1
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
2
|
Nazemidashtarjandi S, Larsen B, Cheng K, Faulkner S, Peppas NA, Parekh SH, Zoldan J. Near-infrared light-responsive hydrogels for on-demand dual delivery of proangiogenic growth factors. Acta Biomater 2024; 183:61-73. [PMID: 38838911 PMCID: PMC11514431 DOI: 10.1016/j.actbio.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Achieving precise spatiotemporal control over the release of proangiogenic factors is crucial for vasculogenesis, the process of de novo blood vessel formation. Although various strategies have been explored, there is still a need to develop cell-laden biomaterials with finely controlled release of proangiogenic factors at specific locations and time points. We report on the developed of a near-infrared (NIR) light-responsive collagen hydrogel comprised of gold nanorods (GNRs)-conjugated liposomes containing proangiogenic growth factors (GFs). We demonstrated that this system enables on-demand dual delivery of GFs at specific sites and over selected time intervals. Liposomes were strategically formulated to encapsulate either platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), each conjugated to gold nanorods (GNRs) with distinct geometries and surface plasmon resonances at 710 nm (GNR710) and 1064 nm (GNR1064), respectively. Using near infrared (NIR) irradiation and two-photon (2P) luminescence imaging, we successfully demonstrated the independent release of PDGF from GNR710 conjugated liposomes and VEGF from GNR1064-conjugated liposomes. Our imaging data revealed rapid release kinetics, with localized PDGF released in approximately 4 min and VEGF in just 1 and a half minutes following NIR laser irradiation. Importantly, we demonstrated that the release of each GF could be independently triggered using NIR irradiation with the other GF formulation remaining retained within the liposomes. This light-responsive collagen hydrogels holds promise for various applications in regenerative medicine where the establishment of a guided vascular network is essential for the survival and integration of engineered tissues. STATEMENT OF SIGNIFICANCE: In this study, we have developed a light-responsive system with gold nanorods (GNRs)-conjugated liposomes in a collagen hydrogel, enabling precise dual delivery of proangiogenic growth factors (GFs) at specific locations and timepoints. Liposomes, containing platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), release independently under near- infrared irradiation. This approach allows external activation of desired GF release, ensuring high cell viability. Each GF can be triggered independently, retaining the other within the liposomes. Beyond its application in establishing functional vascular networks, this dual delivery system holds promise as a universal platform for delivering various combinations of two or more GFs.
Collapse
Affiliation(s)
- Saeed Nazemidashtarjandi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Bryce Larsen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Kristie Cheng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Sara Faulkner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates; Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78711, United Sates.
| |
Collapse
|
3
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
4
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Song YC, Park GT, Moon HJ, Choi EB, Lim MJ, Yoon JW, Lee N, Kwon SM, Lee BJ, Kim JH. Hybrid spheroids containing mesenchymal stem cells promote therapeutic angiogenesis by increasing engraftment of co-transplanted endothelial colony-forming cells in vivo. Stem Cell Res Ther 2023; 14:193. [PMID: 37533021 PMCID: PMC10394850 DOI: 10.1186/s13287-023-03435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Peripheral artery disease is an ischemic vascular disease caused by the blockage of blood vessels supplying blood to the lower extremities. Mesenchymal stem cells (MSCs) and endothelial colony-forming cells (ECFCs) have been reported to alleviate peripheral artery disease by forming new blood vessels. However, the clinical application of MSCs and ECFCs has been impeded by their poor in vivo engraftment after cell transplantation. To augment in vivo engraftment of transplanted MSCs and ECFCs, we investigated the effects of hybrid cell spheroids, which mimic a tissue-like environment, on the therapeutic efficacy and survival of transplanted cells. METHODS The in vivo survival and angiogenic activities of the spheroids or cell suspension composed of MSCs and ECFCs were measured in a murine hindlimb ischemia model and Matrigel plug assay. In the hindlimb ischemia model, the hybrid spheroids showed enhanced therapeutic effects compared with the control groups, such as adherent cultured cells or spheroids containing either MSCs or ECFCs. RESULTS Spheroids from MSCs, but not from ECFCs, exhibited prolonged in vivo survival compared with adherent cultured cells, whereas hybrid spheroids composed of MSCs and ECFCs substantially increased the survival of ECFCs. Moreover, single spheroids of either MSCs or ECFCs secreted greater levels of pro-angiogenic factors than adherent cultured cells, and the hybrid spheroids of MSCs and ECFCs promoted the secretion of several pro-angiogenic factors, such as angiopoietin-2 and platelet-derived growth factor. CONCLUSION These results suggest that hybrid spheroids containing MSCs can serve as carriers for cell transplantation of ECFCs which have poor in vivo engraftment efficiency.
Collapse
Affiliation(s)
- Young Cheol Song
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Hye Ji Moon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Bae Choi
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Mi-Ju Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Nayeon Lee
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sang Mo Kwon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
6
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Alkildani S, Ren Y, Liu L, Rimashevskiy D, Schnettler R, Radenković M, Najman S, Stojanović S, Jung O, Barbeck M. Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects. Int J Mol Sci 2023; 24:ijms24076833. [PMID: 37047808 PMCID: PMC10095555 DOI: 10.3390/ijms24076833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane’s bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a “bony shield” overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials.
Collapse
Affiliation(s)
| | - Yanru Ren
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Sanja Stojanović
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Mike Barbeck
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
8
|
Pablo‐Torres C, Delgado‐Dolset MI, Sanchez‐Solares J, Mera‐Berriatua L, Núñez Martín Buitrago L, Reaño Martos M, Bueno JL, Escribese MM, Barber D, Gomez‐Casado C. A method based on plateletpheresis to obtain functional platelet, CD3 + and CD14 + matched populations for research immunological studies. Clin Exp Allergy 2022; 52:1157-1168. [PMID: 35757844 PMCID: PMC9796013 DOI: 10.1111/cea.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND In previous studies with peripheral blood cells, platelet factors were found to be associated with severe allergic phenotypes. A reliable method yielding highly concentrated and pure platelet samples is usually not available for immunological studies. Plateletpheresis is widely used in the clinics for donation purposes. In this study, we designed a protocol based on plateletpheresis to obtain Platelet-Rich Plasma (PRP), Platelet-Poor Plasma (PPP) as well as CD3+ and CD14+ cells matched samples from a waste plateletpheresis product for immunological studies. METHODS Twenty-seven subjects were voluntarily subjected to plateletpheresis. PRP, PPP and blood cell concentrate contained in a leukocyte reduction system chamber (LRSC) were obtained in this process. CD3+ and CD14+ cells were isolated from the LRSC by density-gradient centrifugation and positive magnetic bead isolation. RNA was isolated from PRP, CD3+ and CD14+ cell samples and used for transcriptomic studies by Affymetrix. PRP and PPP samples were used for platelet protein quantification by multiplex assays. RESULTS A reliable high yield method to obtain matched samples of PRP, PPP, CD3+ and CD14+ from a single donor for RNA and protein analyses has been designed. The RNA quality indicators (RQI) routinely used for other cell types were not suitable for platelet RNA characterization. Despite this, the platelet RNA was valid for transcriptomic studies by Affymetrix, as platelet transcripts obtained in our previous studies were confirmed in PRP samples. Platelet samples were enriched in platelet factors as determined in protein multiplex analysis. CONCLUSIONS We have developed a method that yields not only high content and pure platelet samples from a single donor but also CD3+ and CD14+ matched samples that can be used for RNA and protein analyses in immunological studies.
Collapse
Affiliation(s)
- Carmela Pablo‐Torres
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - María Isabel Delgado‐Dolset
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain,Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistrySchool of PharmacySan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Javier Sanchez‐Solares
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Leticia Mera‐Berriatua
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | | | - Mar Reaño Martos
- Department of Allergy and ImmunologyPuerta de Hierro‐Majadahonda University HospitalMadridSpain
| | - José Luis Bueno
- Department of Hematology and HemotherapyPuerta de Hierro‐Majadahonda University HospitalMadridSpain
| | - Maria M. Escribese
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Cristina Gomez‐Casado
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain,Department of DermatologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| |
Collapse
|
9
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
10
|
Zhou J, Hu Y, Zhu W, Nie C, Zhao W, Faje AT, Labelle KE, Swearingen B, Lee H, Hedley-Whyte ET, Zhang X, Jones PS, Miller KK, Klibanski A, Zhou Y, Soberman RJ. Sprouting Angiogenesis in Human Pituitary Adenomas. Front Oncol 2022; 12:875219. [PMID: 35600354 PMCID: PMC9117625 DOI: 10.3389/fonc.2022.875219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Angiogenesis in pituitary tumors is not fully understood, and a better understanding could help inform new pharmacologic therapies, particularly for aggressive pituitary tumors. Materials and Methods 219 human pituitary tumors and 12 normal pituitary glands were studied. Angiogenic genes were quantified by an angiogenesis qPCR array and a TaqMan probe-based absolute qPCR. Angiogenesis inhibition in pituitary tumors was evaluated in vitro with the endothelial tube formation assay and in vivo in RbΔ19 mice. Results 71 angiogenic genes, 40 of which are known to be involved in sprouting angiogenesis, were differentially expressed in pituitary tumors. Expression of endothelial markers CD31, CD34, and ENG was significantly higher in pituitary tumors, by 5.6, 22.3, and 8.2-fold, respectively, compared to in normal pituitary tissue. There was no significant difference in levels of the lymphatic endothelial marker LYVE1 in pituitary tumors compared with normal pituitary gland tissue. Pituitary tumors also expressed significantly higher levels of angiogenesis growth factors, including VEGFA (4.2-fold), VEGFB (2.2), VEGFC (19.3), PGF (13.4), ANGPT2 (9.2), PDGFA (2.7), PDGFB (10.5) and TGFB1 (3.8) compared to normal pituitary tissue. Expression of VEGFC and PGF was highly correlated with the expression of endothelial markers in tumor samples, including CD31, CD34, and ENG (endoglin, a co-receptor for TGFβ). Furthermore, VEGFR inhibitors inhibited angiogenesis induced by human pituitary tumors and prolonged survival of RbΔ19 mice. Conclusion Human pituitary tumors are characterized by more active angiogenesis than normal pituitary gland tissue in a manner consistent with sprouting angiogenesis. Angiogenesis in pituitary tumors is regulated mainly by PGF and VEGFC, not VEGFA and VEGFB. Angiogenesis inhibitors, such as the VEGFR2 inhibitor cabozantinib, may merit further investigation as therapies for aggressive human pituitary tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaomin Hu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kay E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Yunli Zhou,
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Niu X, Zhang Y, Lai Z, Huang X, Gao J, Lu F, Chang Q, Yuan Y. Preoperative Short-Term High Carbohydrate Diet Provides More High-Quality Transplantable Fat and Improves the Outcome of Fat Grafts in Mice. Aesthet Surg J 2022; 42:NP531-NP545. [PMID: 35460566 DOI: 10.1093/asj/sjac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Patients with a low body mass index may have inadequate high-quality adipose tissue for transplantation. The influence of high-energy diets on adipose tissue and graft retention remains unknown. OBJECTIVES We explored inguinal fat pad alternation in mice fed on a short-time high-fat diet (HFD) or a high-carbohydrate diet (HCD) preoperatively and the morphological and histological differences after transplantation. METHODS Mice were fed HFD (60% kilocalories from fat, 20% from carbohydrate), HCD (9.3% kilocalories from fat, 80.1% from carbohydrate), or normal (12% kilocalories from fat, 67% kilocalories from carbohydrate) diets for 2 or 4 weeks. Histological analyses were carried out following hematoxylin and eosin staining, and CD34 and proliferating cell nuclear antigen immunostaining. The uncoupling protein-1 (UCP-1) expression was determined by western blotting. Fat pads from each group were grafted into the dorsal region of the recipient mice and morphological and histological changes were determined 4, 8, and 12 weeks post-transplantation. Vascular endothelial growth factor α and platelet-derived growth factor α expression were determined using quantitative polymerase chain reaction. RESULTS The inguinal fat pad volume increased in the HFD and HCD groups. The presence of multilocular adipocytes in inguinal fat of HCD-fed mice, combined with the increased UCP-1 content, suggested adipocyte browning. HCD grafts showed higher volume retention and reduced oil cyst formation, possibly attributed to better angiogenesis and adipogenesis. CONCLUSIONS HCD enlarged adipose tissue and improved grafts survival rates, which may be due to the browning of fat before grafting and enhanced angiogenesis after grafting.
Collapse
Affiliation(s)
- Xingtang Niu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yuchen Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Zhuhao Lai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Xiaoqi Huang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| | - Yi Yuan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| |
Collapse
|
12
|
Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1106313. [PMID: 35345831 PMCID: PMC8957416 DOI: 10.1155/2022/1106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Corneal neovascularization (CoNV) in response to chemical burns is a leading cause of vision impairment. Although glutamine metabolism plays a crucial role in macrophage polarization, its regulatory effect on macrophages involved in chemical burn-induced corneal injury is not known. Here, we elucidated the connection between the reprogramming of glutamine metabolism in macrophages and the development of alkali burn-induced CoNV. Glutaminase 1 (GLS1) expression was upregulated in the mouse corneas damaged with alkali burns and was primarily located in F4/80-positive macrophages. Treatment with a selective oral GLS1 inhibitor, CB-839 (telaglenastat), significantly decreased the distribution of polarized M2 macrophages in the alkali-injured corneas and suppressed the development of CoNV. In vitro studies further demonstrated that glutamine deprivation or CB-839 treatment inhibited the proliferation, adhesion, and M2 polarization of bone marrow-derived macrophages (BMDMs) from C57BL/6J mice. CB-839 treatment markedly attenuated the secretion of proangiogenic factors, including vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from interleukin-4- (IL-4-) regulated M2 macrophages. Our findings revealed that GLS1 inhibition or glutamine deprivation prevented alkali-induced CoNV by inhibiting the infiltration and M2 polarization of macrophages. This work suggests that pharmacological GLS1 inhibition is a feasible and effective treatment strategy for chemical burn-related CoNV in humans.
Collapse
|
13
|
Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration. Acta Biomater 2022; 140:730-744. [PMID: 34896633 DOI: 10.1016/j.actbio.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds functionalized with biomolecules have been developed for bone regeneration but inducing the regeneration of complex structured bone with neovessels remains a challenge. For this study, we developed three-dimensional printed scaffolds with bioactive surfaces coated with minerals and platelet-derived growth factor. The minerals were homogeneously deposited on the surface of the scaffold using 0.01 M NaHCO3 with epigallocatechin gallate in simulated body fluid solution (M2). The M2 scaffold demonstrated enhanced mineral coating amount per scaffold with a greater compressive modulus than the others which used different concentration of NaHCO3. Then, we immobilized PDGF on the mineralized scaffold (M2/P), which enhanced the osteogenic differentiation of human adipose derived stem cells in vitro and promoted the secretion of pro-angiogenic factors. Cells cultured in M2/P showed remarkable ratio of osteocalcin- and osteopontin-positive nuclei, and M2/P-derived medium induced endothelial cells to form tubule structures. Finally, the implanted M2/P scaffolds onto mouse calvarial defects had regenerated bone in 80.8 ± 9.8% of the defect area with the arterioles were formed, after 8 weeks. In summary, our scaffold, which composed of minerals and pro-angiogenic growth factor, could be used therapeutically to improve the regeneration of bone with a highly vascularized structure. STATEMENT OF SIGNIFICANCE: Surface engineered scaffolds have been developed for bone regeneration but inducing the volumetric regeneration of bone with neovessels remains a challenge. In here, we developed 3D printed scaffolds with bioactive surfaces coated with bio-minerals and platelet-derived growth factors. We proved that the 0.01 M NaHCO3 with polyphenol in simulated body fluid solution enhanced the deposition of bio-minerals and even distribution on the surface of scaffold. The in vitro studies demonstrated that the attached cells on the bioactive surface showed the enhanced osteogenic differentiation and secretion of pro-angiogenic factors. Finally, the scaffold with bioactive surface not only improved the regenerated volume of bone tissues but also increased neovessel formation after in vivo implantation onto mouse calvarial defect.
Collapse
|
14
|
Eton D, Zhou G, He TC, Bartholomew A, Patil R. Filgrastim, fibrinolysis, and neovascularization. J Tissue Eng Regen Med 2022; 16:496-510. [PMID: 35175691 PMCID: PMC9302657 DOI: 10.1002/term.3284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Segmental recanalization of chronically occluded arteries was observed in patients with chronic limb-threatening ischemia (CLTI) treated with Filgrastim, a granulocyte colony stimulating factor, every 72 h for up to a month, and an infra-geniculate programmed compression pump (PCP) for 3 h daily. Molecular evidence for fibrinolysis and neovascularization was sought. CLTI patients were treated with PCP alone (N = 19), or with Filgrastim and PCP (N = 8 and N = 6, at two institutions). Enzyme-Linked Immunosorbent Assay was used to measure the plasma concentration of plasmin and of fibrin degradation products (FDP), and the serum concentration of proteins associated with neovascularization. In the PCP-alone group, blood was sampled on Day 1 (baseline) and after 30 days of daily PCP. In the Filgrastim and PCP group, blood was drawn on Day 1, and 1 day after the 5th and the 10th Filgrastim doses. Each blood draw occurred before and after 2 h of supervised PCP. Significant (p < 0.01) PCP independent increases in the plasma concentration of plasmin (>10-fold) and FDP (>5-fold) were observed 1 day after both the 5th and the 10th Filgrastim doses, compared to Day 1. Significant (p < 0.05) increases in the concentration of pro-angiogenic proteins (e.g., HGF, MMP-9, VEGF A) were also observed. Filgrastim at this novel dosimetry induced fibrinolysis without causing acute hemorrhage, in addition to inducing a pro-angiogenic milieu conducive to NV. Further clinical testing is warranted at this novel dosimetry in CLTI, as well as in other chronically ischemic tissue beds. Trial registration. https://clinicaltrials.gov/ct2/show/NCT02802852.
Collapse
Affiliation(s)
- Darwin Eton
- Department of Surgery, University of Illinois Chicago, Chicago, Illinois, USA
| | - Guolin Zhou
- GCIS, University of Chicago, Chicago, Illinois, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Amelia Bartholomew
- Department of Surgery, College of Medicine Research, University of Illinois Chicago, Chicago, Illinois, USA
| | - Rachana Patil
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
15
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
16
|
Du S, Qian J, Tan S, Li W, Liu P, Zhao J, Zeng Y, Xu L, Wang Z, Cai J. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett 2022; 529:168-179. [PMID: 35007697 DOI: 10.1016/j.canlet.2022.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2)-expressing macrophages (TEMs) are an angiogenesis-promoting subset of tumor-associated macrophages that have been demonstrated to be increased in solid tumors and associated with the progression of cervical cancer. However, the induction mechanism of TEMs remains unclear. Here, based on multicolor immunofluorescence of 58 cervical cancer tissues and the GEPIA database, we found that TEMs were increased in TIE2-high cervical cancer and related to shorter survival. In vitro and in vivo experiments verified that exosomes derived from TIE2-high cervical cancer cells transferred TIE2 protein directly to macrophages, thereby inducing TEMs. Similar to primary TEMs, TEMs induced by tumor-derived exosomes promoted angiogenesis, could be induced by angiopoietin-2, and possessed an M2-like phenotype. In conclusion, exosomes derived from TIE2-high cervical cancer cells induce TEMs by directly transporting TIE2 to promote tumor angiogenesis.
Collapse
Affiliation(s)
- Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jiaxian Qian
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Shuran Tan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Pan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Ya Zeng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Linjuan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
17
|
Zagorski J, Neto‐Neves E, Alves NJ, Fisher AJ, Kline JA. Modulation of soluble guanylate cyclase ameliorates pulmonary hypertension in a rat model of chronic thromboembolic pulmonary hypertension by stimulating angiogenesis. Physiol Rep 2022; 10:e15156. [PMID: 35001565 PMCID: PMC8743875 DOI: 10.14814/phy2.15156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 04/15/2023] Open
Abstract
Acute pulmonary embolism (PE) does not always resolve after treatment and can progress to chronic thromboembolic disease (CTED) or the more severe chronic thromboembolic pulmonary hypertension (CTEPH). The mechanisms surrounding the likelihood of PE resolution or progress to CTED/CTEPH remain largely unknown. We have developed a rat model of CTEPH that closely resembles the human disease in terms of hemodynamics and cardiac manifestations. Embolization of rats with polystyrene microspheres followed by suppression of angiogenesis with the inhibitor of vascular endothelial growth factor receptor 2 (VEGF-R2) SU5416 results in transient, acute pulmonary hypertension that progresses into chronic PE with PH with sustained right ventricular systolic pressures exceeding 70 mmHg (chronic pulmonary embolism [CPE] model). This model is similar to the widely utilized hypoxia/SU5416 model with the exception that the "first hit" is PE. Rats with CPE have impaired right heart function characterized by reduced VO2 Max, reduced cardiac output, and increased Fulton index. None of these metrics are adversely affected by PE alone. Contrast-mediated CT imaging of lungs from rats with PE minus SU5416 show large increases in pulmonary vascular volume, presumably due to an angiogenic response to acute PE/PH. Co-treatment with SU5416 suppresses angiogenesis and produces the CTEPH-like phenotype. We report here that treatment of CPE rats with agonists for soluble guanylate cyclase, a source of cGMP which is in turn a signal for angiogenesis, markedly increases angiogenesis in lungs, and ameliorates the cardiac deficiencies in the CPE model. These results have implications for future development of therapies for human CTEPH.
Collapse
Affiliation(s)
- John Zagorski
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Present address:
Department of MedicineIndiana University School of MedicineRiley R2 435, 950 W. Walnut St.IndianapolisIndiana46202USA
| | - Evandro Neto‐Neves
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Present address:
Department of PharmacologyRiberiao Proto Medical SchoolUniversity of San PauloSau PauloBrazil
| | - Nathan J. Alves
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Amanda J. Fisher
- Department of AnesthesiaIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeffrey A. Kline
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
18
|
Song M, Finley SD. Mechanistic characterization of endothelial sprouting mediated by pro-angiogenic signaling. Microcirculation 2021; 29:e12744. [PMID: 34890488 PMCID: PMC9285777 DOI: 10.1111/micc.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Objective We aim to quantitatively characterize the crosstalk between VEGF‐ and FGF‐mediated angiogenic signaling and endothelial sprouting, to gain mechanistic insights and identify novel therapeutic strategies. Methods We constructed an experimentally validated hybrid agent‐based mathematical model that characterizes endothelial sprouting driven by FGF‐ and VEGF‐mediated signaling. We predicted the total sprout length, number of sprouts, and average length by the mono‐ and co‐stimulation of FGF and VEGF. Results The experimentally fitted and validated model predicts that FGF induces stronger angiogenic responses in the long‐term compared with VEGF stimulation. Also, FGF plays a dominant role in the combination effects in endothelial sprouting. Moreover, the model suggests that ERK and Akt pathways and cellular responses contribute differently to the sprouting process. Last, the model predicts that the strategies to modulate endothelial sprouting are context‐dependent, and our model can identify potential effective pro‐ and anti‐angiogenic targets under different conditions and study their efficacy. Conclusions The model provides detailed mechanistic insight into VEGF and FGF interactions in sprouting angiogenesis. More broadly, this model can be utilized to identify targets that influence angiogenic signaling leading to endothelial sprouting and to study the effects of pro‐ and anti‐angiogenic therapies.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.,Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
20
|
Fowler G, French DV, Rose A, Squires P, Aniceto da Silva C, Ohata S, Okamoto H, French CR. Protein fucosylation is required for Notch dependent vascular integrity in zebrafish. Dev Biol 2021; 480:62-68. [PMID: 34400136 DOI: 10.1016/j.ydbio.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The onset of circulation in a developing embryo requires intact blood vessels to prevent hemorrhage. The development of endothelial cells, and their subsequent recruitment of perivascular mural cells are important processes to establish and maintain vascular integrity. These processes are genetically controlled during development, and mutations that affect endothelial cell specification, pattern formation, or maturation through the addition of mural cells can result in early developmental hemorrhage. We created a strong loss of function allele of the zebrafish GDP-mannose 4,6 dehydratase (gmds) gene that is required for the de novo synthesis of GDP-fucose, and homozygous embryos display cerebral hemorrhages. Our data demonstrate that gmds mutants have early defects in vascular patterning with ectopic branches observed at time of hemorrhage. Subsequently, defects in the number of mural cells that line the vasculature are observed. Moreover, activation of Notch signaling rescued hemorrhage phenotypes in gmds mutants, highlighting a potential downstream pathway that requires protein fucosylation for vascular integrity. Finally, supplementation with fucose can rescue hemorrhage frequency in gmds mutants, demonstrating that synthesis of GDP-fucose via an alternative (salvage) pathway may provide an avenue toward therapeutic correction of phenotypes observed due to defects in de novo GDP-fucose synthesis. Together, these data are consistent with a novel role for the de novo and salvage protein fucosylation pathways in regulating vascular integrity through a Notch dependent mechanism.
Collapse
Affiliation(s)
- Gerissa Fowler
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Danielle V French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - April Rose
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Paige Squires
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Catarina Aniceto da Silva
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama, Japan
| | - Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
21
|
Li X, Yin Q, Han X, Zhang H, Wang F, Ma J, Zhuang P, Zhang Y. Dynamic expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor beta (PDGFRβ) in diabetic brain contributes to cognitive dysfunction. Brain Res Bull 2021; 175:99-106. [PMID: 34303767 DOI: 10.1016/j.brainresbull.2021.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cognitive dysfunction is increasingly recognized as an important complication of diabetes mellitus (DM). Accumulating evidence indicates that the abnormality of cerebrovascular structure and function plays an essential role in diabetic cognitive impairment (DCI), however, changes in cerebrovascular factors have been blurred during the development of diabetes. OBJECTIVE To evaluate the changes in the structure and function of cerebrovascular in DCI mice and to investigate the changes of cerebral angiogenesis and stability factors during the development of DM. METHODS Diabetes was induced by feeding with high-fat diet combined with intraperitoneal injection of streptozotocin (STZ,120 mg/kg). Cognitive function was evaluated at different stages of DM, cerebral neovascularization, blood-brain barrier (BBB) permeability and hippocampal neurons were measured of DCI mice, and the expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor β (PDGFRβ) in hippocampus was detected during the development of DM. RESULTS With the progress of diabetes, the learning and memory ability of mice gradually decreased, and DCI mice showed neuronal degeneration, increased BBB permeability and pathological cerebral neovascularization. Moreover, the expression of VEGF in the hippocampus increased first and then decreased at DM+8week, PDGFRβ decreased continuously with the development of diabetes. CONCLUSIONS Our results demonstrate that DCI may be attributed to the dynamic expression of VEGF/PDGFRβ in diabetic hippocampus, and pathological cerebral neovascularization, increased BBB permeability and neuronal degeneration are the key links.
Collapse
Affiliation(s)
- Xueli Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xu Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hanyu Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fang Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
22
|
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 2021; 82:100906. [PMID: 33022379 PMCID: PMC10368393 DOI: 10.1016/j.preteyeres.2020.100906] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular age-related macular degeneration (NVAMD). However, many patients suffer from incomplete response to anti-VEGF therapy (IRT), which is defined as (1) persistent (plasma) fluid exudation; (2) unresolved or new hemorrhage; (3) progressive lesion fibrosis; and/or (4) suboptimal vision recovery. The first three of these collectively comprise the problem of persistent disease activity (PDA) in spite of anti-VEGF therapy. Meanwhile, the problem of suboptimal vision recovery (SVR) is defined as a failure to achieve excellent functional visual acuity of 20/40 or better in spite of sufficient anti-VEGF treatment. Thus, incomplete response to anti-VEGF therapy, and specifically PDA and SVR, represent significant clinical unmet needs. In this review, we will explore PDA and SVR in NVAMD, characterizing the clinical manifestations and exploring the pathobiology of each. We will demonstrate that PDA occurs most frequently in NVAMD patients who develop high-flow CNV lesions with arteriolarization, in contrast to patients with capillary CNV who are highly responsive to anti-VEGF therapy. We will review investigations of experimental CNV and demonstrate that both types of CNV can be modeled in mice. We will present and consider a provocative hypothesis: formation of arteriolar CNV occurs via a distinct pathobiology, termed neovascular remodeling (NVR), wherein blood-derived macrophages infiltrate the incipient CNV lesion, recruit bone marrow-derived mesenchymal precursor cells (MPCs) from the circulation, and activate MPCs to become vascular smooth muscle cells (VSMCs) and myofibroblasts, driving the development of high-flow CNV with arteriolarization and perivascular fibrosis. In considering SVR, we will discuss the concept that limited or poor vision in spite of anti-VEGF may not be caused simply by photoreceptor degeneration but instead may be associated with photoreceptor synaptic dysfunction in the neurosensory retina overlying CNV, triggered by infiltrating blood-derived macrophages and mediated by Müller cell activation Finally, for each of PDA and SVR, we will discuss current approaches to disease management and treatment and consider novel avenues for potential future therapies.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC.
| | - Michael J Allingham
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC
| | - Scott W Cousins
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
Shi YH, Zhang XL, Ying PJ, Wu ZQ, Lin LL, Chen W, Zheng GQ, Zhu WZ. Neuroprotective Effect of Astragaloside IV on Cerebral Ischemia/Reperfusion Injury Rats Through Sirt1/Mapt Pathway. Front Pharmacol 2021; 12:639898. [PMID: 33841157 PMCID: PMC8033022 DOI: 10.3389/fphar.2021.639898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a common disease with poor prognosis, which has become one of the leading causes of morbidity and mortality worldwide. Astragaloside IV (AS-IV) is the main bioactive ingredient of Astragali Radix (which has been used for ischemic stroke for thousands of years) and has been found to have multiple bioactivities in the nervous system. In the present study, we aimed to explore the neuroprotective effects of AS-IV in rats with cerebral ischemia/reperfusion (CIR) injury targeting the Sirt1/Mapt pathway. Methods: Sprague-Dawley rats (male, 250-280 g) were randomly divided into the Sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group, AS-IV group, MCAO/R + EX527 (SIRT1-specific inhibitor) group, and AS-IV + EX527 group. Each group was further assigned into several subgroups according to ischemic time (6 h, 1 d, 3 d, and 7 days). The CIR injury was induced in MCAO/R group, AS-IV group, MCAO/R + EX527 group, and AS-IV + EX527 group by MCAO surgery in accordance with the modified Zea Longa criteria. Modified Neurological Severity Scores (mNSS) were used to evaluate the neurological deficits; TTC (2,3,5-triphenyltetrazolium chloride) staining was used to detect cerebral infarction area; Western Blot was used to assess the protein levels of SIRT1, acetylated MAPT (ac-MAPT), phosphorylated MAPT (p-MAPT), and total MAPT (t-MAPT); Real-time Quantitative Polymerase Chain Reaction (qRT-PCR) was used in the detection of Sirt1 and Mapt transcriptions. Results: Compared with the MCAO/R group, AS-IV can significantly improve the neurological dysfunction (p < 0.05), reduce the infarction area (p < 0.05), raise the expression of SIRT1 (p < 0.05), and alleviate the abnormal hyperacetylation and hyperphosphorylation of MAPT (p < 0.05). While compared with the AS-IV group, AS-IV + EX527 group showed higher mNSS scores (p < 0.05), more severe cerebral infarction (p < 0.05), lower SIRT1 expression (p < 0.01), and higher ac-MAPT and p-MAPT levels (p < 0.05). Conclusion: AS-IV can improve the neurological deficit after CIR injury in rats and reduce the cerebral infarction area, which exerts neuroprotective effects probably through the Sirt1/Mapt pathway.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Qian Wu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Le-Le Lin
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Wei Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Zong Zhu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
24
|
Pericytes Regulate Cerebral Perfusion through VEGFR1 in Ischemic Stroke. Cell Mol Neurobiol 2021; 42:1897-1908. [PMID: 33712886 DOI: 10.1007/s10571-021-01071-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Neurons in the penumbra (the area surrounding ischemic tissue that consists of still viable tissue but with reduced blood flow and oxygen transport) may be rescued following stroke if adequate perfusion is restored in time. It has been speculated that post-stroke angiogenesis in the penumbra can reduce damage caused by ischemia. However, the mechanism for neovasculature formation in the brain remains unclear and vascular-targeted therapies for brain ischemia remain suboptimal. Here, we show that VEGFR1 was highly upregulated in pericytes after stroke. Knockdown of VEGFR1 in pericytes led to increased infarct area and compromised post-ischemia vessel formation. Furthermore, in vitro studies confirmed a critical role for pericyte-derived VEGFR1 in both endothelial tube formation and pericyte migration. Interestingly, our results show that pericyte-derived VEGFR1 has opposite effects on Akt activity in endothelial cells and pericytes. Collectively, these results indicate that pericyte-specific expression of VEGFR1 modulates ischemia-induced vessel formation and vascular integrity in the brain.
Collapse
|
25
|
Strell C, Stenmark Tullberg A, Jetne Edelmann R, Akslen LA, Malmström P, Fernö M, Holmberg E, Östman A, Karlsson P. Prognostic and predictive impact of stroma cells defined by PDGFRb expression in early breast cancer: results from the randomized SweBCG91RT trial. Breast Cancer Res Treat 2021; 187:45-55. [PMID: 33661437 PMCID: PMC8062362 DOI: 10.1007/s10549-021-06136-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Purpose Predictive biomarkers are needed to aid the individualization of radiotherapy (RT) in breast cancer. Cancer-associated fibroblasts have been implicated in tumor radioresistance and can be identified by platelet-derived growth factor receptor-beta (PDGFRb). This study aims to analyze how PDGFRb expression affects RT benefit in a large randomized RT trial. Methods PDGFRb was assessed by immunohistochemistry on tissue microarrays from 989 tumors of the SweBCG91RT trial, which enrolled lymph node-negative, stage I/IIA breast cancer patients randomized to RT after breast-conserving surgery. Outcomes were analyzed at 10 years for ipsilateral breast tumor recurrence (IBTR) and any recurrence and 15 years for breast cancer specific death (BCSD). Results PDGFRb expression correlated with estrogen receptor negativity and younger age. An increased risk for any recurrence was noted in univariable analysis for the medium (HR 1.58, CI 95% 1.11–2.23, p = 0.011) or PDGFRb high group (1.49, 1.06–2.10, p = 0.021) compared to the low group. No differences in IBTR or BCSD risk were detected. RT benefit regarding IBTR risk was significant in the PDGFRb low (0.29, 0.12–0.67, p = 0.004) and medium (0.31, 0.16–0.59, p < 0.001) groups but not the PDGFRb high group (0.64, 0.36–1.11, p = 0.110) in multivariable analysis. Likewise, risk reduction for any recurrence was less pronounced in the PDGFRb high group. No significant interaction between RT and PDGFRb-score could be detected. Conclusion A higher PDGFRb-score conferred an increased risk of any recurrence, which partly can be explained by its association with estrogen receptor negativity and young age. Reduced RT benefit was noted among patients with high PDGFRb, however without significant interaction.
Collapse
Affiliation(s)
- Carina Strell
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Stenmark Tullberg
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Reidunn Jetne Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Lars Andreas Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Per Malmström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Mårten Fernö
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Holmberg
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska University Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
26
|
Chen L, Wu H, Ren C, Liu G, Zhang W, Liu W, Lu P. Inhibition of PDGF-BB reduces alkali-induced corneal neovascularization in mice. Mol Med Rep 2021; 23:238. [PMID: 33537811 PMCID: PMC7893695 DOI: 10.3892/mmr.2021.11877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the role of platelet-derived growth factor (PDGF)-BB/PDGF receptor (R)-β signaling in an experimental murine corneal neovascularization (CrNV) model. Experimental CrNV was induced by alkali injury. The intra-corneal expression of PDGF-BB was examined using immunohistochemistry. The effect of PDGF-BB on CrNV was evaluated using immunofluorescence staining. The expression levels of PDGFR-β in human retinal endothelial cells (HRECs) under normal conditions or following cobalt chloride treatment, which induced hypoxic conditions, was assessed using reverse transcription-quantitative PCR. The effect of exogenous treatment of PDGF-BB on the proliferation, migration and tube formation of HRECs under normoxic or hypoxic conditions was evaluated in vitro using Cell Counting Kit-8, wound healing and 3D Matrigel capillary tube formation assays, respectively. The results indicated that the intra-corneal expression levels of the proteins of PDGF-BB and PDGFR-β were detectable on days 2 and 7 following alkali injury. The treatment with neutralizing anti-PDGF-BB antibody resulted in significant inhibition of CrNV. The intra-corneal expression levels of vascular endothelial growth factor A, matrix metallopeptidase (MMP)-2 and MMP-9 proteins were downregulated, while the expression levels of thrombospondin (TSP)-1, TSP-2, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 and ADAMTS-2 were upregulated significantly in mice treated with anti-PDGF-BB antibody. The expression levels of PDGFR-β were upregulated in HRECs under hypoxic conditions compared with those noted under normoxic conditions. Recombinant human PDGF-BB promoted the proliferation, migration and tube formation of HRECs under hypoxic conditions. The data indicated that PDGF-BB/PDGFR-β signaling was involved in CrNV and that it promoted endothelial cell proliferation, migration and tube formation. The pro-angiogenic effects of this pathway may be mediated via the induction of pro-angiogenic cytokine secretion and the suppression of anti-angiogenic cytokine secretion.
Collapse
Affiliation(s)
- Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenpeng Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep 2021; 48:941-950. [PMID: 33393005 DOI: 10.1007/s11033-020-06108-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering is a rapidly developing field with many potential clinical applications in tissue and organ regeneration. The development of a mature and stable vasculature within these engineered tissues (ET) remains a significant obstacle. Currently, several growth factors (GFs) have been identified to play key roles within in vivo angiogenesis, including vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), FGF and angiopoietins. In this article we attempt to build on in vivo principles to review the single, dual and multiple GF release systems and their effects on promoting angiogenesis. We conclude that multiple GF release systems offer superior results compared to single and dual systems with more stable, mature and larger vessels produced. However, with more complex release systems this raises other problems such as increased cost and significant GF-GF interactions. Upstream regulators and pericyte-coated scaffolds could provide viable alternative to circumnavigate these issues.
Collapse
|
28
|
Ye LX, An NC, Huang P, Li DH, Zheng ZL, Ji H, Li H, Chen DQ, Wu YQ, Xiao J, Xu K, Li XK, Zhang HY. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury. Neural Regen Res 2021; 16:765-771. [PMID: 33063740 PMCID: PMC8067950 DOI: 10.4103/1673-5374.295347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury. The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain, while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies. Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with platelet-derived growth factor (80 μg/kg) at the injury site. Our results showed that after platelet-derived growth factor administration, spinal cord injury, neuronal apoptosis, and blood-spinal cord barrier permeability were reduced, excessive astrocyte proliferation and the autophagy-related apoptosis signaling pathway were inhibited, collagen synthesis was increased, and mouse locomotor function was improved. In vitro, human umbilical vein endothelial cells were established by exposure to 200 μM H2O2. At 2 hours prior to injury, in vitro cell models were treated with 5 ng/mL platelet-derived growth factor. Our results showed that expression of blood-spinal cord barrier-related proteins, including Occludin, Claudin 5, and β-catenin, was significantly decreased and autophagy was significantly reduced. Additionally, the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine, an autophagy inhibitor, for 3 successive days prior to spinal cord injury. Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy, improve the function of the blood-spinal cord barrier, and promote the recovery of locomotor function post-spinal cord injury. Approval for animal experiments was obtained from the Animal Ethics Committee, Wenzhou Medical University, China (approval No. wydw2018-0043) in July 2018.
Collapse
Affiliation(s)
- Lu-Xia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning-Chen An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peng Huang
- Department of Pharmacy, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Duo-Hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhi-Long Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan-Qing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hong-Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
29
|
Guan N, Liu Z, Zhao Y, Li Q, Wang Y. Engineered biomaterial strategies for controlling growth factors in tissue engineering. Drug Deliv 2020; 27:1438-1451. [PMID: 33100031 PMCID: PMC7594870 DOI: 10.1080/10717544.2020.1831104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Growth factors are multi-functional signaling molecules that coordinate multi-stage process of wound healing. During wound healing, growth factors are transmitted to wound environment in a positive and physiologically related way, therefore, there is a broad prospect for studying the mediated healing process through growth factors. However, growth factors (GFs) themselves have disadvantages of instability, short life, rapid inactivation of physiological conditions, low safety and easy degradation, which hinder the clinical use of GFs. Rapid development of delivery strategies for GFs has been trying to solve the instability and insecurity of GFs. Particularly, in recent years, GFs delivered by scaffolds based on biomaterials have become a hotspot in this filed. This review introduces various delivery strategies for growth factors based on new biodegradable materials, especially polysaccharides, which could provide guidance for the development of the delivery strategies for growth factors in clinic.
Collapse
Affiliation(s)
- Na Guan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yonghui Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
30
|
Guo J, Hu Z, Yan F, Lei S, Li T, Li X, Xu C, Sun B, Pan C, Chen L. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway. Free Radic Biol Med 2020; 160:447-457. [PMID: 32853721 DOI: 10.1016/j.freeradbiomed.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Impaired angiogenesis is crucial for impeding the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that Angelica dahurica (A. dahurica) stimulated angiogenesis and benefited wound healing in genetic mouse models of diabetes. In HUVECs, A. dahurica promoted cell proliferation and tube formation, which was accompanied by increased nuclear translocation of HIF-1α under hypoxic conditions and led to elevated PDGF-β protein expression. A. dahurica activated the PI3K/AKT signaling pathway in human umbilical vein endothelial cells (HUVECs), which was abrogated by the PI3K inhibitor LY294002. Furthermore, the cellular expression of PDGF-β decreased significantly after treatment with a HIF-1α-siRNA, and PDGF-β expression was increased in HIF-1α-overexpressing cells. In a full-thickness cutaneous wound healing db/db mouse model, A. dahurica accelerated wound closure, which was reflected by a significantly reduced wound area and an increase in neovascularization, as well as by elevated PDGF-β expression and increased capillary formation. In addition, A. dahurica activated the PI3K/AKT signaling pathway and enhanced HIF-1α synthesis in wounds. In summary, A. dahurica promoted angiogenesis of HUVECs in vitro by promoting signaling via the HIF-1α/PDGF-β pathway, efficiently enhancing vascularization in regenerated tissue and facilitating wound healing in vivo. The results revealed that A. dahurica has potential as a therapy for vessel injury-related wounds.
Collapse
Affiliation(s)
- Jun Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fengjuan Yan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Sisi Lei
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chaofei Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
31
|
Wei J, Zhao Y. MiR-185-5p Protects Against Angiogenesis in Polycystic Ovary Syndrome by Targeting VEGFA. Front Pharmacol 2020; 11:1030. [PMID: 32760272 PMCID: PMC7373746 DOI: 10.3389/fphar.2020.01030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a heterogeneous endocrine disease with high incidences in women of reproductive age. Although miR-185-5p (miR-185) was decreased in PCOS patients, the exact function of miR-185 on PCOS development still requires further investigation. In this study, rat injected with dehydroepiandrosterone (DHEA) was established as a PCOS model. A lentivirus carrying miR-185 was employed to examine its effect on PCOS symptoms. Then we performed the luciferase reporter assay to validate the interactions between miR-185 and vascular endothelial growth factor A (VEGFA). Finally, human ovarian microvascular endothelial cells (HOMECs) were induced by VEGF to explore the role of miR-185 in the angiogenic process. The results showed that miR-185 overexpression improved insulin level alteration and ovarian histological lesion in PCOS rats. We also found that miR-185 reduced the excessive angiogenesis as indicated by alterations of VEGFA, ANGPT1/2, PDGFB/D, α-SMA and CD31 in the ovary of PCOS rats. Luciferase reporter assay identified that VEGFA directly interacted with miR-185, and its expression level was negatively regulated by miR-185. The in vitro results further demonstrated that miR-185-induced suppression of cell proliferation, migration and tube formation was attenuated by VEGF in HOMECs. In summary, this is the first study to show that miR-185 can target VEGFA to inhibit angiogenesis, thus improving the development of PCOS. These findings develop a molecular candidate for PCOS prevention and therapy.
Collapse
Affiliation(s)
- Jingzan Wei
- Department of Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
33
|
Miao H, Qiu F, Zhu L, Jiang B, Yuan Y, Huang B, Zhang Y. Novel angiogenesis strategy to ameliorate pulmonary hypertension. J Thorac Cardiovasc Surg 2020; 161:e417-e434. [PMID: 32359908 DOI: 10.1016/j.jtcvs.2020.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To select a suitable combination of classic angiogenic and vascular stabilization factors to improve the proliferation and maturity of neovascularization of lung tissue in a rat pulmonary arterial hypertension (PAH) model. METHODS PAH rat model was established by intraperitoneal injection of monocrotaline. Proangiogenic factors hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF), as well as vascular stabilization factors angiopoietin-1 (Ang-1), platelet-derived growth factor, and transforming growth factor-beta were transfected by pairs into the lung tissue of rats with PAH through lentivirus. Four weeks later, pulmonary artery angiography and hemodynamic parameters were determined to testify the remission of PAH. Immunofluorescence staining and Western blot were performed to investigate the structure and function of neovascularization. RESULTS The pulmonary artery pressure and weight index of the right ventricle in HGF+Ang-1 and VEGF+Ang-1 groups were significantly decreased compared with vehicle group. The contrast medium filling time and right pulmonary artery root diameter were also significantly decreased. In addition, the maturity and perfusion of neovascularization in HGF+Ang-1 and VEGF+Ang-1 groups were promoted compared to vehicle group, and vascular leakage was reduced. Finally, the adherens junction integrity of vascular endothelial cells in HGF+Ang-1 and VEGF+Ang-1 combinations was upregulated compared with other combinations. CONCLUSIONS HGF+Ang-1 transfection and VEGF+Ang-1 transfection alleviate PAH by promoting maturation and stability of new blood vessels, which may be potential candidates for PAH treatment.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Thoracic Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lidong Zhu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Thoracic Cardiovascular Surgery, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
34
|
Lim T, Tang Q, Zhu Z, Wei X, Zhang C. Sustained release of human platelet lysate growth factors by thermosensitive hydroxybutyl chitosan hydrogel promotes skin wound healing in rats. J Biomed Mater Res A 2020; 108:2111-2122. [PMID: 32323472 DOI: 10.1002/jbm.a.36970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
This study evaluated the effect of thermosensitive hydroxybutyl chitosan (HBC) hydrogel loaded with human platelet lysate (hPL) on skin wound healing in rats. hPLs were generated by freeze-thaw method of platelet-rich plasma from healthy donors. Successful grafting of hydroxybutyl group to chitosan molecular chain to obtain HBC hydrogel was confirmed by Fourier-transform infrared spectroscopy. HBC/hPL was prepared by combining 10% (vol/vol) hPL with HBC solution. Surface morphologies were determined by Scanning Electron Microscopy, rheological properties were measured by rheometer, and sustained release of factors from HBC/hPL was measured by enzyme-linked immunoassay. We evaluated the in vitro effect of HBC/hPL on human umbilical cord vein endothelial cell (HUVEC) proliferation, migration, and tube formation. The effect of growth factors released from HBC/hPL in promoting skin wound healing was evaluated by gross observation, histology, immunohistochemistry, and immunofluorescence in vivo. Rheological analyses indicated the gelation temperatures of HBC and HBC/hPL were 17 and 14°C, respectively. ELISA showed sustained release of human platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β1 from HBC/hPL hydrogel. In vitro studies revealed HBC/hPL promoted greater levels of HUVECs proliferation, migration, and tube formation than the HBC and control groups. In vivo studies showed better wound healing, greater amounts of newly formed collagen, as well as neovascular and neo-epidermis markers in the wound site of HBC/hPL-treated group compared to the HBC and control groups. HBC/hPL is a promising potential therapeutic agent for promoting skin wound healing via the sustained release of growth factors.
Collapse
Affiliation(s)
- Thou Lim
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenzhong Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
Wu G, Yang Z, Chen Y, Li X, Yang J, Yin T. Downregulation of Lnc-OC1 attenuates the pathogenesis of polycystic ovary syndrome. Mol Cell Endocrinol 2020; 506:110760. [PMID: 32070768 DOI: 10.1016/j.mce.2020.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a vital role in the progression of many human diseases. The aim of this study is to explore the relationship between lncRNA-ovarian cancer associated 1 (Lnc-OC1) and PCOS. In this study, we found that Lnc-OC1 was significantly higher in PCOS granulosa cells (GCs) compared to non-PCOS GCs. Lnc-OC1 knockdown inhibited cell viability and promoted cell apoptosis, expression of aromatase mRNA and production of estradiol in KGN cells. In PCOS mice, Lnc-OC1 promoted the serum insulin release, production of angiogenesis-related factors and IκBα phosphorylation, which could be partially restored by Lnc-OC1 shRNA. These results suggest that Lnc-OC1 plays an important part in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Gengxiang Wu
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zhe Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yajie Chen
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoling Li
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Tailang Yin
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
36
|
Ma R, Yang Q, Cao S, Liu S, Cao H, Xu H, Wu J, Feng J. Serum Platelet-Derived Growth Factor Is Significantly Lower in Patients with Lung Cancer and Continued to Decrease After Platinum-Based Chemotherapy. Onco Targets Ther 2020; 13:1883-1892. [PMID: 32184623 PMCID: PMC7061435 DOI: 10.2147/ott.s239252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective This study aimed to investigate the diagnosis and prediction of serum platelet-derived growth factor (PDGF) level in patients with lung cancer (LC). Methods Serum concentrations of PDGF-AA and PDGF-AB/BB were determined via Luminex assay in 210 patients with non-small cell lung cancer (NSCLC), 33 patients with small cell lung cancer (SCLC), and 168 healthy controls. Results The serum levels of PDGF-AA and PDGF-AB/BB were lower in patients with NSCLC (P < 0.05) and SCLC (P < 0.05), compared to healthy controls. The concentration of PDGF-AA or PDGF-AB/BB continued to markedly decrease in NSCLC after therapy with platinum-based chemotherapy (P < 0.05). The median survival times were 29 and 38 months in patients with NSCLC who received PDGF-AA < 30 ng/mL and PDGF-AA ≥ 30 ng/mL (P = 0.0078), and 26 and 38 months in patients with NSCLC who received PDGF-AB/BB < 42 ng/mL and PDGF-AB/BB ≥ 42 ng/mL (P = 0.0001), respectively. At the individual protein level, PDGF-AA and PDGF-AB/BB had better diagnostic values for NSCLC (AUC = 0.905, AUC = 0.922, respectively). Conclusion Serum PDGF may be a potential biomarker for diagnosis of patients with NSCLC and SCLC. However, the prognostic value of serum PDGF in patients with NSCLC harboring mutations and different therapies requires additional investigation.
Collapse
Affiliation(s)
- Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Qing Yang
- Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, People's Republic of China
| | - Shengya Cao
- Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, People's Republic of China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Heng Xu
- Laboratory of Pharmaceutical Chemistry, Jiangsu Province Institute of Materia Medica, Nanjing Tech University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| |
Collapse
|
37
|
Zarubova J, Hasani-Sadrabadi MM, Bacakova L, Li S. Nano-in-Micro Dual Delivery Platform for Chronic Wound Healing Applications. MICROMACHINES 2020; 11:mi11020158. [PMID: 32024165 PMCID: PMC7074578 DOI: 10.3390/mi11020158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Here, we developed a combinatorial delivery platform for chronic wound healing applications. A microfluidic system was utilized to form a series of biopolymer-based microparticles with enhanced affinity to encapsulate and deliver vascular endothelial growth factor (VEGF). Presence of heparin into the structure can significantly increase the encapsulation efficiency up to 95% and lower the release rate of encapsulated VEGF. Our in vitro results demonstrated that sustained release of VEGF from microparticles can promote capillary network formation and sprouting of endothelial cells in 2D and 3D microenvironments. These engineered microparticles can also encapsulate antibiotic-loaded nanoparticles to offer a dual delivery system able to fight bacterial infection while promoting angiogenesis. We believe this highly tunable drug delivery platform can be used alone or in combination with other wound care products to improve the wound healing process and promote tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA (M.M.H.-S.)
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic;
| | | | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic;
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA (M.M.H.-S.)
- Correspondence: ; Tel.: +1-310-794-6140
| |
Collapse
|
38
|
Pozas J, San Román M, Alonso-Gordoa T, Pozas M, Caracuel L, Carrato A, Molina-Cerrillo J. Targeting Angiogenesis in Pancreatic Neuroendocrine Tumors: Resistance Mechanisms. Int J Mol Sci 2019; 20:E4949. [PMID: 31597249 PMCID: PMC6801829 DOI: 10.3390/ijms20194949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Despite being infrequent tumors, the incidence and prevalence of pancreatic neuroendocrine tumors (P-NETs) has been rising over the past few decades. In recent years, rigorous phase III clinical trials have been conducted, allowing the approval of several drugs that have become the standard of care in these patients. Although various treatments are used in clinical practice, including somatostatin analogues (SSAs), biological therapies like sunitinib or everolimus, peptide receptor radionuclide therapy (PRRT) or even chemotherapy, a consensus regarding the optimal sequence of treatment has not yet been reached. Notwithstanding, sunitinib is largely used in these patients after the promising results shown in SUN111 phase III clinical trial. However, both prompt progression as well as tumor recurrence after initial response have been reported, suggesting the existence of primary and acquired resistances to this antiangiogenic drug. In this review, we aim to summarize the most relevant mechanisms of angiogenesis resistance that are key contributors of tumor progression and dissemination. Furthermore, several targeted molecules acting selectively against these pathways have shown promising results in preclinical models, and preliminary results from ongoing clinical trials are awaited.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - María San Román
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| | - Miguel Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Laura Caracuel
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
- The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain.
- Alcalá University, 28805 Madrid, Spain.
| |
Collapse
|
39
|
Li X, Wang X, Li Z, Zhang Z, Zhang Y. Chemokine receptor 7 targets the vascular endothelial growth factor via the AKT/ERK pathway to regulate angiogenesis in colon cancer. Cancer Med 2019; 8:5327-5340. [PMID: 31348616 PMCID: PMC6718596 DOI: 10.1002/cam4.2426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Studies have shown that CXCR7 is expressed in many tumors. The aim of the present study was to investigate the function of CXCR7 in colon cancer. Although evidence indicates that CXCR7 promotes angiogenesis in colon cancer, the mechanism involved in this process remains unclear. Methods The expression of CXCR7 in colon cancer was evaluated by quantitative reverse‐transcription polymerase chain reaction and western blotting. After transfection, cell proliferation, migration, and lumen formation were measured in vitro. Immunohistochemistry and western blotting were used to identify the functional target of CXCR7 in vivo and in vitro. Results In this study, CXCR7 was differentially expressed in four colon cancer cell lines. The proliferation and migration experiments showed that overexpression of CXCR7 enhanced cell growth and migration. Moreover, the tube formation assays showed that co‐culture of colon cancer cells overexpressing CXCR7 with human umbilical vein endothelial cells significantly promoted tube formation in the latter cells. Conversely, the stable knockdown of CXCR7 significantly reduced this malignant activity. In addition, we found that CXCR7 activates the AKT and ERK pathways in colon cancer cells. The phosphorylation of AKT and ERK, as well as the expression of the vascular endothelial growth factor, can be inhibited using the LY294002 and U0126 inhibitors. Furthermore, the angiogenic ability of CXCR7‐induced colon cancer cells was eliminated. Conclusion Expression of CXCR7 contributes to colon cancer growth and angiogenesis, by activating the AKT and ERK pathways. CXCR7 provides a potential therapeutic target against colon cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xuemei Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Zitao Li
- Department of Orthopedic Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China
| | - Zhen Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yixia Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
40
|
Al-Essa M, Dhaunsi GS. Selective receptor-mediated impairment of growth factor activity in neonatal- and X-linked adrenoleukodystrophy patients. J Pediatr Endocrinol Metab 2019; 32:733-738. [PMID: 31194684 DOI: 10.1515/jpem-2018-0540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/13/2019] [Indexed: 11/15/2022]
Abstract
Background Neonatal adrenoleukodystrophy (n-ALD) and X-linked ALD (X-ALD) patients present with demyelination, poor growth and progressive mental retardation. Growth factors are known to play a vital role in the development of children. Objective To examine the mitogenic activity of various growth factors in skin fibroblasts from n-ALD and X-ALD patients. Methods Skin fibroblast cultures from n-ALD and X-ALD patients, and controls were treated with 50 ng/mL of platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-1 (IGF-1) to examine DNA synthesis by 5-bromo-2'-deoxyuridine (BrdU) incorporation. Expression of receptors for PDGF, bFGF and IGF-1 was measured by western blotting. Serum levels of IGF-1 were assayed by enzyme-linked immunosorbent assay (ELISA). Results Fibroblasts from n-ALD and X-ALD patients had significantly (p < 0.01) less BrdU incorporation in response to fetal bovine serum (FBS). The mitogenic effect of PDGF, bFGF and IGF-1 was significantly lower in n-ALD as compared to control and X-ALD cells. X-ALD cells showed significant impairment in IGF-1-induced DNA synthesis. Expression of the FGF receptor (FGF-R) was significantly reduced in n-ALD cells. PDGF receptor remained unaffected, and IGF-1 receptor (IGF-1R) expression and serum IGF-1 levels were significantly (p < 0.01) reduced in n-ALD and X-ALD patients as compared to controls. Conclusions Growth factor activity differs in n-ALD and X-ALD patients, with marked impairment of IGF-1 function through receptor down-regulation.
Collapse
Affiliation(s)
- Mazen Al-Essa
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
41
|
Kawasaki H, Goda M, Fukuhara S, Hashikawa-Hobara N, Zamami Y, Takatori S. Nerve growth factor (NGF) has an anti-tumor effects through perivascular innervation of neovessels in HT1080 fibrosarcoma and HepG2 hepatitis tumor in nude mice. J Pharmacol Sci 2019; 140:1-7. [PMID: 31178329 DOI: 10.1016/j.jphs.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigated whether NGF prevents tumor growth by promoting neuronal regulation of tumor blood flow. HT1080 fibrosarcoma cells or HepG2 hepatitis cells were subcutaneously implanted into nude mice. On Day 21 after the implantation of tumor cells, human NGF (40 or 80 ng/h for 14 days) was administered using a micro-osmotic pump. Growth rates of both tumors were significantly inhibited by the treatment of NGF, and the survival rate was also extended. Significant suppression of HT1080 tumor growth lasted after withdrawing NGF. NGF markedly increased the density of α-smooth muscle actin (α-SMA)-immunoreactive (ir) cells without changing neovessel density in HT1080 tumor tissues. Double immunostaining demonstrated protein gene product (PGP) 9.5-ir nerves around α-SMA-ir cells were found in HT1080 tumor tissue treated with NGF. The blood flow in HepG2 tumors treated with saline was significantly higher than in the non-tumor control area, but the tumor blood flow was markedly reduced by NGF treatment. In in vitro studies, NGF significantly accelerated migration of aortic smooth muscle cells but not endothelial cells, whereas NGF had no cytotoxic action on both cells. NGF inhibits tumor growth via indirect action, probably through innervation and maturation of tumor neovasculature, which regulates blood flow into tumor tissues.
Collapse
Affiliation(s)
- Hiromu Kawasaki
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Satoko Fukuhara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shingo Takatori
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
42
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
43
|
Ren P, Sun X, Zhang C, Wang L, Xing B, Du X. Human UTP14a promotes angiogenesis through upregulating PDGFA expression in colorectal cancer. Biochem Biophys Res Commun 2019; 512:871-876. [DOI: 10.1016/j.bbrc.2019.03.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
44
|
Silencing of LncRNA steroid receptor RNA activator attenuates polycystic ovary syndrome in mice. Biochimie 2019; 157:48-56. [DOI: 10.1016/j.biochi.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/12/2018] [Indexed: 01/21/2023]
|
45
|
Tsuruta T, Sakai K, Watanabe J, Katagiri W, Hibi H. Dental pulp-derived stem cell conditioned medium to regenerate peripheral nerves in a novel animal model of dysphagia. PLoS One 2018; 13:e0208938. [PMID: 30533035 PMCID: PMC6289419 DOI: 10.1371/journal.pone.0208938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
In nerve regeneration studies, various animal models are used to assess nerve regeneration. However, because of the difficulties in functional nerve assessment, a visceral nerve injury model is yet to be established. The superior laryngeal nerve (SLN) plays an essential role in swallowing. Although a treatment for SLN injury following trauma and surgery is desirable, no such treatment is reported in the literature. We recently reported that stem cells derived from human exfoliated deciduous teeth (SHED) have a therapeutic effect on various tissues via macrophage polarization. Here, we established a novel animal model of SLN injury. Our model was characterized as having weight loss and drinking behavior changes. In addition, the SLN lesion caused a delay in the onset of the swallowing reflex and gain of laryngeal residue in the pharynx. Systemic administration of SHED-conditioned media (SHED-CM) promoted functional recovery of the SLN and significantly promoted axonal regeneration by converting of macrophages to the anti-inflammatory M2 phenotype. In addition, SHED-CM enhanced new blood vessel formation at the injury site. Our data suggest that the administration of SHED-CM may provide therapeutic benefits for SLN injury.
Collapse
Affiliation(s)
- Takeshi Tsuruta
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Junna Watanabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Katagiri
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
46
|
Zheng XW, Shan CS, Xu QQ, Wang Y, Shi YH, Wang Y, Zheng GQ. Buyang Huanwu Decoction Targets SIRT1/VEGF Pathway to Promote Angiogenesis After Cerebral Ischemia/Reperfusion Injury. Front Neurosci 2018; 12:911. [PMID: 30564092 PMCID: PMC6288378 DOI: 10.3389/fnins.2018.00911] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Ischemia stroke is known as the major cause of morbidity and mortality. Buyang Huanwu Decoction (BHD), a classical traditional Chinese medicine (TCM) formula, has been used to prevent and treat stoke for hundreds of years. The purpose of present study is to investigate the effects of BHD on angiogenesis in rats after cerebral ischemia/reperfusion (I/R) injury targeting Silent information regulator 1 (SIRT1) / Vascular endothelial growth factor (VEGF) pathway. Methods: The cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO). Adult Sprag-Dawley (SD) rats were randomly divided into five groups: sham group, normal saline (NS) group, BHD group, BHD+EX527 (SIRT1 specific inhibitor) group, and NS+EX527 group. Each group was divided into the subgroups according to 1, 3, 7, or 14 days time-point after cerebral ischemia/reperfusion, respectively. Neurological function score (NFS) was evaluated by the Rogers scale; microvascular density (MVD) in brain tissue around infarction area was observed by immunofluorescence; and the expression of SIRT1 and VEGF was assessed by Western Blot and Quantitative Real-time-PCR. Results: BHD can significantly improve NFS (P < 0.05), increase the MVD in the boundary ischemic area (P < 0.01) and elevate the expression of protein and mRNA of SIRT1 and VEGF following I/R injury (P < 0.01). In contrast, treatment with EX527 reversed the BHD-induced improvements in NFS (P < 0.01) and decreased the MVD (P < 0.01) and the expression of SIRT1 and VEGF (P < 0.05). Conclusion: BHD exerts neuroprotection targeting angiogenesis through the up-regulation of SIRT1/VEGF pathway against cerebral ischemic injury in rats.
Collapse
Affiliation(s)
- Xia-Wei Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Shuo Shan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Qing Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Landau S, Ben‐Shaul S, Levenberg S. Oscillatory Strain Promotes Vessel Stabilization and Alignment through Fibroblast YAP-Mediated Mechanosensitivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800506. [PMID: 30250793 PMCID: PMC6145399 DOI: 10.1002/advs.201800506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Indexed: 05/24/2023]
Abstract
Endothelial cells form the interior layer of blood vessels and, as such, are constantly exposed to shear stress and mechanical strain. While the impact of shear stress on angiogenesis is widely studied, the role of mechanical strain is less understood. To this end, endothelial cells and fibroblasts are cocultured under oscillatory strain to create a vessel network. The two cell types show distinctly different sensitivities to the mechanical stimulation. The fibroblasts, sense the stress directly, and respond by increased alignment, proliferation, differentiation, and migration, facilitated by YAP translocation into the nucleus. In contrast, the endothelial cells form aligned vessels by tracking fibroblast alignment. YAP inhibition in constructs under mechanical strain results in vessel destruction whereas less damage is observed in the YAP-inhibited static control. Moreover, the mechanical stimulation enhances vessel development and stabilization. Additionally, vessel orientation is preserved upon implantation into a mouse dorsal window chamber and promotes the invading host vessels to orient in the same manner. This study sheds light on the mechanisms by which mechanical strain affects the development of blood vessels within engineered tissues. This can be further utilized to engineer a more organized and stable vasculature suitable for transplantation of engineered grafts.
Collapse
Affiliation(s)
- Shira Landau
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| | - Shahar Ben‐Shaul
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| |
Collapse
|
48
|
Angiogenesis and Hepatic Fibrosis: Western and Chinese Medicine Therapies on the Road. Chin J Integr Med 2018; 24:713-720. [DOI: 10.1007/s11655-018-3007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
|
49
|
Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Xiao M, Wang J. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater 2018; 71:96-107. [PMID: 29549051 DOI: 10.1016/j.actbio.2018.03.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and eosin staining, as well as immunohistochemistry of CD31. The results showed that IFN-γ@CaSiO3-β-TCP scaffolds released IFN-γ in the early stage (1-3 days) to stimulate macrophages to M1 polarization, followed by release of Si inducing macrophages to M2 polarization while scaffolds degraded. The activation of M1/M2 allows macrophages to secrete more cytokines, including VEGF, CXCL12 and PDGF-BB. The IFN-γ@CaSiO3-β-TCP scaffolds formed more blood vessels in vitro and in vivo compared to the control groups. The study indicated that the design of tissue-engineered scaffolds with immunomodulatory function utilized host macrophages to increase vascularization of tissue-engineered bone, providing a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects. STATEMENT OF SIGNIFICANCE A 3-D printed immunomodulatory scaffold was designed for repair of massive bone defects. Through the release of interferon γ and silicon ions, the new immunomodulatory scaffold promoted the M1 and M2 polarization of macrophages, boosting angiogenesis. This scaffold provided a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects.
Collapse
|
50
|
Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In Vitro Microfluidic Models for Neurodegenerative Disorders. Adv Healthc Mater 2018; 7. [PMID: 28881425 DOI: 10.1002/adhm.201700489] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Vivek Sivathanu
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| | - Marco Campisi
- Department of Mechanical and Aerospace EngineeringPolitecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institutes of Technology 500 Technology Square MIT Building, Room NE47‐321 Cambridge MA 02139 USA
- Department of Biological EngineeringMassachusetts Institutes of Technology 500 Technology Square, MIT Building, Room NE47‐321 Cambridge MA 02139 USA
| |
Collapse
|