1
|
Kiy A, Dutt S, Gregory KP, Notthoff C, Toimil-Molares ME, Kluth P. The Effect of Electrolyte Properties on Ionic Transport through Solid-State Nanopores: Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20888-20896. [PMID: 39317436 DOI: 10.1021/acs.langmuir.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanopore membranes enable versatile technologies that are employed in many different applications, ranging from clean energy generation to filtration and sensing. Improving the performance can be achieved by conducting numerical simulations of the system, for example, by studying how the nanopore geometry or surface properties change the ionic transport behavior or fluid dynamics of the system. A widely employed tool for numerical simulations is finite element analysis (FEA) using software, such as COMSOL Multiphysics. We found that the prevalent method of implementing the electrolyte in the FEA can diverge significantly from physically accurate values. It is often assumed that salt molecules fully dissociate, and the effect of the temperature is neglected. Furthermore, values for the diffusion coefficients of the ions, as well as permittivity, density, and viscosity of the fluid, are assumed to be their bulk values at infinite dilution. By performing conductometry experiments with an amorphous SiO2 nanopore membrane with conical pores and simulating the pore system with FEA, it is shown that the common assumptions do not hold for different mono- and divalent chlorides (LiCl, NaCl, KCl, MgCl2, and CaCl2) at concentrations above 100 mM. Instead, a procedure is presented where all parameters are implemented based on the type of salt and concentration. This modification to the common approach improves the accuracy of the numerical simulations and thus provides a more comprehensive insight into ion transport in nanopores that is otherwise lacking.
Collapse
Affiliation(s)
- Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Kasimir P Gregory
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Christian Notthoff
- Department of Nuclear Physics and Accelerator Applications, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | | | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Laucirica G, Toum Terrones Y, Wagner MFP, Cayón VM, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Electrochemically addressed FET-like nanofluidic channels with dynamic ion-transport regimes. NANOSCALE 2023; 15:1782-1793. [PMID: 36602003 DOI: 10.1039/d2nr04510a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanofluidic channels in which the ionic transport can be modulated by the application of an external voltage to the nanochannel walls have been described as nanofluidic field effect transistors (nFETs) because of their analogy with electrolyte-gated field effect transistors. The creation of nFETs is attracting increasing attention due to the possibility of controlling ion transport by using an external voltage as a non-invasive stimulus. In this work, we show that it is possible to extend the actuation range of nFETs by using the supporting electrolyte as a "chemical effector". For this aim, a gold-coated poly(ethylene terephthalate) (PET) membrane was modified with electroactive poly-o-aminophenol. By exploiting the interaction between the electroactive poly-o-aminophenol and the ions in the electrolyte solution, the magnitude and surface charge of the nanochannels were fine-tuned. In this way, by setting the electrolyte nature it has been possible to set different ion transport regimes, i.e.: cation-selective or anion-selective ion transport, whereas the rectification efficiency of the ionic transport was controlled by the gate voltage applied to the electroactive polymer layer. Remarkably, under both regimes, the platform displays a reversible and rapid response. We believe that this strategy to preset the actuation range of nFETs by using the supporting electrolyte as a chemical effector can be extended to other devices, thus offering new opportunities for the development of stimulus-responsive solid-state nanochannels.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Yamili Toum Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Michael F P Wagner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Wang X, Dutt S, Notthoff C, Kiy A, Mota-Santiago P, Mudie ST, Toimil-Molares ME, Liu F, Wang Y, Kluth P. SAXS data modelling for the characterisation of ion tracks in polymers. Phys Chem Chem Phys 2022; 24:9345-9359. [PMID: 35383785 DOI: 10.1039/d1cp05813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197Au and 238U with energies between 185 MeV and 2.0 GeV. Transmission SAXS measurements were performed at the Australian Synchrotron. SAXS data were analysed using two new models that describe the tracks by a cylindrical structure composed of a highly damaged core with a gradual transition to the undamaged material. First, we investigate the 'Soft Cylinder Model', which assumes a smooth function to describe the transition region by a gradual change in density from a core to a matrix. As a simplified and computational less expensive version of the 'Soft Cylinder Model', the 'Core Transition Model' was developed to enable fast fitting. This model assumes a linear increase in density from the core to the matrix. Both models yield superior fits to the experimental SAXS data compared with the often-used simple 'Hard Cylinder Model' assuming a constant density with an abrupt transition.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China.,Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Christian Notthoff
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Pablo Mota-Santiago
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Stephen T Mudie
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Maria E Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, D-64291, Darmstadt, Germany
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China.,Center for Quantitative Biology, Peking University, Beijing 100871, People's Republic of China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
4
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
5
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
6
|
Abstract
Abstract
Effects of interfaces on hydrogen-bonded liquids play major roles in nature and technology. Despite their importance, a fundamental understanding of these effects is still lacking. In large parts, this shortcoming is due to the high complexity of these systems, leading to an interference of various interactions and effects. Therefore, it is advisable to take gradual approaches, which start from well designed and defined model systems and systematically increase the level of intricacy towards more complex mimetics. Moreover, it is necessary to combine insights from a multitude of methods, in particular, to link novel preparation strategies and comprehensive experimental characterization with inventive computational and theoretical modeling. Such concerted approach was taken by a group of preparative, experimentally, and theoretically working scientists in the framework of Research Unit FOR 1583 funded by the Deutsche Forschungsgemeinschaft (German Research Foundation). This special issue summarizes the outcome of this collaborative research. In this introductory article, we give an overview of the covered topics and the main results of the whole consortium. The following contributions are review articles or original works of individual research projects.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Institut für Physikalische Chemie , Technische Universität Darmstadt , 64287 Darmstadt , Germany
| | - Michael Vogel
- Institut für Festkörperphysik , Technische Universität Darmstadt , 64295 Darmstadt , Germany
| | - Roland Winter
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| |
Collapse
|
7
|
Kuttich B, Matt A, Weber A, Grefe AK, Vietze L, Stühn B. Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-1018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polyethylene glycol is water soluble and forms an eutectic system with water. The eutectic temperature is −19 °C for M=1500 g mol−1 and increases with molecular weight. The dielectric relaxation spectrum of the mixtures exhibits a strong loss maximum in ϵ″ (ω) similar to pure water. Relaxation time increases with the addition of PEG. Activation energies exhibit a maximum of 0.35 eV at molar fraction χp
≈0.2. This compares well with results on ethanol water mixtures. Adding PEG molecules to nanoscopic water droplets of inverse microemulsions has only small impact on the bending modulus κ of a non-ionic microemulsion. In AOT based microemulsions an increase or decrease of κ is found in dependence on the size of the droplets. This is in accordance with the variation of the dynamic percolation transition in the same systems.
Collapse
Affiliation(s)
- Björn Kuttich
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| | - Alexander Matt
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| | - Andreas Weber
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| | - Ann-Kathrin Grefe
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| | - Laura Vietze
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| | - Bernd Stühn
- Condensed Matter Physics , Darmstadt Technical University , Darmstadt , Germany
| |
Collapse
|
8
|
Pérez-Mitta G, Marmisollé WA, Trautmann C, Toimil-Molares ME, Azzaroni O. An All-Plastic Field-Effect Nanofluidic Diode Gated by a Conducting Polymer Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700972. [PMID: 28516507 DOI: 10.1002/adma.201700972] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The design of an all-plastic field-effect nanofluidic diode is proposed, which allows precise nanofluidic operations to be performed. The fabrication process involves the chemical synthesis of a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) layer over a previously fabricated solid-state nanopore. The conducting layer acts as gate electrode by changing its electrochemical state upon the application of different voltages, ultimately changing the surface charge of the nanopore. A PEDOT-based nanopore is able to discriminate the ionic species passing through it in a quantitative and qualitative manner, as PEDOT nanopores display three well-defined voltage-controlled transport regimes: cation-rectifying, non-rectifying, and anion rectifying regimes. This work illustrates the potential and versatility of PEDOT as a key enabler to achieve electrochemically addressable solid-state nanopores. The synergism arising from the combination of highly functional conducting polymers and the remarkable physical characteristics of asymmetric nanopores is believed to offer a promising framework to explore new design concepts in nanofluidic devices.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900, La Plata, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900, La Plata, Argentina
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Material-Wissenshaft, 64287, Darmstadt, Germany
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900, La Plata, Argentina
| |
Collapse
|
9
|
Ochedowski O, Lehtinen O, Kaiser U, Turchanin A, Ban-d'Etat B, Lebius H, Karlušić M, Jakšić M. Nanostructuring graphene by dense electronic excitation. NANOTECHNOLOGY 2015; 26:465302. [PMID: 26510213 DOI: 10.1088/0957-4484/26/46/465302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolution transmission electron microscopy as well as Raman spectroscopy. We show that the dense electronic excitation in the wake of the traversing ion yields characteristic nanostructures each of which may be fabricated by choosing the proper irradiation conditions. These nanostructures include unique morphologies such as closed bilayer edges with a given chirality or nanopores within supported as well as freestanding graphene. The length and orientation of the nanopore, and thus of the associated closed bilayer edge, may be simply controlled by the direction of the incoming ion beam. In freestanding graphene, swift heavy ion irradiation induces extremely small openings, offering the possibility to perforate graphene membranes in a controlled way.
Collapse
Affiliation(s)
- O Ochedowski
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun 2015; 6:8736. [PMID: 26507943 PMCID: PMC4640100 DOI: 10.1038/ncomms9736] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/24/2015] [Indexed: 12/24/2022] Open
Abstract
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. The understanding of complex electronic correlation and non-equilibrium atomic interactions is a grand challenge. Here, the authors show that chemical disorder in single-phase concentrated solid solution alloys can lead to reduction in electron mean free path and electrical and thermal conductivity.
Collapse
|
11
|
Nakajima K, Kitayama T, Hayashi H, Matsuda M, Sataka M, Tsujimoto M, Toulemonde M, Bouffard S, Kimura K. Tracing temperature in a nanometer size region in a picosecond time period. Sci Rep 2015; 5:13363. [PMID: 26293488 PMCID: PMC4543984 DOI: 10.1038/srep13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022] Open
Abstract
Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.
Collapse
Affiliation(s)
- Kaoru Nakajima
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Takumi Kitayama
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Hiroaki Hayashi
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Makoto Matsuda
- Nuclear Science Research Institute, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, Japan
| | - Masao Sataka
- Nuclear Science Research Institute, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Marcel Toulemonde
- CIMAP-GANIL (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), Bd. H. Becquerel, 14070 Caen, France
| | - Serge Bouffard
- CIMAP-GANIL (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), Bd. H. Becquerel, 14070 Caen, France
| | - Kenji Kimura
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
12
|
Sobel N, Hess C, Lukas M, Spende A, Stühn B, Toimil-Molares ME, Trautmann C. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:472-479. [PMID: 25821688 PMCID: PMC4362336 DOI: 10.3762/bjnano.6.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/28/2015] [Indexed: 05/31/2023]
Abstract
Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7-1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced.
Collapse
Affiliation(s)
- Nicolas Sobel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Manuela Lukas
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Anne Spende
- Materials Research Department, GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
- Material- und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - M E Toimil-Molares
- Materials Research Department, GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
| | - Christina Trautmann
- Materials Research Department, GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
- Material- und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Schubert I, Burr L, Trautmann C, Toimil-Molares ME. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1272-1280. [PMID: 26199830 PMCID: PMC4505191 DOI: 10.3762/bjnano.6.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial. RESULTS The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology. CONCLUSION AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.
Collapse
Affiliation(s)
- Ina Schubert
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Loic Burr
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Department of Materials- and Geo-Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christina Trautmann
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Department of Materials- and Geo-Science, Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|