1
|
Mesa-Herrera F, Marín R, Torrealba E, Díaz M. Multivariate Assessment of Lipoxidative Metabolites, Trace Biometals, and Antioxidant and Detoxifying Activities in the Cerebrospinal Fluid Define a Fingerprint of Preclinical Stages of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:387-402. [DOI: 10.3233/jad-215437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There exists considerable interest in the identification of molecular traits during early stages of Alzheimer’s disease (AD). Mild cognitive impairment (MCI) is considered the closest prodromal stage of AD, and to develop gradually from earlier stages although not always progresses to AD. Classical cerebrospinal fluid (CSF) AD biomarkers, amyloid-β peptides and tau/p-tau proteins, have been measured in prodromal stages yet results are heterogeneous and far from conclusive. Therefore, there exists a pressing need to identify a neurochemical signature for prodromal stages and to predict which cases might progress to AD. Objective: Exploring potential CSF biomarkers related to brain oxidative and inorganic biochemistry during prodromal stages of the disease. Methods: We have analyzed CSF levels of lipoxidative markers (MDA and 8-isoF2α), biometals (Cu, Zn, Se, Mn, and Fe), iron-transport protein transferrin (TFER), antioxidant enzymes (SOD and GPx4), detoxifying enzymes (GST and BuChE), as well as classical amyloid-β and total and phosphorylated tau, in cognitively healthy controls, patients with MCI, and subjects exhibiting subjective memory complaints (SMC). Results: Inter-group differences for several variables exhibit differentiable trends along the HC ⟶ SMC ⟶ MCI sequence. More interestingly, the combination of Se, Cu, Zn, SOD, TFER, and GST variables allow differentiable fingerprints for control subjects and each prodromal stage. Further, multivariate scores correlate positively with neurocognitive In-Out test, hence with both episodic memory decline and prediction to dementia. Conclusion: We conclude that changes in the CSF biochemistry related to brain oxidative defense and neurometallomics might provide more powerful and accurate diagnostic tools in preclinical stages of AD.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Health Sciences School, Universidad de La Laguna, Spain
- Associate Research Unit ULL-CSIC Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Tenerife, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Mario Díaz
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, Spain
- IUETSP (Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias), Universidad de La Laguna, Spain
| |
Collapse
|
2
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Scassellati C, Bonvicini C, Benussi L, Ghidoni R, Squitti R. Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J Trace Elem Med Biol 2020; 60:126499. [PMID: 32203724 DOI: 10.1016/j.jtemb.2020.126499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diagnosis and treatment of complex diseases such as Neurodevelopmental Disorders (NDDs) can be resolved through the identification of biomarkers. Metallomics (research on biometals) and metallomes (metalloproteins/metalloenzymes/chaperones) along with genomics, proteomics and metabolomics, can contribute to accelerate and improve this process. AIM This review focused on four NDDs pathologies (Schizophrenia, SZ; Attention Deficit Hyperactivity Disorder, ADHD; Autism, ADS; Epilepsy), and we reported, for the first time, different studies on the role played by the principal six essential trace elements (Cobalt, Co; Copper, Cu; Iron, Fe; Manganese, Mn; Selenium, Se; Zinc, Zn) that can influence diagnosis/treatment. RESULTS in light of the literature presented, based on meta-analyses, we suggest that Zn (glutamatergic neurotransmission, inflammation, neurodegeneration, autoimmunity alterations), could be a potential diagnostic biomarker associated to SZ. Moreover, considering the single association studies going in the same direction, increased Cu (catecholamine alterations, glucose intolerance, altered lipid metabolism/oxidative stress) and lower Fe (dopaminergic dysfunctions) levels were associated with a specific negative symptomatology. Lower Mn (lipid metabolism/oxidative stress alterations), and lower Se (metabolic syndrome) were linked to SZ. From the meta-analyses in ADHD, it is evidenced that Fe (and ferritin in particular), Mn, and Zn (oxidative stress dysfunctions) could be potential diagnostic biomarkers, mainly associated to severe hyperactive or inattentive symptoms; as well as Cu, Fe, Zn in ADS and Zn in Epilepsy. Fe, Zn and Mn levels seem to be influenced by antipsychotics treatment in SZ; Mn and Zn by methylphenidate treatment in ADHD; Cu and Zn by antiepileptic drugs in Epilepsy. CONCLUSIONS Although there is controversy and further studies are needed, this work summarizes the state of art of the literature on this topic. We claim to avoid underreporting the impact of essential trace elements in paving the way for biomarkers research for NDDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
7
|
Santa Cruz EC, Madrid KC, Arruda MAZ, Sussulini A. Association between trace elements in serum from bipolar disorder and schizophrenia patients considering treatment effects. J Trace Elem Med Biol 2020; 59:126467. [PMID: 31954929 DOI: 10.1016/j.jtemb.2020.126467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Imbalances in metal concentrations have been suggested to contribute to the pathophysiology of different brain disorders, such as bipolar disorder (BD) and schizophrenia (SCZ). OBJECTIVES The aim of this exploratory study is to evaluate the association between the concentrations of macro/trace elements in serum from BD and SCZ patients considering the effects from different treatments. METHODS Eleven subjects with SCZ, seven with BD treated with lithium (BDL) and eight subjects with BD treated with other medications except lithium (BDN) were recruited for the study, as well as eleven healthy controls (HC). Serum concentrations of eleven macro/trace elements (Se, Zn, Fe, K, Ca, Mg, P, Al, Cu, Mn, and Ni) were determined using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Se and Zn concentrations were significantly lower for patients with SCZ and BD in comparison to HC by one-way ANOVA test. Moreover, serum concentrations for Fe were significantly higher (p < 0.05) in BDN (548 ± 92 μg L-1) and SCZ (632 ± 279 μg L-1) in comparison to HC (421 ± 121 μg L-1). A significant negative correlation was reported between Se and Fe in BDL group (r = -0.935, p < 0.05). In addition, a significantly higher Cu/Zn ratio was determined in SCZ group against HC (ratio = 2.4, p = 0.028). CONCLUSIONS The obtained results suggest that the imbalance in Fe concentrations is an effect of BD treatment. Lithium is supposed to have an antagonist effect for Se in BDL patients. A negative correlation reported between Fe and BMI in SCZ group could be related to antipsychotic treatment and the Cu/Zn ratio reported could be considered as a suggesting parameter to relate oxidative stress to SCZ. Future studies including larger number of patients with SCZ and BD before and after treatment are necessary to confirm the investigative results presented herein.
Collapse
Affiliation(s)
- Elisa C Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Katherine C Madrid
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|