1
|
Moss WJ, Brusini L, Kuehnel R, Brochet M, Brown KM. Apicomplexan phosphodiesterases in cyclic nucleotide turnover: conservation, function, and therapeutic potential. mBio 2024; 15:e0305623. [PMID: 38132724 PMCID: PMC10865986 DOI: 10.1128/mbio.03056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.
Collapse
Affiliation(s)
- William J. Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ronja Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Anghel N, Müller J, Serricchio M, Jelk J, Bütikofer P, Boubaker G, Imhof D, Ramseier J, Desiatkina O, Păunescu E, Braga-Lagache S, Heller M, Furrer J, Hemphill A. Cellular and Molecular Targets of Nucleotide-Tagged Trithiolato-Bridged Arene Ruthenium Complexes in the Protozoan Parasites Toxoplasma gondii and Trypanosoma brucei. Int J Mol Sci 2021; 22:ijms221910787. [PMID: 34639127 PMCID: PMC8509533 DOI: 10.3390/ijms221910787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| |
Collapse
|
3
|
Dumoulin PC, Burleigh BA. Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity. Curr Opin Microbiol 2021; 63:244-249. [PMID: 34455305 DOI: 10.1016/j.mib.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime of the host. The persistence of the parasites in tissues can lead to the development of Chagas disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of amastigote biology that are important determinants of persistence in varied growth conditions and under drug pressure. A better understanding of the link between amastigote and host/tissue metabolism will aid in the development of new drugs or therapies that can limit disease pathology.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
4
|
Rubel MA, Abbas A, Taylor LJ, Connell A, Tanes C, Bittinger K, Ndze VN, Fonsah JY, Ngwang E, Essiane A, Fokunang C, Njamnshi AK, Bushman FD, Tishkoff SA. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol 2020; 21:122. [PMID: 32450885 PMCID: PMC7249393 DOI: 10.1186/s13059-020-02020-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND African populations provide a unique opportunity to interrogate host-microbe co-evolution and its impact on adaptive phenotypes due to their genomic, phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon and shotgun metagenomic sequence data with quantification of pathogen burden and measures of immune parameters for 575 ethnically diverse Africans from Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer lifestyles and were compared to an urban US population from Philadelphia. RESULTS We observe significant differences in gut microbiome composition across populations that correlate with subsistence strategy and country. After these, the variable most strongly associated with gut microbiome structure in Cameroonians is the presence of gut parasites. Hunter-gatherers have high frequencies of parasites relative to agropastoralists and pastoralists. Ascaris lumbricoides, Necator americanus, Trichuris trichiura, and Strongyloides stercoralis soil-transmitted helminths ("ANTS" parasites) significantly co-occur, and increased frequency of gut parasites correlates with increased gut microbial diversity. Gut microbiome composition predicts ANTS positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association with multiple immune mechanisms. The unprecedented size of this dataset allowed interrogation of additional questions-for example, we find that Fulani pastoralists, who consume high levels of milk, possess an enrichment of gut bacteria that catabolize galactose, an end product of lactose metabolism, and of bacteria that metabolize lipids. CONCLUSIONS These data document associations of bacterial microbiota and eukaryotic parasites with each other and with host immune responses; each of these is further correlated with subsistence practices.
Collapse
Affiliation(s)
- Meagan A. Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Department of Radiology, Center for Translational Imaging and Precision Medicine, UC San Diego, San Diego, CA USA
| | - Arwa Abbas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Louis J. Taylor
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrew Connell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Valantine N. Ndze
- Johns Hopkins Cameroon Program, Yaoundé, Cameroon
- Department of Microbiology, Hematology, Parasitology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Julius Y. Fonsah
- Department of Neurology, Faculty of Medicine and Biomedical Sciences, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Eric Ngwang
- Department of Anthropology, Faculty of Arts, Letters and Social Sciences, University of Yaoundé I, PO Box 755, Yaoundé, Cameroon
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K. Njamnshi
- Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah A. Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
5
|
Kapil S, Singh PK, Kashyap A, Silakari O. Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:919-933. [PMID: 31702401 DOI: 10.1080/1062936x.2019.1684357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Folates are essential biomolecules required to carry out many crucial processes in leishmania parasite. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) involved in folate biosynthesis in leishmania have been established as suitable targets for development of chemotherapy against leishmaniasis. In the present study, various computational tools such as homology modelling, pharmacophore modelling, docking, molecular dynamics and molecular mechanics have been employed to design dual DHFR-TS and PTR1 inhibitors. Two designed molecules, i.e. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were synthesized. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to evaluate in vitro activity of molecules against promastigote form of Leishmania donovani using Miltefosine as standard. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were found to be moderately active with showed IC50 = 68 ± 2.8 µM and 57 ± 4.2 µM, respectively.
Collapse
Affiliation(s)
- S Kapil
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - P K Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - A Kashyap
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - O Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
6
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|