1
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
Affiliation(s)
- Jeffrey C. Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tugba Atabey
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Angela I. Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gillian Dekkers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Castro-Cruz M, Hyka L, Daaboul G, Leblanc R, Meeussen S, Lembo F, Oris A, Van Herck L, Granjeaud S, David G, Zimmermann P. PDZ scaffolds regulate extracellular vesicle production, composition, and uptake. Proc Natl Acad Sci U S A 2023; 120:e2310914120. [PMID: 37695903 PMCID: PMC10515165 DOI: 10.1073/pnas.2310914120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Lukas Hyka
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | | | - Raphael Leblanc
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Sofie Meeussen
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Anouk Oris
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Lore Van Herck
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Samuel Granjeaud
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Guido David
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Pascale Zimmermann
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| |
Collapse
|
3
|
LAMP3/CD63 Expression in Early and Late Endosomes in Human Vaginal Epithelial Cells Is Associated with Enhancement of HSV-2 Infection. J Virol 2022; 96:e0155322. [PMID: 36350153 PMCID: PMC9749459 DOI: 10.1128/jvi.01553-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a lifelong sexually transmitted virus that disproportionately infects women through heterosexual transmission in the vaginal tract. The vaginal epithelium is known to be highly susceptible to HSV-2 infection; however, the cellular mechanism of HSV-2 uptake and replication in vaginal epithelium has not been extensively studied. Previously, we observed that lysosomal-associated membrane protein-3 (LAMP3/CD63) was among the highly upregulated genes during HSV-2 infection of human vaginal epithelial cell line VK2, leading us to posit that LAMP3/CD63 may play a role in HSV-2 infection. Consequently, we generated two gene-altered VK2-derived cell lines, a LAMP3-overexpressed (OE) line and a LAMP3 knockout (KO) line. The wild-type VK2 and the LAMP3 OE and KO cell lines were grown in air-liquid interface (ALI) cultures for 7 days and infected with HSV-2. Twenty-four hours postinfection, LAMP3 OE cells produced and released significantly higher numbers of HSV-2 virions than wild-type VK2 cells, while virus production was greatly attenuated in LAMP3 KO cells, indicating a functional association between LAMP3/CD63 expression and HSV-2 replication. Fluorescence microscopy of HSV-2-infected cells revealed that HSV-2 colocalized with LAMP3 in both early endosomes and lysosomal compartments. In addition, blocking endosomal maturation or late endosomal/lysosomal fusion using specific inhibitors resulted in reduced HSV-2 replication in VK2 cells. Similarly, LAMP3 KO cells exhibited very low viral entry and association with endosomes, while LAMP3 OE cells demonstrated large amounts of virus that colocalized with LAMP3/CD63 in endosomes and lysosomes. IMPORTANCE Collectively, these results showed that HSV-2 is taken up by human vaginal epithelial cells through an endosomal-lysosomal pathway in association with LAMP3, which plays a crucial role in the enhancement of HSV-2 replication. These findings provide the basis for the future design of antiviral agents for prophylactic measures against HSV-2 infection.
Collapse
|
4
|
Microglial Extracellular Vesicles as Modulators of Brain Microenvironment in Glioma. Int J Mol Sci 2022; 23:ijms232113165. [PMID: 36361947 PMCID: PMC9656645 DOI: 10.3390/ijms232113165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Microglial cells represent the resident immune elements of the central nervous system, where they exert constant monitoring and contribute to preserving neuronal activity and function. In the context of glioblastoma (GBM), a common type of tumor originating in the brain, microglial cells deeply modify their phenotype, lose their homeostatic functions, invade the tumoral mass and support the growth and further invasion of the tumoral cells into the surrounding brain parenchyma. These modifications are, at least in part, induced by bidirectional communication among microglial and tumoral cells through the release of soluble molecules and extracellular vesicles (EVs). EVs produced by GBM and microglial cells transfer different kinds of biological information to receiving cells, deeply modifying their phenotype and activity and could represent important diagnostic markers and therapeutic targets. Recent evidence demonstrates that in GBM, microglial-derived EVs contribute to the immune suppression of the tumor microenvironment (TME), thus favoring GBM immune escape. In this review, we report the current knowledge on EV formation, biogenesis, cargo and functions, with a focus on the effects of microglia-derived EVs in GBM. What clearly emerges from this analysis is that we are at the beginning of a full understanding of the complete picture of the biological effects of microglial-derived EVs and that further investigations using multidisciplinary approaches are necessary to validate their use in GBM diagnosis and therapy.
Collapse
|
5
|
Espinar-Buitrago M, Muñoz-Fernández MA. New Approaches to Dendritic Cell-Based Therapeutic Vaccines Against HIV-1 Infection. Front Immunol 2022; 12:719664. [PMID: 35058917 PMCID: PMC8763680 DOI: 10.3389/fimmu.2021.719664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the success of combined antiretroviral therapy (cART) in recent years, the pathological outcome of Human Immunodeficiency Virus type 1 (HIV-1) infection has improved substantially, achieving undetectable viral loads in most cases. Nevertheless, the presence of a viral reservoir formed by latently infected cells results in patients having to maintain treatment for life. In the absence of effective eradication strategies against HIV-1, research efforts are focused on obtaining a cure. One of these approaches is the creation of therapeutic vaccines. In this sense, the most promising one up to now is based on the establishing of the immunological synapse between dendritic cells (DCs) and T lymphocytes (TL). DCs are one of the first cells of the immune system to encounter HIV-1 by acting as antigen presenting cells, bringing about the interaction between innate and adaptive immune responses mediated by TL. Furthermore, TL are the end effector, and their response capacity is essential in the adaptive elimination of cells infected by pathogens. In this review, we summarize the knowledge of the interaction between DCs with TL, as well as the characterization of the specific T-cell response against HIV-1 infection. The use of nanotechnology in the design and improvement of vaccines based on DCs has been researched and presented here with a special emphasis.
Collapse
Affiliation(s)
- Marisierra Espinar-Buitrago
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ma Angeles Muñoz-Fernández
- Section Head Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish Human Immunodeficiency Virus- Hospital Gregorio Marañón (HIV-HGM) BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
6
|
Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci 2021; 22:ijms22095015. [PMID: 34065085 PMCID: PMC8125994 DOI: 10.3390/ijms22095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma (VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multicomparison studies also revealed that the expression of CD9 was associated with tumor size, whereas CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover, low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and CD82 are likely potential therapeutic targets in VSCC.
Collapse
|
7
|
Kim Y, Mensah GA, Al Sharif S, Pinto DO, Branscome H, Yelamanchili SV, Cowen M, Erickson J, Khatkar P, Mahieux R, Kashanchi F. Extracellular Vesicles from Infected Cells Are Released Prior to Virion Release. Cells 2021; 10:cells10040781. [PMID: 33916140 PMCID: PMC8066806 DOI: 10.3390/cells10040781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.
Collapse
Affiliation(s)
- Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Gifty A. Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, Ecole Normale Superieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, 69007 Lyon, France;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (Y.K.); (G.A.M.); (S.A.S.); (D.O.P.); (H.B.); (M.C.); (J.E.); (P.K.)
- Correspondence: ; Tel.: +703-993-9160; Fax: +703-993-7022
| |
Collapse
|
8
|
Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity. J Neurovirol 2021; 27:279-301. [PMID: 33646495 DOI: 10.1007/s13365-021-00955-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.
Collapse
|
9
|
Sengupta P, Lippincott-Schwartz J. Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses 2020; 12:v12070745. [PMID: 32664429 PMCID: PMC7412473 DOI: 10.3390/v12070745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.
Collapse
|
10
|
Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019; 20:ijms20225527. [PMID: 31698689 PMCID: PMC6888126 DOI: 10.3390/ijms20225527] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated nanovesicles actively secreted by almost all cell types. EVs can travel long distances within the body, being finally taken up by the target cells, transferring information from one cell to another, thus influencing their behavior. The cargo of EVs comprises of nucleic acids, lipids, and proteins derived from the cell of origin, thereby it is cell-type specific; moreover, it differs between diseased and normal cells. Several studies have shown that EVs have a role in tumor formation and prognosis. It was also demonstrated that ionizing radiation can alter the cargo of EVs. EVs, in turn can modulate radiation responses and they play a role in radiation-induced bystander effects. Due to their biocompatibility and selective targeting, EVs are suitable nanocarrier candidates of drugs in various diseases, including cancer. Furthermore, the cargo of EVs can be engineered, and in this way they can be designed to carry certain genes or even drugs, similar to synthetic nanoparticles. In this review, we describe the biological characteristics of EVs, focusing on the recent efforts to use EVs as nanocarriers in oncology, the effects of EVs in radiation therapy, highlighting the possibilities to use EVs as nanocarriers to modulate radiation effects in clinical applications.
Collapse
|
11
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
12
|
Wang L, Izadmehr S, Kamau E, Kong XP, Chen BK. Sequential trafficking of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. Retrovirology 2019; 16:2. [PMID: 30646921 PMCID: PMC6334456 DOI: 10.1186/s12977-019-0464-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND HIV infection is enhanced by cell adhesions that form between infected and uninfected T cells called virological synapses (VS). VS are initiated by an interaction between Env and CD4 on cell surfaces and result in the recruitment of virus assembly to the site of cell-cell contact. However, the recruitment of Env to the VS and its relationship to Gag recruitment is not well defined. RESULTS To study the trafficking of HIV-1 Env through the VS, we constructed a molecular clone of HIV carrying a green fluorescent protein-Env fusion protein called, HIV Env-isfGFP-∆V1V2. The Env-isfGFP-∆V1V2 fusion protein does not produce virus particles on its own, but can be rescued by cotransfection with full-length HIV constructs and produce virus particles that package the fluorescent Env. These rescued fluorescent Env can participate in VS formation and can be used to directly image CD4-dependent Env transfer across VS from donor to target cells. The movements of fluorescently tagged Gag and Env to the VS and transfer into target cells can be also tracked through live imaging. Time lapse live imaging reveals evidence of limited Env accumulation at the site of cell-cell contact shortly after cell adhesion, followed by Gag re-distribution to contact area. Both Gag and Env can be recruited to form button-like spots characteristic of VS. CONCLUSIONS Env and Gag are recruited to the VS in a coordinated temporal sequence and subsequently transfer together across the synapse into the target cell. Env accumulations, when observed, are earlier than Gag re-distribution to the contact area during formation of VS.
Collapse
Affiliation(s)
- Lili Wang
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Sudeh Izadmehr
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Edwin Kamau
- 0000 0004 1936 8753grid.137628.9Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - Xiang-Peng Kong
- 0000 0004 1936 8753grid.137628.9Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - Benjamin K. Chen
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| |
Collapse
|
13
|
Extracellular vesicles – biogenesis, composition, function, uptake and therapeutic applications. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0047-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Kubo Y, Izumida M, Yashima Y, Yoshii-Kamiyama H, Tanaka Y, Yasui K, Hayashi H, Matsuyama T. Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1. Oncotarget 2018; 7:71255-71273. [PMID: 27655726 PMCID: PMC5342076 DOI: 10.18632/oncotarget.12104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanism by which type II interferon (IFN) inhibits virus replications remains to be identified. Murine leukemia virus (MLV) replication was significantly restricted by γ-IFN, but not human immunodeficiency virus type 1 (HIV-1) replication. Because MLV enters host cells via endosomes, we speculated that certain cellular factors among γ-IFN-induced, endosome-localized proteins inhibit MLV replication. We found that γ-IFN-inducible lysosomal thiolreductase (GILT) significantly restricts HIV-1 replication as well as MLV replication by its thiolreductase activity. GILT silencing enhanced replication-defective HIV-1 vector infection and virion production in γ-IFN-treated cells, although γ-IFN did not inhibit HIV-1 replication. This result showed that GILT is required for the anti-viral activity of γ-IFN. Interestingly, GILT protein level was increased by γ-IFN in uninfected cells and env-deleted HIV-1-infected cells, but not in full-length HIV-1-infected cells. γ-IFN-induced transcription from the γ-IFN-activation sequence was attenuated by the HIV-1 Env protein. These results suggested that the γ-IFN cannot restrict HIV-1 replication due to the inhibition of γ-IFN signaling by HIV-1 Env. Finally, we found that 4,4′-dithiodipyridine (4-PDS), which inhibits S-S bond formation at acidic pH, significantly suppresses HIV-1 vector infection and virion production, like GILT. In conclusion, this study showed that GILT functions as a host restriction factor against the retroviruses, and a GILT mimic, 4-PDS, is the leading compound for the development of novel concept of anti-viral agents.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Mai Izumida
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuka Yashima
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Yoshii-Kamiyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kiyoshi Yasui
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Present address: Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Rocha-Perugini V, Suárez H, Álvarez S, López-Martín S, Lenzi GM, Vences-Catalán F, Levy S, Kim B, Muñoz-Fernández MA, Sánchez-Madrid F, Yáñez-Mó M. CD81 association with SAMHD1 enhances HIV-1 reverse transcription by increasing dNTP levels. Nat Microbiol 2017; 2:1513-1522. [PMID: 28871089 PMCID: PMC5660623 DOI: 10.1038/s41564-017-0019-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
In this study, we report that the tetraspanin CD81 enhances human immunodeficiency virus (HIV)-1 reverse transcription in HIV-1-infected cells. This is enabled by the direct interaction of CD81 with the deoxynucleoside triphosphate phosphohydrolase SAMHD1. This interaction prevents endosomal accumulation and favours the proteasome-dependent degradation of SAMHD1. Consequently, CD81 depletion results in SAMHD1 increased expression, decreasing the availability of deoxynucleoside triphosphates (dNTP) and thus HIV-1 reverse transcription. Conversely, CD81 overexpression, but not the expression of a CD81 carboxy (C)-terminal deletion mutant, increases cellular dNTP content and HIV-1 reverse transcription. Our results demonstrate that the interaction of CD81 with SAMHD1 controls the metabolic rate of HIV-1 replication by tuning the availability of building blocks for reverse transcription, namely dNTPs. Together with its role in HIV-1 entry and budding into host cells, the data herein indicate that HIV-1 uses CD81 as a rheostat that controls different stages of the infection.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
| | - Henar Suárez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Susana Álvarez
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Soraya López-Martín
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Gina M Lenzi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Felipe Vences-Catalán
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Shoshana Levy
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - María A Muñoz-Fernández
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
- CIBER Cardiovascular, Madrid, Spain
| | - Maria Yáñez-Mó
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain.
| |
Collapse
|
17
|
Grigorov B, Molle J, Rubinstein E, Zoulim F, Bartosch B. CD81 large extracellular loop-containing fusion proteins with a dominant negative effect on HCV cell spread and replication. J Gen Virol 2017; 98:1646-1657. [PMID: 28721844 DOI: 10.1099/jgv.0.000850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The roles of CD81 in the hepatitis C virus (HCV) life cycle are multiple but remain ill characterized. CD81 is known to interact with the HCV glycoproteins as an attachment factor. It also has an important role in the post-attachment entry process. Its interaction with claudin-1, for example, is vital for viral uptake and trafficking. Furthermore, CD81 and its role in membrane organization and trafficking are thought to play a pivotal role in HCV replication. Some of these functions are particularly limited to human CD81; others can be substituted with CD81 molecules from other species. However, with the exception of the large extracellular loop sequence, the structure-function analysis of CD81 in the HCV infectious cycle remains ill characterized. We describe here the fusion molecules between the large extracellular loops of human or mouse CD81 and lipid-raft-associated or unassociated GPI anchors. These fusion molecules have strong antiviral activity in a dominant negative fashion, independent of membrane raft association. Their expression in the hepatoma cell line Huh7.5 blocks HCV uptake, transmission and replication. These molecules will be useful to decipher the various roles of CD81 in the HCV life cycle and transmission in more detail.
Collapse
Affiliation(s)
- Boyan Grigorov
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69434 Lyon, France
| | - Jennifer Molle
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69434 Lyon, France
| | | | - Fabien Zoulim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69434 Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | - Birke Bartosch
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69434 Lyon, France
| |
Collapse
|
18
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
19
|
Yang CF, Tu CH, Lo YP, Cheng CC, Chen WJ. Involvement of Tetraspanin C189 in Cell-to-Cell Spreading of the Dengue Virus in C6/36 Cells. PLoS Negl Trop Dis 2015; 9:e0003885. [PMID: 26132143 PMCID: PMC4488468 DOI: 10.1371/journal.pntd.0003885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/09/2015] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DENV) is naturally transmitted by mosquitoes to humans, infecting cells of both hosts. Unlike in mammalian cells, DENV usually does not cause extremely deleterious effects on cells of mosquitoes. Despite this, clustered progeny virions were found to form infection foci in a high density cell culture. It is thus interesting to know how the virus spreads among cells in tissues such as the midgut within live mosquitoes. This report demonstrates that cell-to-cell spread is one way for DENV to infect neighboring cells without depending on the "release and entry" mode. In the meantime, a membrane-bound vacuole incorporating tetraspanin C189 was formed in response to DENV infection in the C6/36 cell and was subsequently transported along with the contained virus from one cell to another. Knockdown of C189 in DENV-infected C6/36 cells is shown herein to reduce cell-to-cell transmission of the virus, which may be recovered by co-transfection with a C189-expressing vector in DENV-infected C6/36 cells. Moreover, cell-to-cell transmission usually occurred at the site where the donor cell directly contacts the recipient cell. It suggested that C189 is crucially involved in the intercellular spread of progeny viral particles between mosquito cells. This novel finding presumably accounts for the rapid and efficient infection of DENV after its initial replication within tissues of the mosquito.
Collapse
Affiliation(s)
- Chao-Fu Yang
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Cheng-Hsun Tu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yin-Ping Lo
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chieh Cheng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Wei-June Chen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
20
|
HIV-1 Nef and Vpu are functionally redundant broad-spectrum modulators of cell surface receptors, including tetraspanins. J Virol 2014; 88:14241-57. [PMID: 25275127 DOI: 10.1128/jvi.02333-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 Nef and Vpu are thought to optimize virus replication in the infected host, at least in part via their ability to interfere with vesicular host cell trafficking. Despite the use of distinct molecular mechanisms, Nef and Vpu share specificity for some molecules such as CD4 and major histocompatibility complex class I (MHC-I), while disruption of intracellular transport of the host cell restriction factor CD317/tetherin represents a specialized activity of Vpu not exerted by HIV-1 Nef. To establish a profile of host cell receptors whose intracellular transport is affected by Nef, Vpu, or both, we comprehensively analyzed the effect of these accessory viral proteins on cell surface receptor levels on A3.01 T lymphocytes. Thirty-six out of 105 detectable receptors were significantly downregulated by HIV-1 Nef, revealing a previously unappreciated scope with which HIV-1 Nef remodels the cell surface of infected cells. Remarkably, the effects of HIV-1 Vpu on host cell receptor exposure largely matched those of HIV-1 Nef in breadth and specificity (32 of 105, all also targeted by Nef), even though the magnitude was generally less pronounced. Of particular note, cell surface exposure of all members of the tetraspanin (TSPAN) protein family analyzed was reduced by both Nef and Vpu, and the viral proteins triggered the enrichment of TSPANs in a perinuclear area of the cell. While Vpu displayed significant colocalization and physical association with TSPANs, interactions of Nef with TSPANs were less robust. TSPANs thus emerge as a major target of deregulation in host cell vesicular transport by HIV-1 Nef and Vpu. The conservation of this activity in two independent accessory proteins suggests its importance for the spread of HIV-1 in the infected host. IMPORTANCE In this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses furthermore identify the tetraspanin protein family as a previously unrecognized target of Nef and Vpu activity. These findings have implications for the interpretation of effects detected for these accessory gene products on individual host cell receptors and illustrate the coevolution of Nef and Vpu function.
Collapse
|
21
|
Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3:24641. [PMID: 25143819 PMCID: PMC4122821 DOI: 10.3402/jev.v3.24641] [Citation(s) in RCA: 1847] [Impact Index Per Article: 184.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.
Collapse
Affiliation(s)
- Laura Ann Mulcahy
- Department of Biological and Medical Science, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ryan Charles Pink
- Department of Biological and Medical Science, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Science, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
22
|
Mariani C, Desdouits M, Favard C, Benaroch P, Muriaux DM. Role of Gag and lipids during HIV-1 assembly in CD4(+) T cells and macrophages. Front Microbiol 2014; 5:312. [PMID: 25009540 PMCID: PMC4069574 DOI: 10.3389/fmicb.2014.00312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/08/2014] [Indexed: 12/25/2022] Open
Abstract
HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages.
Collapse
Affiliation(s)
- Charlotte Mariani
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Marion Desdouits
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Cyril Favard
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Philippe Benaroch
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Delphine M Muriaux
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| |
Collapse
|
23
|
Yandrapalli N, Muriaux D, Favard C. Lipid domains in HIV-1 assembly. Front Microbiol 2014; 5:220. [PMID: 24904536 PMCID: PMC4033000 DOI: 10.3389/fmicb.2014.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/26/2014] [Indexed: 12/14/2022] Open
Abstract
In CD+4 T cells, HIV-1 buds from the host cell plasma membrane. The viral Gag polyprotein is mainly responsible for this process. However, the intimate interaction of Gag and lipids at the plasma membrane as well as its consequences, in terms of lipids lateral organization and virus assembly, is still under debate. In this review we propose to revisit the role of plasma membrane lipids in HIV-1 Gag targeting and assembly, at the light of lipid membranes biophysics and literature dealing with Gag-lipid interactions.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| | - Delphine Muriaux
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| | - Cyril Favard
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| |
Collapse
|
24
|
Iordanskiy S, Santos S, Bukrinsky M. Nature, nurture and HIV: The effect of producer cell on viral physiology. Virology 2013; 443:208-13. [PMID: 23747196 DOI: 10.1016/j.virol.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 01/13/2023]
Abstract
Macrophages and CD4-positive T lymphocytes are the major targets and producers of HIV-1. While the molecular details underlying HIV replication in macrophages and T cells become better understood, it remains unclear whether viruses produced by these target cells differ in their biological properties. Recent reports suggest that HIV virions incorporate a large number of producer cell proteins and lipids which have an effect on subsequent viral replication in newly infected cells. The identity and abundance of these incorporated factors varies between different types of producer cells, suggesting that they may influence the replication capacity and pathogenic activity of the virions produced by T cells and macrophages.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | | | | |
Collapse
|
25
|
HIV-1 Gag associates with specific uropod-directed microdomains in a manner dependent on its MA highly basic region. J Virol 2013; 87:6441-54. [PMID: 23536680 DOI: 10.1128/jvi.00040-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In polarized T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod in a multimerization-dependent manner. Gag-laden uropods participate in formation of virological synapses, intercellular contact structures that play a key role in cell-to-cell HIV-1 transmission. Our previous observations suggest that Gag associates with uropod-directed microdomains (UDMs) that eventually comigrate with Gag to the uropod over the cell surface. However, the nature of Gag multimerization required for this movement, the composition of the UDMs, and the molecular determinants for Gag association with these microdomains remain unknown. In this study, we found that Gag multimerization prior to budding but beyond dimerization is necessary for Gag localization to the uropods, indicating that uropod localization occurs early in the assembly process. We also found that prior to membrane curvature, Gag multimers associate with a specific subset of UDMs containing PSGL-1, CD43, and CD44 but not ICAM-1, ICAM-3, or CD59. Notably, upon association, Gag excludes ICAM-3 from this subset of UDMs, revealing an active and selective reorganization of these microdomains by Gag. This specific association between Gag and UDMs is dependent on the highly basic region (HBR) in the Gag matrix (MA) domain. The overall positive charge of the HBR was needed for the interaction with the specific UDM subset, while the exact HBR sequence was not, unlike that seen for MA binding to the plasma membrane phospholipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. Taken together, these findings revealed that HIV-1 Gag associates with specific microdomains present in polarized T cells in an MA-dependent manner, which results in modification of the microdomain constituents.
Collapse
|
26
|
Comparative proteomic analysis of HIV-1 particles reveals a role for Ezrin and EHD4 in the Nef-dependent increase of virus infectivity. J Virol 2013; 87:3729-40. [PMID: 23325686 DOI: 10.1128/jvi.02477-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.
Collapse
|
27
|
Hogue IB, Llewellyn GN, Ono A. Dynamic Association between HIV-1 Gag and Membrane Domains. Mol Biol Int 2012; 2012:979765. [PMID: 22830021 PMCID: PMC3399408 DOI: 10.1155/2012/979765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/01/2012] [Indexed: 12/18/2022] Open
Abstract
HIV-1 particle assembly is driven by the structural protein Gag. Gag binds to and multimerizes on the inner leaflet of the plasma membrane, eventually resulting in formation of spherical particles. During virus spread among T cells, Gag accumulates to the plasma membrane domain that, together with target cell membrane, forms a cell junction known as the virological synapse. While Gag association with plasma membrane microdomains has been implicated in virus assembly and cell-to-cell transmission, recent studies suggest that, rather than merely accumulating to pre-existing microdomains, Gag plays an active role in reorganizing the microdomains via its multimerization activity. In this paper, we will discuss this emerging view of Gag microdomain interactions. Relationships between Gag multimerization and microdomain association will be further discussed in the context of Gag localization to T-cell uropods and virological synapses.
Collapse
Affiliation(s)
- Ian B. Hogue
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 2011; 85:9749-66. [PMID: 21813604 DOI: 10.1128/jvi.00743-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.
Collapse
|
29
|
Abstract
By virtue of their multiple interactions with partner proteins and due to their strong propensity to multimerize, tetraspanins create scaffolds in membranes, recruiting or excluding specific proteins needed for particular cellular processes. We and others have shown that (i) HIV-1 assembles at, and buds through, membrane areas that are enriched in tetraspanins CD9, CD63, CD81 and CD82, and (ii) the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. In the present paper, I review these findings and briefly discuss the results of our ongoing investigations that are aimed at elucidating when and how tetraspanins regulate this fusion process and how such control affects virus spreading. Finally, I give a preview of studies that we have initiated more recently and which aim to delineate exactly when CD81 functions during the replication of another enveloped RNA virus: influenza virus.
Collapse
|
30
|
Hamard-Peron E, Muriaux D. Retroviral matrix and lipids, the intimate interaction. Retrovirology 2011; 8:15. [PMID: 21385335 PMCID: PMC3059298 DOI: 10.1186/1742-4690-8-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022] Open
Abstract
Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research.
Collapse
Affiliation(s)
- Elise Hamard-Peron
- Human Virology Department, Inserm U758, Ecole Normale Superieure de Lyon, 36 Allee d'Italie, IFR128, Universite de Lyon, Lyon, France
| | | |
Collapse
|
31
|
Lin AEJ, Guttman JA. Hijacking the endocytic machinery by microbial pathogens. PROTOPLASMA 2010; 244:75-90. [PMID: 20574860 DOI: 10.1007/s00709-010-0164-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/19/2010] [Indexed: 05/24/2023]
Abstract
Understanding the mechanisms that microbes exploit to invade host cells and cause disease is crucial if we are to eliminate their threat. Although pathogens use a variety of microbial factors to trigger entry into non-phagocytic cells, their targeting of the host cell process of endocytosis has emerged as a common theme. To accomplish this, microbes often rewire the normal course of particle internalization, frequently usurping theoretical maximal sizes to permit entry and reconfiguring molecular components that were once thought to be required for vesicle formation. Here, we discuss recent advances in our understanding of how toxins, viruses, bacteria, and fungi manipulate the host cell endocytic machinery to generate diseases. Additionally, we will reveal the advantages of using these organisms to expand our general knowledge of endocytic mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Ann En-Ju Lin
- Department of Biological Sciences, Shrum Science Centre, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|