1
|
Mishra C, Samelius G, Khanyari M, Srinivas PN, Low M, Esson C, Venkatachalam S, Johansson Ö. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. AMBIO 2022; 51:494-507. [PMID: 34292521 PMCID: PMC8297435 DOI: 10.1007/s13280-021-01599-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The cold and arid mountains and plateaus of High Asia, inhabited by a relatively sparse human population, a high density of livestock, and wildlife such as the iconic snow leopard Panthera uncia, are usually considered low risk for disease outbreaks. However, based on current knowledge about drivers of disease emergence, we show that High Asia is rapidly developing conditions that favor increased emergence of infectious diseases and zoonoses. This is because of the existing prevalence of potentially serious pathogens in the system; intensifying environmental degradation; rapid changes in local ecological, socio-ecological, and socio-economic factors; and global risk intensifiers such as climate change and globalization. To better understand and manage the risks posed by diseases to humans, livestock, and wildlife, there is an urgent need for establishing a disease surveillance system and improving human and animal health care. Public health must be integrated with conservation programs, more ecologically sustainable development efforts and long-term disease surveillance.
Collapse
Affiliation(s)
- Charudutt Mishra
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Gustaf Samelius
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nordens Ark, Åby Säteri, 456 93 Hunnebostrand, Sweden
| | - Munib Khanyari
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
- Interdisciplinary Center for Conservation Sciences, Oxford, University UK
- Department of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Carol Esson
- 41 Walnut Close, Speewah, Queensland, 4881 Australia
| | - Suri Venkatachalam
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Örjan Johansson
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden
| |
Collapse
|
2
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|
3
|
Sangkachai N, Thongdee M, Chaiwattanarungruengpaisan S, Buddhirongawatr R, Chamsai T, Poltep K, Wiriyarat W, Paungpin W. Serological evidence of influenza virus infection in captive wild felids, Thailand. J Vet Med Sci 2019; 81:1341-1347. [PMID: 31341136 PMCID: PMC6785624 DOI: 10.1292/jvms.19-0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Influenza virus is known to affect wild felids. To explore the prevalence of influenza viruses in these animal species, 196 archival sera from 5 felid species including Panthera tigris (N=147), Prionailurus viverrinus (N=35), Panthera leo (N=5), Pardofelis temminckii (N=8) and Neofelis nebulosa (N=1) collected between 2011 and 2015 in 10 provinces of Thailand were determined for the presence of antibody to avian and human influenza viruses. Blocking enzyme-linked immunosorbent (ELISA) assay and hemagglutination inhibition (HI) assay were employed as the screening tests, which the serum samples with HI antibody titers ≥20 were further confirmed by cytopathic effect/hemagglutination based-microneutralization (CPE/HA-based microNT) test. Based on HI and microNT assays, the seropositive rates of low pathogenic avian influenza (LPAI) H5 virus, highly pathogenic avian influenza (HPAI) H5 virus and human H1 virus were 1.53% (3/196), 2.04% (4/196) and 6.63% (13/196), respectively. In addition, we also found antibody against both LPAI H5 virus and HPAI H5 virus in 2 out of 196 tested sera (1.02%). Evidences of influenza virus infection were found in captive P. tigris in Kanchanaburi, Nakhon Sawan and Ratchaburi provinces of Thailand. The findings of our study highlights the need of a continuous active surveillance program of influenza viruses in wild felid species.
Collapse
Affiliation(s)
- Nareerat Sangkachai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ruangrat Buddhirongawatr
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tatiyanuch Chamsai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanaporn Poltep
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
4
|
Asha K, Kumar B. Emerging Influenza D Virus Threat: What We Know so Far! J Clin Med 2019; 8:jcm8020192. [PMID: 30764577 PMCID: PMC6406440 DOI: 10.3390/jcm8020192] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
Influenza viruses, since time immemorial, have been the major respiratory pathogen known to infect a wide variety of animals, birds and reptiles with established lineages. They belong to the family Orthomyxoviridae and cause acute respiratory illness often during local outbreaks or seasonal epidemics and occasionally during pandemics. Recent studies have identified a new genus within the Orthomyxoviridae family. This newly identified pathogen, D/swine/Oklahoma/1334/2011 (D/OK), first identified in pigs with influenza-like illness was classified as the influenza D virus (IDV) which is distantly related to the previously characterized human influenza C virus. Several other back-to-back studies soon suggested cattle as the natural reservoir and possible involvement of IDV in the bovine respiratory disease complex was established. Not much is known about its likelihood to cause disease in humans, but it definitely poses a potential threat as an emerging pathogen in cattle-workers. Here, we review the evolution, epidemiology, virology and pathobiology of influenza D virus and the possibility of transmission among various hosts and potential to cause human disease.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
5
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
6
|
INFECTIOUS DISEASE AND TOXICOLOGICAL MONITORING OF STRANDED PACIFIC HARBOR SEALS (PHOCA VITULINA RICHARDSI) IN COOK INLET AS SURROGATES FOR MONITORING ENDANGERED BELUGAS (DELPHINAPTERUS LEUCAS). J Zoo Wildl Med 2017; 47:770-780. [PMID: 27691941 DOI: 10.1638/2015-0147.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pacific harbor seals ( Phoca vitulina richardsi) and belugas ( Delphinapterus leucas ) eat many of the same prey species, occupy the same geographic area, and demonstrate site fidelity in Cook Inlet, Alaska. Although most direct research involving the critically endangered belugas is currently prohibited, studying harbor seals may provide important information about this beluga population. In recent years, harbor seal populations in Alaska have declined for unknown reasons. As part of its stranding program, the Alaska SeaLife Center (ASLC) managed 59 cases of live and dead stranded harbor seals from Cook Inlet between 1997 and 2011. Animals were screened for a variety of diseases and contaminants of concern. Animals were negative by serology to the following diseases: avian influenza, canine distemper virus, dolphin morbillivirus, porpoise morbillivirus, Leptospira canicola, L. grippotyphosa, L. pomona, Neospora caninum , Sarcocystis neurona , and Toxoplasma gondii . Positive titers were found against Brucella spp., phocine distemper virus, seal herpesvirus-1, L. bratislava, L. hardjo, and L. icterohemorrhagiae. All titers were stable or declining except in one animal with an increasing titer for seal herpesvirus-1. Fecal pathogen screenings identified normal flora as well as stable or declining low levels of potentially pathogenic and opportunistic bacteria, though most were of little concern for seal health. In most animals, toxicology screening showed that the majority of tested contaminants were below detectable limits. The level of evidence of exposure to pathogens of concern was low in harbor seals. Although the infectious disease burden and contaminant levels in belugas in Cook Inlet cannot be definitively determined without direct testing, pathogen and contaminant exposure is expected to be similar to that found in harbor seals in this region, as the harbor seals and belugas share the habitat and food resources.
Collapse
|
7
|
Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J. Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in Qinghai-Tibet Plateau Area. Sci Rep 2016; 6:30974. [PMID: 27553660 PMCID: PMC4995509 DOI: 10.1038/srep30974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
Qinghai Lake is a major migrating bird breeding site that has experienced several recent highly pathogenic avian influenza virus (HPAIV) epizootics. From 2006 to 2009 we studied Qinghai’s wild birds and pikas for evidence of AIV infections. We sampled 941 healthy wild animals and isolated seventeen H7N2 viruses (eight from pikas and nine from wild birds). The H7N2 viruses were phylogenetically closely related to each other and to viruses isolated in Hong Kong in the 1970s. We determined the pathogenicity of the H7N2 viruses by infecting chickens and mice. Our results suggest that pikas might play an important role in the ecology of AIVs, acting as intermediate hosts in which viruses become more adapted to mammals. Our findings of AI infection in pikas are consistent with previous observations and raise the possibility that pikas might play a previously unrecognized role in the ecology of AIVs peridomestic aquatic environments.
Collapse
Affiliation(s)
- Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Junhua Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zengkui Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jinyan Gu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Lei
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Senlin Ji
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Boli Hu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gregory C Gray
- Division of Infectious Diseases, Global Health Institute, &Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Serologic survey of wild turkeys (Meleagris gallopavo) and evidence of exposure to avian encephalomyelitis virus in Georgia and Florida, USA. J Wildl Dis 2015; 51:374-9. [PMID: 25647602 DOI: 10.7589/2013-07-169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild Turkeys (Meleagris gallopavo) are susceptible to many of the same diseases as domestic turkeys. Before 2005, most Wild Turkeys in southern Georgia, US, had little or no exposure to commercial poultry operations. As part of a pathogen survey examining the effects of commercial poultry on Wild Turkeys, samples were collected from Wild Turkeys from March 2005 through May 2008. The turkeys were collected from 13 counties in southern Georgia and Madison County, Florida, and tested for antibodies to various pathogens of poultry. Three (13%) of the turkeys were positive for antibodies to Salmonella. Thirteen turkeys (54%) were positive for Newcastle disease virus antibodies, and 15 turkeys (63%) were positive for antibodies to reticuloendotheliosis virus. One turkey (4%) from Madison County was positive for avian encephalomyelitis virus antibodies.
Collapse
|
9
|
Zhuang L, Cressie N, Pomeroy L, Janies D. Multi-species SIR models from a dynamical Bayesian perspective. THEOR ECOL-NETH 2013. [DOI: 10.1007/s12080-013-0180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Partial and full PCR-based reverse genetics strategy for influenza viruses. PLoS One 2012; 7:e46378. [PMID: 23029501 PMCID: PMC3460856 DOI: 10.1371/journal.pone.0046378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 12/30/2022] Open
Abstract
Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids.
Collapse
|
11
|
Interspecies interactions and potential Influenza A virus risk in small swine farms in Peru. BMC Infect Dis 2012; 12:58. [PMID: 22420542 PMCID: PMC3364844 DOI: 10.1186/1471-2334-12-58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a threat to global public health. The animal origins of the viruses confirmed the potential for interspecies transmission. Swine are hypothesized to be prime "mixing vessels" due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses have previously been isolated in swine. Therefore, understanding interspecies contact on smallholder swine farms and its potential role in the transmission of pathogens such as influenza virus is very important. Methods This qualitative study aimed to determine swine-associated interspecies contacts in two coastal areas of Peru. Direct observations were conducted at both small-scale confined and low-investment swine farms (n = 36) and in open areas where swine freely range during the day (n = 4). Interviews were also conducted with key stakeholders in swine farming. Results In both locations, the intermingling of swine and domestic birds was common. An unexpected contact with avian species was that swine were fed poultry mortality in 6/20 of the farms in Chancay. Human-swine contacts were common, with a higher frequency on the confined farms. Mixed farming of swine with chickens or ducks was observed in 36% of all farms. Human-avian interactions were less frequent overall. Use of adequate biosecurity and hygiene practices by farmers was suboptimal at both locations. Conclusions Close human-animal interaction, frequent interspecies contacts and suboptimal biosecurity and hygiene practices pose significant risks of interspecies influenza virus transmission. Farmers in small-scale swine production systems constitute a high-risk population and need to be recognized as key in preventing interspecies pathogen transfer. A two-pronged prevention approach, which offers educational activities for swine farmers about sound hygiene and biosecurity practices and guidelines and education for poultry farmers about alternative approaches for processing poultry mortality, is recommended. Virological and serological surveillance for influenza viruses will also be critical for these human and animal populations.
Collapse
|
12
|
Phylogenetic analysis of H6 influenza viruses isolated from rosy-billed pochards (Netta peposaca) in Argentina reveals the presence of different HA gene clusters. J Virol 2011; 85:13354-62. [PMID: 21976652 DOI: 10.1128/jvi.05946-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Until recently, influenza A viruses from wild waterfowl in South America were rarely isolated and/or characterized. To explore the ecology of influenza A viruses in this region, a long-term surveillance program was established in 2006 for resident and migratory water birds in Argentina. We report the characterization of 5 avian influenza viruses of the H6 hemagglutinin (HA) subtype isolated from rosy-billed pochards (Netta peposaca). Three of these viruses were paired to an N2 NA subtype, while the other two were of the N8 subtype. Genetic and phylogenetic analyses of the internal gene segments revealed a close relationship with influenza viruses from South America, forming a unique clade and supporting the notion of independent evolution from influenza A viruses in other latitudes. The presence of NS alleles A and B was also identified. The HA and NA genes formed unique clades separate from North American and Eurasian viruses, with the exception of the HA gene of one isolate, which was more closely related to the North American lineage, suggesting possible interactions between viruses of North American and South American lineages. Animal studies suggested that these Argentine H6 viruses could replicate and transmit inefficiently in chickens, indicating limited adaptation to poultry. Our results highlight the importance of continued influenza virus surveillance in wild birds of South America, especially considering the unique evolution of these viruses.
Collapse
|
13
|
Development and validation of a concentration method for the detection of influenza a viruses from large volumes of surface water. Appl Environ Microbiol 2011; 77:3802-8. [PMID: 21498756 DOI: 10.1128/aem.02484-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Contamination of lakes and ponds plays an essential role as a reservoir of avian influenza A virus (AIV) in the environment. A method to concentrate waterborne AIV is a prerequisite for the detection of virus present at low levels in water. The aim of this study was to develop and validate a method for the concentration and detection of infectious AIV from large volumes of surface water samples. Two filtration systems, glass wool and electropositive NanoCeram filter, were studied. The individual effects of filtration-elution and polyethylene glycol (PEG) concentration parameters on the recovery efficiency of the H1N1 strain from 10-liter surface water samples were assessed. An ultimate 1% recovery rate of infectious viruses was achieved with the optimal protocol, corresponding to filtration through glass wool, followed by a viral elution step and then a PEG concentration. This method was validated for the detection of highly pathogenic H5N1 strains from artificially contaminated larger water volumes, from 10 to up to 50 liters, from different sources. The viral recovery efficiencies ranged from 0.01% to 7.89% and from 3.63% to 13.79% with lake water and rainwater, respectively. A theoretical detection threshold of 2.25 × 10(2) TCID(50) (50% tissue culture infectious dose) in the filtered volume was obtained for seeded lake waters by M gene reverse transcriptase PCR (RT-PCR). Moreover, the method was used successfully in field studies for the detection of naturally occurring influenza A viruses in lake water in France.
Collapse
|
14
|
|
15
|
Weldon WC, Wang BZ, Martin MP, Koutsonanos DG, Skountzou I, Compans RW. Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS One 2010; 5. [PMID: 20824188 PMCID: PMC2931692 DOI: 10.1371/journal.pone.0012466] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The recent swine-origin H1N1 pandemic illustrates the need to develop improved procedures for rapid production of influenza vaccines. One alternative to the current egg-based manufacture of influenza vaccine is to produce a hemagglutinin (HA) subunit vaccine using a recombinant expression system with the potential for high protein yields, ease of cloning new antigenic variants, and an established safety record in humans. METHODOLOGY/PRINCIPAL FINDINGS We generated a soluble HA (sHA), derived from the H3N2 virus A/Aichi/2/68, modified at the C-terminus with a GCN4pII trimerization repeat to stabilize the native trimeric structure of HA. When expressed in the baculovirus system, the modified sHA formed native trimers. In contrast, the unmodified sHA was found to present epitopes recognized by a low-pH conformation specific monoclonal antibody. We found that mice primed and boosted with 3 microg of trimeric sHA in the absence of adjuvants had significantly higher IgG and HAI titers than mice that received the unmodified sHA. This correlated with an increased survival and reduced body weight loss following lethal challenge with mouse-adapted A/Aichi/2/68 virus. In addition, mice receiving a single vaccination of the trimeric sHA in the absence of adjuvants had improved survival and body weight loss compared to mice vaccinated with the unmodified sHA. CONCLUSIONS/SIGNIFICANCE Our data indicate that the recombinant trimeric sHA presents native trimeric epitopes while the unmodified sHA presents epitopes not exposed in the native HA molecule. The epitopes presented in the unmodified sHA constitute a "silent face" which may skew the antibody response to epitopes not accessible in live virus at neutral pH. The results demonstrate that the trimeric sHA is a more effective influenza vaccine candidate and emphasize the importance of structure-based antigen design in improving recombinant HA vaccines.
Collapse
Affiliation(s)
- William C. Weldon
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maria P. Martin
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dimitrios G. Koutsonanos
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zimmer G. RNA replicons - a new approach for influenza virus immunoprophylaxis. Viruses 2010; 2:413-434. [PMID: 21994644 PMCID: PMC3185613 DOI: 10.3390/v2020413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/07/2023] Open
Abstract
RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.
Collapse
Affiliation(s)
- Gert Zimmer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| |
Collapse
|
17
|
Shivakoti S, Ito H, Murase T, Ono E, Takakuwa H, Yamashiro T, Otsuki K, Ito T. Development of reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for detection of avian influenza viruses in field specimens. J Vet Med Sci 2009; 72:519-23. [PMID: 20032626 DOI: 10.1292/jvms.09-0473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an established gene amplification method for rapid diagnosis of various infectious diseases. In order to detect avian influenza viruses, particularly in field specimens, specific primers targeting the matrix gene were designed. Thirty-four virus samples, including isolates from wild and domestic avian hosts belonging to various geographical areas, were used to confirm the validity of the primers. All samples were confirmed to be positive in less than 1 hr. The RT-LAMP assay was also able to detect avian influenza virus in the various field samples, such as swabs, tissues, and feces. These results indicate that the developed RT-LAMP assay with uniquely designed primers is potentially useful in comprehensive avian influenza surveillance.
Collapse
Affiliation(s)
- Sakar Shivakoti
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tottori University
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China. J Virol 2009; 83:8957-64. [PMID: 19553321 DOI: 10.1128/jvi.00793-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.
Collapse
|
19
|
Kalhoro NH, Veits J, Rautenschlein S, Zimmer G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 2009; 27:1174-83. [DOI: 10.1016/j.vaccine.2008.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/25/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022]
|
20
|
Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 2008; 57:361-73. [PMID: 18848358 PMCID: PMC7112701 DOI: 10.1016/j.jinf.2008.08.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The relative importance of airborne, droplet and contact transmission of influenza A virus and the efficiency of control measures depends among other factors on the inactivation of viruses in different environmental media. METHODS We systematically review available information on the environmental inactivation of influenza A viruses and employ information on infectious dose and results from mathematical models to assess transmission modes. RESULTS Daily inactivation rate constants differ by several orders of magnitude: on inanimate surfaces and in aerosols daily inactivation rates are in the order of 1-10(2), on hands in the order of 10(3). Influenza virus can survive in aerosols for several hours, on hands for a few minutes. Nasal infectious dose of influenza A is several orders of magnitude larger than airborne infectious dose. CONCLUSIONS The airborne route is a potentially important transmission pathway for influenza in indoor environments. The importance of droplet transmission has to be reassessed. Contact transmission can be limited by fast inactivation of influenza virus on hands and is more so than airborne transmission dependent on behavioral parameters. However, the potentially large inocula deposited in the environment through sneezing and the protective effect of nasal mucus on virus survival could make contact transmission a key transmission mode.
Collapse
Affiliation(s)
- Thomas P Weber
- Joint Research Centre, European Commission, T.P. 267, Via Enrico Fermi 2749, I-21027 Ispra, Italy.
| | | |
Collapse
|
21
|
The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 2008; 4:e1000076. [PMID: 18516303 PMCID: PMC2387073 DOI: 10.1371/journal.ppat.1000076] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/24/2008] [Indexed: 11/19/2022] Open
Abstract
We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses. Influenza A viruses are an extremely divergent group of RNA viruses that infect in a variety of warm-blooded animals, including birds, horses, pigs, and humans. Since they contain a segmented RNA genome, mixed infection can lead to genetic reassortment. It is thought that the natural reservoir of influenza A viruses is the wild bird population. Influenza A viruses can switch hosts and cause novel outbreaks in new species. Influenza viruses containing genes derived from bird influenza viruses caused the last three influenza pandemics in humans. In this study, we surveyed the genetic diversity among influenza A viruses in wild birds. Through a phylogenetic analysis of the largest data set of wild bird influenza genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that influenza viruses in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.
Collapse
|