1
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Strauch SM, Grimm D, Corydon TJ, Krüger M, Bauer J, Lebert M, Wise P, Infanger M, Richter P. Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics 2018; 16:5-16. [PMID: 30451542 DOI: 10.1080/14789450.2019.1550362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Collapse
Affiliation(s)
- Sebastian M Strauch
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Daniela Grimm
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany.,d Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Thomas J Corydon
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,e Department of Ophthalmology , Aarhus University Hospital , Aarhus C , Denmark
| | - Marcus Krüger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Johann Bauer
- f Max-Planck-Institute of Biochemistry, Information Retrieval Services , Martinsried , Germany
| | - Michael Lebert
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Petra Wise
- g Charles R. Drew University of Medicine and Science, AXIS Center , Los Angeles , CA , USA
| | - Manfred Infanger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Peter Richter
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|