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| |
Collapse
|
15
|
Spigaglia P. Clostridioides difficile infection (CDI) during the COVID-19 pandemic. Anaerobe 2022; 74:102518. [PMID: 35063599 PMCID: PMC8767936 DOI: 10.1016/j.anaerobe.2022.102518] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
The ongoing coronavirus disease (COVID-19) pandemic has dramatically tested healthcare systems around the world, with serious repercussions on the measures of prevention and control of hospital-acquired infections (HAIs). Among HAIs, Clostridioides difficile infection (CDI) represents one of the most important global public health threats. Although the full impact of the COVID-19 pandemic on CDI remains undetermined, depending on the development of the pandemic in the coming months, in this review literature studies of the last three years have been considered in order to depict the current situation, and make some considerations about possible future developments. If on the one hand, a general reduction in CDI incidence has been reported in several settings, mainly due to the extraordinary reinforcement of infection prevention measures, on the other hand, the critical circumstances experienced in many hospitals have limited the effectiveness of these measures, particularly in the intensive care units (ICUs), increasing the possibility of the occurrence of hospital-acquired CDI (HA-CDI). New concerns have arisen from the decrease in C. difficile testing and the increased use of broad-spectrum antibiotics reported during the pandemic. In particular, overuse of antibiotics and disinfectants may lead to a selection of resistant C. difficile strains not only in hospitals but also in the community. Furthermore, patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and patients that have survived COVID-19 may represent a new group of frail patients potentially at a higher risk of CDI, a group that could potentially increase in size due to SARS-CoV-2 evolution. In the dramatic COVID-19 era, the multifactorial nature of CDI has emerged more clearly than before, highlighting the necessity of a strong refocus on efforts to improve prevention strategies and to integrate CDI surveillance in a One Health prospective in order to curtail the public health threat posed by this infection in the next future.
Collapse
|
16
|
Martínez-Meléndez A, Tijerina-Rodríguez L, Collins N, Baines SD, Morfin-Otero R, Camacho-Ortíz A, Villarreal-Treviño L, Garza-González E. Diversity of Circulating Clostridioides difficile Ribotypes in Mexico and Susceptibility to Fidaxomicin, Vancomycin, and Metronidazole. Microb Drug Resist 2021; 27:1672-1676. [PMID: 34037477 DOI: 10.1089/mdr.2020.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we report the results of the epidemiological analysis of Clostridioides difficile ribotypes (RTs) and antimicrobial susceptibility testing. Most isolates were RT027, representing 73% (84/115) of isolates. No isolates with reduced susceptibility to fidaxomicin were found; however, 38 (33.04%) isolates had reduced susceptibility to metronidazole, and 7 isolates (6.1%) had reduced susceptibility to vancomycin. These findings highlight the need for continuous surveillance of C. difficile RTs and antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Laura Tijerina-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Nathania Collins
- Department of Clinical, Pharmaceutical, and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Simon D Baines
- Department of Clinical, Pharmaceutical, and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Rayo Morfin-Otero
- Centro Universitario de Ciencias de la Salud, Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Camacho-Ortíz
- Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Elvira Garza-González
- Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
17
|
Rapid Classification of Clostridioides difficile Strains Using MALDI-TOF MS Peak-Based Assay in Comparison with PCR-Ribotyping. Microorganisms 2021; 9:microorganisms9030661. [PMID: 33806749 PMCID: PMC8004610 DOI: 10.3390/microorganisms9030661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Typing methods are needed for epidemiological tracking of new emerging and hypervirulent strains because of the growing incidence, severity and mortality of Clostridioides difficile infections (CDI). The aim of this study was the evaluation of a typing Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS (T-MALDI)) method for the rapid classification of the circulating C. difficile strains in comparison with polymerase chain reaction (PCR)-ribotyping results. Among 95 C. difficile strains, 10 ribotypes (PR1-PR10) were identified by PCR-ribotyping. In particular, 93.7% of the isolates (89/95) were grouped in five ribotypes (PR1-PR5). For T-MALDI, two classifying algorithm models (CAM) were tested: the first CAM involved all 10 ribotypes whereas the second one only the PR1-PR5 ribotypes. Better performance was obtained using the second CAM: recognition capability of 100%, cross-validation of 96.6% and agreement of 98.4% (60 correctly typed strains, limited to PR1-PR5 classification, out of 61 examined strains) with PCR-ribotyping results. T-MALDI seems to represent an alternative to PCR-ribotyping in terms of reproducibility, set up time and costs, as well as a useful tool in epidemiological investigation for the detection of C. difficile clusters (either among CAM included ribotypes or out-of-CAM ribotypes) involved in outbreaks.
Collapse
|
18
|
Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals (Basel) 2021; 11:ani11020515. [PMID: 33669325 PMCID: PMC7920295 DOI: 10.3390/ani11020515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Clostridioides difficile is a leading cause of nosocomial and community-acquired diarrhoea in men. The infection most commonly occurs in people who have recently been treated with antibiotics. Indistinguishable C. difficile strains have been isolated from livestock and humans, which has shed light on a possible zoonotic origin of this infection. This study aimed to assess the prevalence and risk factors of C. difficile in calves bred in dairy and beef cattle farms of the Umbria, central Italy. We estimated a 19.8% prevalence of farms positive for C. difficile. The C. difficile isolates from calves were potentially toxigenic and resistant to antibiotics, including lincosamides, quinolones, vancomycin and linezolid. Isolates belonging to ribotype RT-126, which is also commonly reported in humans, showed the highest number of resistance to the antimicrobials tested. Furthermore, we observed an almost sixfold increased risk for C. difficile on farms where penicillins had been prescribed. This, together with the detection of toxigenic and antibiotic-resistant isolates, strongly suggests the need for a reduction of antibiotic use in cattle. Abstract The emergence of Clostridioides difficile as the main agent of antibiotic-associated diarrhoea has raised concerns about its potential zoonotic role in different animal species. The use of antimicrobials is a major risk factor for C. difficile infection. Here, we provide data on C. difficile infection in dairy and beef calves in Umbria, a region in central Italy. This cross-sectional study focuses on prevalence, risk factors, ribotypes, toxinotypes and antimicrobial resistance profiles of circulating ribotypes. A prevalence of 19.8% (CI95%, 12–27.6%) positive farms was estimated, and the prescription of penicillins on the farms was associated with C. difficile detection (OR = 5.58). Eleven different ribotypes were found, including the ST11 sublineages RT-126 and -078, which are also commonly reported in humans. Thirteen isolates out of 17 showed resistance to at least one of clindamycin, moxifloxacin, linezolid and vancomycin. Among them, multiple-drug resistance was observed in two isolates, belonging to RT-126. Furthermore, RT-126 isolates were positive for tetracycline resistance determinants, confirming that tetracycline resistance is widespread among ST11 isolates from cattle. The administration of penicillins increased the risk of C. difficile in calves: this, together with the recovery of multi-resistant strains, strongly suggests the need for minimising antibiotic misuse on cattle farms.
Collapse
|
19
|
Aguilar-Zamora E, Weimer BC, Torres RC, Gómez-Delgado A, Ortiz-Olvera N, Aparicio-Ozores G, Barbero-Becerra VJ, Torres J, Camorlinga-Ponce M. Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front Microbiol 2021; 12:787451. [PMID: 35360652 PMCID: PMC8960119 DOI: 10.3389/fmicb.2021.787451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a global public health problem, which is a primary cause of antibiotic-associated diarrhea in humans. The emergence of hypervirulent and antibiotic-resistant strains is associated with the increased incidence and severity of the disease. There are limited studies on genomic characterization of C. difficile in Latin America. We aimed to learn about the molecular epidemiology and antimicrobial resistance in C. difficile strains from adults and children in hospitals of México. We studied 94 C. difficile isolates from seven hospitals in Mexico City from 2014 to 2018. Whole-genome sequencing (WGS) was used to determine the genotype and examine the toxigenic profiles. Susceptibility to antibiotics was determined by E-test. Multilocus sequence typing (MLST) was used to determine allelic profiles. Results identified 20 different sequence types (ST) in the 94 isolates, mostly clade 2 and clade 1. ST1 was predominant in isolates from adult and children. Toxigenic strains comprised 87.2% of the isolates that were combinations of tcdAB and cdtAB (tcdA+/tcdB+/cdtA+/cdtB+, followed by tcdA+/tcdB+/cdtA-/cdtB-, tcdA-/tcdB+/cdtA-/ cdtB-, and tcdA-/tcdB-/cdtA+/cdtB+). Toxin profiles were more diverse in isolates from children. All 94 isolates were susceptible to metronidazole and vancomycin, whereas a considerable number of isolates were resistant to clindamycin, fluroquinolones, rifampicin, meropenem, and linezolid. Multidrug-resistant isolates (≥3 antibiotics) comprised 65% of the isolates. The correlation between resistant genotypes and phenotypes was evaluated by the kappa test. Mutations in rpoB and rpoC showed moderate concordance with resistance to rifampicin and mutations in fusA substantial concordance with fusidic acid resistance. cfrE, a gene recently described in one Mexican isolate, was present in 65% of strains linezolid resistant, all ST1 organisms. WGS is a powerful tool to genotype and characterize virulence and antibiotic susceptibility patterns.
Collapse
Affiliation(s)
- Emmanuel Aguilar-Zamora
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Roberto C. Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Alejandro Gómez-Delgado
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Nayeli Ortiz-Olvera
- Departamento de Gastroenterología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- *Correspondence: Javier Torres,
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Margarita Camorlinga-Ponce,
| |
Collapse
|
20
|
Ye J, Chu AJ, Lin L, Chan ST, Harper R, Xiao M, Artsimovitch I, Zuo Z, Ma C, Yang X. Benzyl and benzoyl benzoic acid inhibitors of bacterial RNA polymerase-sigma factor interaction. Eur J Med Chem 2020; 208:112671. [PMID: 32920341 PMCID: PMC7680358 DOI: 10.1016/j.ejmech.2020.112671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Transcription is an essential biological process in bacteria requiring a core enzyme, RNA polymerase (RNAP). Bacterial RNAP is catalytically active but requires sigma (σ) factors for transcription of natural DNA templates. σ factor binds to RNAP to form a holoenzyme which specifically recognizes a promoter, melts the DNA duplex, and commences RNA synthesis. Inhibiting the binding of σ to RNAP is expected to inhibit bacterial transcription and growth. We previously identified a triaryl hit compound that mimics σ at its major binding site of RNAP, thereby inhibiting the RNAP holoenzyme formation. In this study, we modified this scaffold to provide a series of benzyl and benzoyl benzoic acid derivatives possessing improved antimicrobial activity. A representative compound demonstrated excellent activity against Staphylococcus epidermidis with minimum inhibitory concentrations reduced to 0.5 μg/mL, matching that of vancomycin. The molecular mechanism of inhibition was confirmed using biochemical and cellular assays. Low cytotoxicity and metabolic stability of compounds demonstrated the potential for further studies.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Adrian Jun Chu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lin Lin
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Shu Ting Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Rachel Harper
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Min Xiao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
21
|
Barbanti F, Spigaglia P. Microbiological characteristics of human and animal isolates of Clostridioides difficile in Italy: Results of the Istituto Superiore di Sanità in the years 2006-2016. Anaerobe 2019; 61:102136. [PMID: 31857201 DOI: 10.1016/j.anaerobe.2019.102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
The increased incidence of Clostridioides difficile infection (CDI) and the emergence of highly virulent types highlight the need of microbiological characterization to gain insight CDI epidemiological changes. This paper, reporting data obtained by the Istituto Superiore di Sanità Central Laboratory Service for C. difficile (ISS-CLSCD) in 2006-2016, provides a first long-term microbiological analysis of human and animal C. difficile strains circulating in Italy. The number of human isolates analyzed by ISS-CLSCD significantly increased over the time (170 in 2006-2011 vs 661 in 2012-2016). Independently from the year of isolation, 42% of the clinical isolates belonged to the PCR-ribotype (RT) 018-lineage (RT 018, RT 607, RT 541, PR07661 and PR14328), with RT 018 and RT 607 grouping the majority of isolates. This lineage was significantly associated to CDIs occurred in the General Medicine Units, Clinic Units or Long-Term Care Facilities, while it was rarely found in pediatric patients. Although the percentage of isolates positive for the binary toxin (CDT) was stable during the study (20%), several CDT-positive RTs emerged in 2012-2016, including RT 027. In total, 32 RTs overlapped between animals and humans and six of these RTs were non-toxigenic. The two lineages prevalent in animals, the RT 078-lineage and the RT 569-lineage (RT 569, RT 049, RT 056 and RT 727), were also found in humans, while the RT 018-lineage was rarely detected in animals, suggesting that it is prevalently associated to human infections. Sixty-two percent of clinical isolates showed a multidrug-resistance (MDR) phenotype, with resistance to rifampicin characterizing successful RTs. A MDR phenotype was also observed in 18% of animal isolates, in particular from dogs, supporting animals as potential reservoirs of resistant C. difficile strains. Interestingly, multiple resistances were observed in both human and animal non-toxigenic isolates suggesting their contribution to antibiotic resistance spread among C. difficile population. All these data indicate that CDI is an issue of growing concern in Italy, highlighting the need for a standardized surveillance in our Country and an interdisciplinary approach to deal successfully with this infection.
Collapse
Affiliation(s)
- Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
22
|
Seth-Smith HMB, Egli A. Whole Genome Sequencing for Surveillance of Diphtheria in Low Incidence Settings. Front Public Health 2019; 7:235. [PMID: 31497588 PMCID: PMC6713046 DOI: 10.3389/fpubh.2019.00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Corynebacterium diphtheriae (C. diphtheriae) is a relatively rare pathogen in most Western countries. While toxin producing strains can cause pharyngeal diphtheria with potentially fatal outcomes, the more common presentation is wound infections. The diphtheria toxin is encoded on a prophage and can also be carried by Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Currently, across Europe, infections are mainly diagnosed in travelers and refugees from regions where diphtheria is more endemic, patients from urban areas with poor hygiene, and intravenous drug users. About half of the cases are non-toxin producing isolates. Rapid identification of the bacterial pathogen and toxin production is a critical element of patient and outbreak management. Beside the immediate clinical management of the patient, public health agencies should be informed of toxigenic C. diphtheriae diagnoses as soon as possible. The collection of case-related epidemiological data from the patient is often challenging due to language barriers and social circumstances. However, information on patient contacts, vaccine status and travel/refugee route, where appropriate, is critical, and should be documented. In addition, isolates should be characterized using high resolution typing, in order to identify transmissions and outbreaks. In recent years, whole genome sequencing (WGS) has become the gold standard of high-resolution typing methods, allowing detailed investigations of pathogen transmissions. De-centralized sequencing strategies with redundancy in sequencing capacities, followed by data exchange may be a valuable future option, especially since WGS becomes more available and portable. In this context, the sharing of sequence data, using public available platforms, is essential. A close interaction between microbiology laboratories, treating physicians, refugee centers, social workers, and public health officials is a key element in successful management of suspected outbreaks. Analyzing bacterial isolates at reference centers may further help to provide more specialized microbiological techniques and to standardize information, but this is also more time consuming during an outbreak. Centralized communication strategies between public health agencies and laboratories helps considerably in establishing and coordinating effective surveillance and infection control. We review the current literature on high-resolution typing of C. diphtheriae and share our own experience with the coordination of a Swiss-German outbreak.
Collapse
Affiliation(s)
- Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Cao H, Wong SCY, Yam WC, Liu MCJ, Chow KH, Wu AKL, Ho PL. Genomic investigation of a sequence type 67 Clostridium difficile causing community-acquired fulminant colitis in Hong Kong. Int J Med Microbiol 2019; 309:270-273. [DOI: 10.1016/j.ijmm.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
|
24
|
Dinh A, Le Monnier A, Emery C, Alami S, Torreton É, Duburcq A, Barbier F. Predictors and burden of hospital readmission with recurrent Clostridioides difficile infection: a French nation-wide inception cohort study. Eur J Clin Microbiol Infect Dis 2019; 38:1297-1305. [PMID: 30941532 DOI: 10.1007/s10096-019-03552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
To investigate the predictors and burden of hospital readmission with recurrent Clostridioides difficile infection (rCDI) in a large European healthcare system with a low prevalence of hyper-virulent C. difficile clones. We conducted an inception cohort study based on an exhaustive health insurance database and including all survivors of a first hospital stay with CDI over a one-year period (2015) in France. Readmissions with rCDI were defined as a novel hospital stay with CDI within 12 weeks following discharge of the index hospitalization. Risk factors for readmission with rCDI were investigated through multivariate logistic regression analyses. Among the 14,739 survivors of the index hospital stay (females, 57.3%; median age, 74 [58-84] years), 2135 (14.5%) required at least one readmission with rCDI. Independent predictors of readmission were age ≥ 65 years (adjusted odds ratio (aOR), 1.34, 95% confidence interval (CI), 1.21-1.49, P < 0.0001), immunosuppression (aOR, 1.27, 95% CI, 1.15-1.41, P < 0.0001), chronic renal failure (aOR, 1.29, 95% CI, 1.14-1.46, P < 0.0001), and a previous history of CDI (aOR, 2.05, 95% CI, 1.55-2.71, P < 0.0001). The cumulative number of risk factors was independently associated with the hazard of readmission. Mean acute care costs attributable to rCDI were 5619 ± 3594 Euros for readmissions with rCDI as primary diagnosis (mean length of stay, 11.3 ± 10.2 days) and 4851 ± 445 Euros for those with rCDI as secondary diagnosis (mean length of stay, 16.8 ± 18.2 days), for an estimated annual nation-wide cost of 14,946,632 Euros. Hospital readmissions with rCDI are common after an index episode and drive major healthcare expenditures with substantial bed occupancy, strengthening the need for efficient secondary prevention strategies in high-risk patients.
Collapse
Affiliation(s)
- Aurélien Dinh
- Infectious Diseases Unit, APHP, Raymond-Poincaré University Hospital, Garches, France.,Versailles-Saint Quentin University, Versailles, France
| | - Alban Le Monnier
- Department of Clinical Microbiology, GH Paris Saint-Joseph Hospital, Paris, France.,EA4043-UBaPS, Saclay - Paris Sud University, Châtenay-Malabry, France
| | | | | | | | | | - François Barbier
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, 14, Hospital Bd, 45100, Orléans, France.
| |
Collapse
|
25
|
Kouhsari E, Douraghi M, Fakhre Yaseri H, Talebi M, Ahmadi A, Sholeh M, Amirmozafari N. Molecular typing of Clostridioides difficile isolates from clinical and non-clinical samples in Iran. APMIS 2019; 127:222-227. [PMID: 30803047 DOI: 10.1111/apm.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023]
Abstract
Clostridioides difficile is a major cause of nosocomial infectious diarrhea in hospitalized patients throughout the world. We aimed to characterize C. difficile isolates among hospitalized patients, hospital staffs, and hospital environment samples obtained in three tertiary care hospitals of Iran with regard to their molecular types between June 2016 and November 2017. The toxigenicity of C. difficile isolates was determined by toxigenic culture and multiplex-PCR. Toxigenic C. difficile isolates collected were ribotyped using capillary gel electrophoresis-based PCR and the database of WEBRIBO (http://webribo.ages.at). Of 500 clinical and non-clinical samples, toxigenic C. difficile were identified in 35 of 250 stool samples (14%) and in 3 of 250 swabs (1.2%). The most frequently found ribotypes (RTs) were 039, AI-12, and AI-21 (15.8, 10.52, and 10.52% of all isolates, respectively). Further RTs were: 017, 001, AI-3, AI-15, AI-18, AI-10, AI-4, and PR21195 (as new ribotype). The epidemic RTs (027 and 078) seen in the Europe, North America, and Asia were completely absent in this study.
Collapse
Affiliation(s)
- Ebrahim Kouhsari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hashem Fakhre Yaseri
- Research Center for Gastroenterology and Liver Disease, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Barbanti F, Spigaglia P. Direct detection and characterization of Clostridium difficile from a novel collection device to improve laboratory workflow. APMIS 2019; 127:449-453. [PMID: 30834561 DOI: 10.1111/apm.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022]
Abstract
Emergence of Clostridium difficile strains with increased virulence emphasizes the importance of early diagnosis and surveillance of C. difficile infection (CDI). In this study, the new FecalSwab™ collection and transport system was evaluated to improve C. difficile diagnosis. The FecalSwab™ was used for direct C. difficile molecular detection, C. difficile culture/toxigenic culture (TC) and bacterial genomic DNA (bgDNA) extraction. Our results demonstrated that the FecalSwab™ medium could be successfully used as template for Xpert C. difficile binary toxin (BT), regardless of the bacterial load of samples, and for C. difficile culture also after a long storage (30 days) of FecalSwab™ tubes at 4 °C. Furthermore, good-quality bgDNA was extracted from the FecalSwab™ medium for the majority (75%) of the samples analyzed. Typing was performed to fully characterize C. difficile strains isolated during this study and 17 different PCR-ribotypes (RTs) were identified. The results obtained indicate that the FecalSwab™ can be successfully used not only in daily diagnostic routine of C. difficile but also in surveillance and retrospective studies.
Collapse
Affiliation(s)
- Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
27
|
Lactobacillus plantarum 299v Reduces the Incidence of Clostridium difficile Infection in Nephrology and Transplantation Ward-Results of One Year Extended Study. Nutrients 2018; 10:nu10111574. [PMID: 30355985 PMCID: PMC6266863 DOI: 10.3390/nu10111574] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Lactobacillus plantarum 299v (LP299v) is a probiotic strain which influences on the intestinal bacterial flora. This is why, it has been introduced into clinical practice for the prevention and treatment of diarrheal disorders and alleviation of their symptoms in patients during antibiotic therapy. However, the use of probiotics in the prophylaxis of Clostridium difficile infections (CDI) in these patients is problematic. The aim of this clinical, retrospective, single-centre study was to analyse the incidence of CDI among patients hospitalized in the nephrology and transplantation ward in the period before, during and after stopping of LP299v prophylaxis. Methods: Among 5341 patients hospitalized in the nephrology and transplantation ward over a three year period, 34 patients with CDI were diagnosed and included in this analysis. From December 2013 to December 2014 all patients under antibiotic and immunosuppressive therapies received LP299v as a prophylaxis of CDI. The observation period consisted of three twelve-months periods: before, during LP299v use and after stopping of such method of CDI prevention. Results: A significant (p = 0.0003) reduction of CDI incidence during LP299v use (0.11%) was observed compared to two other periods, that is, before and after LP299v use (1.03% and 0.77%, respectively). Conclusions: Routine use of LP299v as a CDI prophylaxis may prevent CDI during antibiotics therapy in patients treated with immunosuppressive agents in nephrology and transplantation ward.
Collapse
|