1
|
Wang R, Peng R, Song L, Li J. Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs. Talanta 2024; 286:127437. [PMID: 39732100 DOI: 10.1016/j.talanta.2024.127437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb2+-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA. In the presence of the target miRNA, the activated DNAzyme cleaves the substrate strand, releasing the G-quadruplex. This G-quadruplex binds to hemin to form a G-quadruplex/hemin complex with horseradish peroxidase (HRP)-like properties, which catalyzes the oxidation of ABTS2- by H2O2. This oxidation reaction produces a colorimetric signal output, enabling the detection of the target miRNA. Under the optimal reaction conditions explored in this study, the constructed sensing ensembles tailored for each of the specific target miRNAs successfully identified and quantified the four target miRNAs-miR-122, miR-21, miR-335, and miR-155-in both buffer solutions and cell extracts. This colorimetric sensing strategy offers significant advantages in terms of simplicity, cost, and versatility and holds great potential for wide application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Ruili Wang
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Ruiying Peng
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Liran Song
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Ediriweera MK, Gayashani Sandamalika WM. The epigenetic impact of fatty acids as DNA methylation modulators. Drug Discov Today 2024; 30:104277. [PMID: 39710232 DOI: 10.1016/j.drudis.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
DNA methylation is a key epigenetic mechanism that regulates gene expression. Fatty acids, the building blocks of many essential lipids, play a crucial role in various biological events. Aberrant acetylation and methylation profiles are linked to a number of non-communicable diseases. Various fatty acids have been identified as potential 'epi-drugs' because of their ability to correct aberrant acetylation and methylation profiles in a number of non-communicable diseases, enhancing the value of their biochemical properties. This review summarizes the effects of selected saturated and unsaturated fatty acids and fatty-acid-rich food items on disease-associated DNA methylation profiles, aiming to justify the classification of fatty acids as DNA methylation modulators.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| | - W M Gayashani Sandamalika
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Sri Lanka
| |
Collapse
|
3
|
Foroutan Kahangi M, Tavakolpour V, Samiei Mosleh I, Oraee-Yazdani S, Kouhkan F. Involvement of oncomiRs miR-23, miR-24, and miR-27 in the regulation of alternative polyadenylation in glioblastoma via CFIm25 cleavage factor. Metab Brain Dis 2024; 39:1269-1281. [PMID: 39190234 DOI: 10.1007/s11011-024-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. The cleavage factor Im 25 (CFIm25), a crucial component of the CFIm complex, plays a key role in regulating the length of the mRNA 3'-UTR and has been implicated in various cancers, including GBM. This study sought to investigate the regulatory influence of specific microRNAs (miRNAs) on CFIm25 expression in GBM, a highly aggressive brain tumor. Bioinformatics analysis identified miRNA candidates targeting CFIm25 mRNA, and gene expression profiles from the NCBI database (GSE90603) were used for further analysis. Expression levels of CFIm25 and selected miRNAs were assessed using qRT-PCR in GBM clinical samples (n = 20) and non-malignant brain tissues (n = 5). Additionally, the MTT assay was performed to examine the effect of miRNA overexpression on U251 cell viability. Lentivectors expressing the identified miRNAs were employed to experimentally validate their regulatory role on CFIm25 in U251 cell lines, and Western blot analysis was conducted to determine CFIm25 protein levels. We observed significantly increased levels of miR-23, miR-24, and miR-27 expression, associated with a marked reduction in CFIm25 expression in GBM samples compared to non-malignant brain tissues. In particular, overexpression of miR-23, miR-24, and miR-27 in U251 cells resulted in CFIm25 downregulation at both the mRNA and protein levels, while their inhibition increased CFIm25 and reduced cell proliferation. These observations strongly implicate miR-23, miR-24, and miR-27 in regulating CFIm25 expression in GBM, emphasizing their potential as promising therapeutic targets for enhancing treatment responses in glioblastoma.
Collapse
Affiliation(s)
- Mozhgan Foroutan Kahangi
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Tavakolpour
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Iman Samiei Mosleh
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
|
5
|
Ghani A, Singh H, Kumar H, Vaiphei K. MicroRNA expression signature in gastrointestinal stromal tumour & their molecular & histological features. Indian J Med Res 2024; 160:118-127. [PMID: 39382501 PMCID: PMC11463855 DOI: 10.25259/ijmr_2567_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives In gastrointestinal stromal tumour (GIST), not only genetic abnormalities are responsible for adverse clinical events, but epigenetic modifications also play a crucial role. MicroRNA (miRNA) dysregulation plays a significant role in carcinogenesis as miRNAs serve as natural silencer for their targets. Our study aimed to explore the miRNAs expression and its association with molecular and histopathological characteristics of GIST. Methods Fifty GIST samples, including 45 formalin fixed paraffin embedded (FFPE) and fresh tissues were included. Peripheral non-tumour tissues were used as controls. All the cases were confirmed using immunohistochemistry. RNA was extracted using miRNA-specific kit, and the expression was performed using RT-qPCR. The data were evaluated using AriaMx software version 1.5 (Agilent, US). MiRNAs expression was analyzed by using the relative quantification method (ΔΔCT). Results miR-221, miR-222, miR-494 and miR-34a showed significant down-regulation in tumours relative to non-tumour tissues. The expression levels of these miRNAs were significantly down-regulated in c-KIT (proto-oncogene encoding the tyrosine kinase transmembrane receptor)-positive tumours compared to c-KIT-negative. Further analysis revealed that reduced expression was associated with spindle subtypes and gastric localization. However, there was no significant correlation with other histological features. Additionally, miR-221/222, and miR-494 were down-regulated in most of the KIT exon 11 mutant subtypes, while miRNA-34a was associated with platelet derived growth factor receptor alpha (PDGFRA) mutations. Interpretation & conclusions The present study showed that the down-regulation of these miRNAs may help better molecular classification and characterization of GISTs. Our results offer new insight into the association between miRNAs and histological features, enabling a more thorough understanding of GISTs at the molecular level.
Collapse
Affiliation(s)
- Abdul Ghani
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hemanth Kumar
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kim Vaiphei
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Gao C, Lai Y, Cheng L, Cheng Y, Miao A, Chen J, Yang R, Xiong F. PIP2 Alteration Caused by Elastic Modulus and Tropism of Electrospun Scaffolds Facilitates Altered BMSCs Proliferation and Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212272. [PMID: 36866457 DOI: 10.1002/adma.202212272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Indexed: 05/05/2023]
Abstract
Aligned submicron fibers have played an essential role in inducing stem cell proliferation and differentiation. In this study, it is aimed to identify the differential causes of stem cell proliferation and differentiation between bone marrow mesenchymal stem cells (BMSCs) on aligned-random fibers with different elastic modulus, and to change the differential levels through a regulatory mechanism mediated by B-cell lymphoma 6 protein(BCL-6) and miRNA-126-5p(miR-126-5p). The results showed that phosphatidylinositol(4,5)bisphosphate alterations are found in the aligned fibers compared with the random fibers, which has a regular and oriented structure, excellent cytocompatibility, regular cytoskeleton, and high differentiation potential. The same trend is actual for the aligned fibers with a lower elastic modulus. The level of proliferative differentiation genes in cells is altered by BCL-6 and miR-126-5p mediated regulatory mechanisms to make the cell distribution nearly consistent with the cell state on low elastic modulus aligned fibers. This work demonstrates the reason for the difference of cells between the two kinds of fibers and on fibers with different elastic modulus. These findings provide more insights for understanding the gene-level regulation of cell growth in tissue engineering.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yulin Lai
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Liang Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yifan Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Anqi Miao
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Jialong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Runhuai Yang
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
7
|
Dunlop RA, Banack SA, Cox PA. L1CAM immunocapture generates a unique extracellular vesicle population with a reproducible miRNA fingerprint. RNA Biol 2023; 20:140-148. [PMID: 37042019 PMCID: PMC10101655 DOI: 10.1080/15476286.2023.2198805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Micro RNAs (miRNAs) are short, non-coding RNAs with significant potential as diagnostic and prognostic biomarkers. However, a lack of reproducibility across studies has hindered their introduction into clinical settings. Inconsistencies between studies include a lack of consensus on the miRNAs associated with a specific disease and the direction of regulation. These differences may reflect the heterogenous nature of pathologies with multiple phenotypes, such as amyotrophic lateral sclerosis (ALS). It is also possible that discrepancies are due to different sampling, processing, and analysis protocols across labs. Using miRNA extracted from L1CAM immunoaffinity purified extracellular vesicles (neural-enriched extracellular vesicles or NEE), we thrice replicated an 8-miRNA fingerprint diagnostic of ALS, which includes the miRNA species and direction of regulation. We aimed to determine if the extra purification steps required to generate NEE created a unique extracellular vesicle (EV) fraction that might contribute to the robustness and replicability of our assay. We compared three fractions from control human plasma: 1) total heterogenous EVs (T), 2) L1CAM/neural enriched EVs (NEE), and 3) the remaining total-minus-NEE fraction (T-N). Each fraction was characterized for size, total protein content, and protein markers, then total RNA was extracted, and qPCR was run on 20 miRNAs. We report that the miRNA expression within NEE was different enough compared to T and T-N to justify the extra steps required to generate this fraction. We conclude that L1CAM immunocapture generates a unique fraction of EVs that consistently and robustly replicates a miRNA fingerprint which differentiates ALS patients from controls.
Collapse
|
8
|
Kamalabad ST, Zamanzadeh Z, Rezaei H, Tabatabaeian M, Abkar M. Association of DROSHA rs6877842, rs642321 and rs10719 polymorphisms with increased susceptibility to breast cancer: A case-control study with genotype and haplotype analysis. Breast Dis 2023; 42:45-58. [PMID: 36911928 DOI: 10.3233/bd-220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Multiple lines of evidence suggest that single nucleotide polymorphisms (SNPs) in genes encoding components of the microRNA processing machinery may underlie susceptibility to various human diseases, including cancer. OBJECTIVE The present study aimed to investigate whether rs6877842, rs642321 and rs10719 SNPs of DROSHA, a key component of the miRNA biogenesis pathway, are associated with increased risk of breast cancer. METHODS A total of 100 patients diagnosed with breast cancer and 100 healthy women were included. Following extraction of DNA, genotyping was performed by tetra primer- amplification refractory mutation system-PCR (T-ARMS-PCR) technique. Under the co-dominant, dominant and recessive inheritance models, the association between DROSHA SNPs and breast cancer risk was determined by logistic regression analysis. The association of DROSHA SNPs with patients' clinicopathological parameters was assessed. Also, haplotype analysis was performed to evaluate the combined effect of DROSHA SNPs on breast cancer risk. RESULTS We observed a statistically significant association between DROSHA rs642321 polymorphism and breast cancer susceptibility (P < 0.05). Under the dominant inheritance model, DROSHA rs642321 polymorphism was significantly associated with increased risk of breast cancer (OR: 6.091; 95% CI: 3.291-11.26; P = 0.0001). Our findings demonstrated that DROSHA rs642321 T allele can contribute to the development of breast cancer (OR: 3.125; 95% CI: 1.984-4.923; P = 0.0001). We also found that GTC and GTT haplotypes conferred significant risk for breast cancer (OR: 2.367; 95% CI: 1.453-3.856; P = 0.0001 and OR: 7.944; 95% CI: 2.073-30.43; P = 0.0001, respectively). CONCLUSIONS These results provide the first evidence that DROSHA rs642321 polymorphism is associated with increased risk of breast cancer. However, further studies are needed to firmly validate these findings.
Collapse
Affiliation(s)
- Setareh Taghipour Kamalabad
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Halimeh Rezaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Morteza Abkar
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| |
Collapse
|
9
|
Xu P, Li H, Wang X, Zhao G, Lu X, Dai S, Cui X, Yuan M, Liu Z. Integrated analysis of the lncRNA/circRNA-miRNA-mRNA expression profiles reveals novel insights into potential mechanisms in response to root-knot nematodes in peanut. BMC Genomics 2022; 23:239. [PMID: 35346027 PMCID: PMC8962500 DOI: 10.1186/s12864-022-08470-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
Background Peanut is the most essential oil and food crop globally due to its high oil and protein content. Root-knot nematode infects peanut roots, causing poor development and severely limiting peanut yields worldwide. The discovery of peanut genome identified a considerable number of genetic loci controlling the peanut root-knot nematode; however, the molecular mechanism of root-knot nematode remains unknown. Results The heterogeneous response to root-knot nematode stress in peanut roots was identified using whole-transcriptome RNA-seq. A total of 430 mRNAs, 111 miRNAs, 4453 lncRNAs, and 123 circRNAs were found to have differential expression between infected and non-infected peanuts. The expression profiles of the lncRNA/circRNA-miRNA-mRNA network were developed to understand the potential pathways that lead to root-knot nematodes in peanut roots. During root-knot nematodes stress, a total of 10 lncRNAs, 4 circRNAs, 5 miRNAs, and 13 mRNAs can create competing endogenous RNA and participate in the oxidation–reduction process as well as other biological metabolism processes in peanuts. The findings will highlight the role of peanut ceRNAs in response to root-knot nematodes. Conclusion The GO classification and KEGG pathway enrichment study of core regulatory networks revealed that ceRNAs are involved in oxidation–reduction, peroxidase activity, lignin synthesis in the xylem, and flavonoid synthesis. Overall, these findings may help researchers better understand the role of non-coding RNAs in response to root-knot nematodes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08470-3.
Collapse
|
10
|
Chang Y, Zhang Q, Dong Z, Gao P, Hai Y. MicroRNA-128 inhibits the development of human colon cancer by targeting Rho family GTPase 3. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2027692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yunli Chang
- Department of Gastroenterology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qisheng Zhang
- Department of Gastroenterology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiqi Dong
- Department of Gastroenterology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Peng Gao
- Department of Gastroenterology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Jabbari N, Feghhi M, Esnaashari O, Soraya H, Rezaie J. Inhibitory effects of gallic acid on the activity of exosomal secretory pathway in breast cancer cell lines: A possible anticancer impact. BIOIMPACTS : BI 2022; 12:549-559. [PMID: 36644548 PMCID: PMC9809134 DOI: 10.34172/bi.2022.23489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Introduction: Breast cancer cells produce exosomes that promote tumorigenesis. The anticancer properties of gallic acid have been reported. However, the mechanism underlying its anticancer effect on the exosomal secretory pathway is still unclear. We investigated the effect of gallic acid on exosome biogenesis in breast cancer cell lines. Methods: The cytotoxic effect of gallic acid on MCF-10a, MCF-7, and MDA-MD-231 cells was measured by MTT assay after 48 hours treatment. Expression of miRNAs including miRNA-21, -155, and 182 as well as exosomal genes such as Rab27a, b, Rab11, Alix, and CD63; along with HSP-70 (autophagy gene), was determined using Q-PCR. The subcellular distribution of it was monitored by flow cytometry analysis. Isolated exosomes were characterized by transmission and scanning electron microscopes and flow cytometry. Acetylcholinesterase activity is used to measure the number of exosomes in supernatants. In addition, autophagy markers including LC3 and P62 were measured by ELISA. Results: Data showed that gallic acid was cytotoxic to cells (P < 0.05). Gallic acid modulated expression of miRNAs and down-regulated transcript levels of exosomal genes and up-regulated the HSP-70 gene in three cell lines (P < 0.05). The surface CD63/total CD63 ratio as well as acetylcholinesterase activity decreased in treated cells (P < 0.05). The protein level of LC3 was increased in three cell lines, while the expression of P62 increased in MCF-7 and MDA-MB-231 cancer cell lines. Conclusion: Together, gallic acid decreased the activity of the exosomal secretory pathway in breast cancer cell lines, providing evidence for its anti-cancer effects.
Collapse
Affiliation(s)
- Nasrollah Jabbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Feghhi
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hamid Soraya
- Department of Pharmacology Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
,Corresponding author: Jafar Rezaie,
| |
Collapse
|
12
|
Li S, Wang X, Wang T, Zhang H, Lu X, Liu L, Li L, Bo C, Kong X, Xu S, Ning S, Wang J, Wang L. Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses. J Transl Med 2021; 19:468. [PMID: 34794447 PMCID: PMC8600732 DOI: 10.1186/s12967-021-03138-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), functioning as competing endogenous RNAs (ceRNAs), have been reported to play important roles in the pathogenesis of autoimmune diseases. However, little is known about the regulatory roles of lncRNAs underlying the mechanism of myasthenia gravis (MG). The aim of the present study was to explore the roles of lncRNAs as ceRNAs associated with the progression of MG. METHODS MG risk genes and miRNAs were obtained from public databases. Protein-protein interaction (PPI) network analysis and module analysis were performed. A lncRNA-mediated module-associated ceRNA (LMMAC) network, which integrated risk genes in modules, risk miRNAs and predicted lncRNAs, was constructed to systematically explore the regulatory roles of lncRNAs in MG. Through performing random walk with restart on the network, HCG18/miR-145-5p/CD28 ceRNA axis was found to play important roles in MG, potentially. The expression of HCG18 in MG patients was detected using RT-PCR. The effects of HCG18 knockdown on cell proliferation and apoptosis were determined by CCK-8 assay and flow cytometry. The interactions among HCG18, miR-145-5p and CD28 were explored by luciferase assay, RT-PCR and western blot assay. RESULTS Based on PPI network, we identified 9 modules. Functional enrichment analyses revealed these modules were enriched in immune-related signaling pathways. We then constructed LMMAC network, containing 25 genes, 50 miRNAs, and 64 lncRNAs. Through bioinformatics algorithm, we found lncRNA HCG18 as a ceRNA, might play important roles in MG. Further experiments indicated that HCG18 was overexpressed in MG patients and was a target of miR-145-5p. Functional assays illustrated that HCG18 suppressed Jurkat cell apoptosis and promoted cell proliferation. Mechanistically, knockdown of HCG18 inhibited the CD28 mRNA and protein expression levels in Jurkat cells, while miR-145-5p inhibitor blocked the reduction of CD28 expression induced by HCG18 suppression. CONCLUSION We have reported a novel HCG18/miR-145-5p/CD28 ceRNA axis in MG. Our findings will contribute to a deeper understanding of the molecular mechanism of and provide a novel potential therapeutic target for MG.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Li Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
13
|
Pignataro G. Emerging Role of microRNAs in Stroke Protection Elicited by Remote Postconditioning. Front Neurol 2021; 12:748709. [PMID: 34744984 PMCID: PMC8567963 DOI: 10.3389/fneur.2021.748709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) represents an innovative and attractive neuroprotective approach in brain ischemia. The purpose of this intervention is to activate endogenous tolerance mechanisms by inflicting a subliminal ischemia injury to the limbs, or to another “remote” region, leading to a protective systemic response against ischemic brain injury. Among the multiple candidates that have been proposed as putative mediators of the protective effect generated by the subthreshold peripheral ischemic insult, it has been hypothesized that microRNAs may play a vital role in the infarct-sparing effect of RIC. The effect of miRNAs can be exploited at different levels: (1) as transducers of protective messages to the brain or (2) as effectors of brain protection. The purpose of the present review is to summarize the most recent evidence supporting the involvement of microRNAs in brain protection elicited by remote conditioning, highlighting potential and pitfalls in their exploitation as diagnostic and therapeutic tools. The understanding of these processes could help provide light on the molecular pathways involved in brain protection for the future development of miRNA-based theranostic agents in stroke.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
14
|
MicroRNA-212-5p and its target PAFAH1B2 suppress vascular proliferation and contraction via the downregulation of RhoA. PLoS One 2021; 16:e0249146. [PMID: 33760887 PMCID: PMC7990166 DOI: 10.1371/journal.pone.0249146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular remodeling and contraction contribute to the development of hypertension. We investigated the role of miR-212-5p and its downstream target in vascular smooth muscle cell (VSMC) proliferation, migration, and contraction. MicroRNA microarray and PCR analyses showed that miR-212-5p expression was increased with angiotensin II treatment in vivo and in vitro. Moreover, miR-212-5p mimic treatment attenuated and miR-212-5p inhibitor treatment increased VSMC proliferation and migration. Additionally, miR-212-5p mimic treatment suppressed VSMC contraction and related gene expression [Ras homolog gene family member A (RhoA) and Rho-associated protein kinase 2], while miR-212-5p inhibitor treatment exerted opposite effects. Bioinformatics analysis revealed that platelet-activating factor acetylhydrolase 1B2 (PAFAH1B2) is a target of miR-212-5p. miR-212-5p mimic treatment significantly reduced and miR-212-5p inhibitor treatment increased PAFAH1B2 expression. Furthermore, PAFAH1B2 expression was decreased in angiotensin II-treated aortic tissues and VSMCs. PAFAH1B2 was ubiquitously expressed in most adult rat tissues. In the vasculature, PAFAH1B2 was only distributed in the cytoplasm. PAFAH1B2 overexpression decreased A10 cell proliferation, while PAFAH1B2 knockdown increased A10 cell proliferation and cyclin D1 mRNA levels. PAFAH1B2 knockdown stimulated VSMC contraction and RhoA expression. These results suggest that miR-212-5p and PAFAH1B2 are novel negative regulators of VSMC proliferation, migration, and contraction in hypertension.
Collapse
|
15
|
Song W, Wang T, Shi B, Wu Z, Wang W, Yang Y. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis. Brain Res Bull 2021; 168:8-16. [PMID: 33246036 DOI: 10.1016/j.brainresbull.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIM Ischemic stroke is one of the main causes of death worldwide and permanent global disability. On the basis of existing literature data, the study was carried out in an effort to explore how miR-140-5p affects ischemic stroke and whether the mechanism relates to toll-like receptor-4 (TLR4) and nuclear factor-kappa B (NF-κB). METHODS Firstly, middle cerebral artery occlusion (MCAO) was performed to establish mouse models of ischemic stroke in vivo, while primary neurons were exposed to oxygen-glucose deprivation (OGD) to set up an ischemic stroke model in vitro. RT-qPCR was then applied to detect the miR-140-5p expression patterns, whereas Western blot was adopted to detect the expression patterns of TLR4, NF-κB, and apoptosis-related factors. In addition, based gain-function of experiments using miR-140-5p mimic and TLR4 over-expression plasmid, neurological function score, TTC staining, TUNEL staining, as well as flow cytometry were carried out to evaluate the effects of miR-140-5p and TLR4 on MCAO mice and OGD neurons. Moreover, dual-luciferase reporter assay was applied to validate the targeting relationship between miR-140-5p and TLR4. RESULTS Initial findings revealed that miR-140-5p was poorly-expressed, while TLR4 was highly-expressed in ischemic stroke. It was verified that miR-140-5p targeted TLR4 and downregulated its expression. MiR-140-5p over-expression was observed to inhibit the apoptosis of neurons under OGD exposure and restrain the progression of ischemic stroke, while TLR4 over-expression promoted the apoptosis and disease progression. Besides, miR-140-5p over-expression led to a decrease in NF-κB protein levels, which were increased by TLR4 over-expression. CONCLUSION In conclusion, our data indicates that miR-140-5p over-expression may be instrumental for the therapeutic targeting of ischemic stroke by alleviating neuron injury with the involvement of the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Wenjun Song
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China.
| | - Tiancheng Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Bei Shi
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Zhijun Wu
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Wenjie Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Yanhong Yang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| |
Collapse
|
16
|
Ricafrente A, Nguyen H, Tran N, Donnelly S. An Evaluation of the Fasciola hepatica miRnome Predicts a Targeted Regulation of Mammalian Innate Immune Responses. Front Immunol 2021; 11:608686. [PMID: 33584684 PMCID: PMC7878377 DOI: 10.3389/fimmu.2020.608686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which parasitic worms (helminths) control their hosts’ immune responses is critical to the development of effective new disease interventions. Fasciola hepatica, a global scourge of humans and their livestock, suppresses host innate immune responses within hours of infection, ensuring that host protective responses are quickly incapacitated. This allows the parasite to freely migrate from the intestine, through the liver to ultimately reside in the bile duct, where the parasite establishes a chronic infection that is largely tolerated by the host. The recent identification of micro(mi)RNA, small RNAs that regulate gene expression, within the extracellular vesicles secreted by helminths suggest that these non-coding RNAs may have a role in the parasite-host interplay. To date, 77 miRNAs have been identified in F. hepatica comprising primarily of ancient conserved species of miRNAs. We hypothesized that many of these miRNAs are utilized by the parasite to regulate host immune signaling pathways. To test this theory, we first compiled all of the known published F. hepatica miRNAs and critically curated their sequences and annotations. Then with a focus on the miRNAs expressed by the juvenile worms, we predicted gene targets within human innate immune cells. This approach revealed the existence of targets within every immune cell, providing evidence for the universal management of host immunology by this parasite. Notably, there was a high degree of redundancy in the potential for the parasite to regulate the activation of dendritic cells, eosinophils and neutrophils, with multiple miRNAs predicted to act on singular gene targets within these cells. This original exploration of the Fasciola miRnome offers the first molecular insight into mechanisms by which F. hepatica can regulate the host protective immune response.
Collapse
Affiliation(s)
- Alison Ricafrente
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Hieu Nguyen
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Nham Tran
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
17
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
18
|
Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, Denoual F, Peterlongo P, Nadaradjane A, Briand J, Akcha F, Heymann D, Vallette FM, Mosser J, Ory B, Cartron PF. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer 2020; 19:36. [PMID: 32098627 PMCID: PMC7041276 DOI: 10.1186/s12943-020-01155-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). Methods RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3’UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. Results Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. Conclusion Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mathilde Cheray
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Present address: Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), R8:03, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Camille Jacques
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Romain Pacaud
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France
| | - Florent Denoual
- CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Pierre Peterlongo
- IRISA Inria Rennes Bretagne Atlantique, équipe GenScale, Campus de Beaulieu, 35042, Rennes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Farida Akcha
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France.,Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, cedex 03 44311, . Nantes, France
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France. .,Faculté de Médecine, Université de Nantes, Nantes, France. .,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France. .,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France. .,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France. .,Institut de Cancérologie de l'Ouest, CRCINA INSERM U1232, Equipe 9 -Apoptose et Progression tumorale, LaBCT, Boulevard du Pr J Monod, 44805, Saint-Herblain, France.
| |
Collapse
|
19
|
Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, Pamir N, Sallam T, Tarling EJ, de Aguiar Vallim TQ. MicroRNA-144 Silencing Protects Against Atherosclerosis in Male, but Not Female Mice. Arterioscler Thromb Vasc Biol 2020; 40:412-425. [PMID: 31852219 PMCID: PMC7018399 DOI: 10.1161/atvbaha.119.313633] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Angela Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Bethan L. Clifford
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Xiaohui Wu
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar – Technical University Munich, Munich, Germany
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Tamer Sallam
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
| | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| |
Collapse
|
20
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
21
|
Zhou Q, Maleck C, von Ungern-Sternberg SNI, Neupane B, Heinzmann D, Marquardt J, Duckheim M, Scheckenbach C, Stimpfle F, Gawaz M, Schreieck J, Seizer P, Gramlich M. Circulating MicroRNA-21 Correlates With Left Atrial Low-Voltage Areas and Is Associated With Procedure Outcome in Patients Undergoing Atrial Fibrillation Ablation. Circ Arrhythm Electrophysiol 2019; 11:e006242. [PMID: 29848477 PMCID: PMC7661044 DOI: 10.1161/circep.118.006242] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Background: Atrial fibrosis is a hallmark of arrhythmogenic structural remodeling in patients with persistent atrial fibrillation (AF) and is negatively correlated with procedure outcome in patients undergoing ablation. However, noninvasive methods to determine the extent of atrial fibrosis are limited. Here, we used microRNA (miRNA) expression analysis to detect markers of left atrial low-voltage areas (LVAs) in patients with persistent AF undergoing catheter ablation. Methods: We performed 3-dimensional voltage mapping in 102 patients (average age 62.1±13.1 years, CHA2DS2-VASc score of 2.3±1.6, LA size 41.5±5.7 mm) undergoing ablation for persistent AF and determined the extent of left atrial low-voltage. LVAs were defined if bipolar electrogram amplitudes were <0.5 mV during sinus rhythm. Before ablation, we obtained a blood sample, isolated miRNAs, and profiled them on a miRCURY LNA Universal RT microRNA PCR Human panel. Results: Sixty-nine miRNAs were identified in all samples, with an average of 123 miRNAs detectable per sample. We found that the serum concentration of miR-21, a miRNA that has been previously linked to cardiac fibrosis development, was strongly associated with the extent of LVAs determined by voltage mapping. We could confirm that LVAs were negatively correlated with ablation success in a 1-year follow-up. In addition, miR-21 serum levels were associated with AF-free survival after catheter ablation. Conclusions: Circulating miR-21 correlates with left atrial LVAs and is associated with procedure outcome in patients with persistent AF undergoing ablation.
Collapse
Affiliation(s)
- Qifeng Zhou
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Carole Maleck
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | | | - Balram Neupane
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Jonathan Marquardt
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Martin Duckheim
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Christian Scheckenbach
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Jürgen Schreieck
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Peter Seizer
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Michael Gramlich
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
22
|
Olioso D, Dauriz M, Bacchi E, Negri C, Santi L, Bonora E, Moghetti P. Effects of Aerobic and Resistance Training on Circulating Micro-RNA Expression Profile in Subjects With Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:1119-1130. [PMID: 30445461 DOI: 10.1210/jc.2018-01820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
CONTEXT Structured exercise programs are of great benefit for the treatment of type 2 diabetes (T2DM). However, whether aerobic (AER) or resistance (RES) exercise training exerts specific epigenetic changes through the expression profile of circulating miRNAs (c-miRNAs) is still largely unknown. OBJECTIVE To assess whether the c-miRNAs profile changes after either AER or RES training in subjects with T2DM. DESIGN Twenty-four patients with T2DM randomized to AER or RES training protocols were randomly selected from the Resistance vs. Aerobic Exercise in Type 2 Diabetes (RAED2) Trial (NAER = 12; NRES = 12). The baseline and post-training levels of 179 c-miRNAs were initially measured by RT-PCR in 6 individuals (NAER = 3; NRES = 3). C-miRNAs exhibiting ≥40% fold change variation and/or nominal significance from baseline were measured in the whole group. RESULTS Nineteen c-miRNAs were eventually assessed in the whole group. Compared with baseline, the post-training levels of miR-423-3p, miR-451a, and miR-766-3p were significantly up-regulated, irrespective of exercise type (P < 0.0026; 0.05/19), and targeted upstream pathways relevant to fatty acids biosynthesis and metabolic regulation. MiR-451a and miR-423-3p were significantly correlated with fat loss (ρ = 0.45 and 0.43, respectively) and resulted, alone or in combination, in being predictors of fat loss in generalized linear regression models including exercise type as covariate. Only the association with miR-451a eventually retained significance after further correction for age, sex, body mass index, and HbA1c. CONCLUSIONS Exercise training in T2DM is associated with substantial c-miRNAs profile changes, irrespective of exercise type and other relevant metabolic covariates. The mechanistic significance of the observed relationship between fat loss and the epigenetic modifications induced by exercise warrants further investigation in larger datasets.
Collapse
Affiliation(s)
- Debora Olioso
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Marco Dauriz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Bacchi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Carlo Negri
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Lorenza Santi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Enzo Bonora
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| | - Paolo Moghetti
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
23
|
Liu C, Tian X, Zhang J, Jiang L. Long Non-coding RNA DLEU1 Promotes Proliferation and Invasion by Interacting With miR-381 and Enhancing HOXA13 Expression in Cervical Cancer. Front Genet 2018; 9:629. [PMID: 30581456 PMCID: PMC6292861 DOI: 10.3389/fgene.2018.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022] Open
Abstract
Although growing evidence has demonstrated that the long non-coding RNA DLEU1 is involved in the progression of various cancers, its functional role and underlying mechanisms have not been explored in cervical cancer (CC). In this study, we found that DLEU1 was up-regulated in both CC tissues and CC cell lines, and overexpression of DLEU1 was significantly correlated with shorter patient survival. Knockdown of DLEU1 suppressed CC cell proliferation and invasion, whereas overexpression of DLEU1 promoted the proliferation and invasion of CC cells. Bioinformatics analysis was used to elucidate the potential correlation between DLEU1 and miR-381. Moreover, qRT-PCR analysis, luciferase reporter assay and RNA immunoprecipitation assay confirmed that DLEU1 inhibited the expression of miR-381, and revealed a direct interaction between DLEU1 and miR-381. In addition, we demonstrated that miR-381 directly targeted HOXA13 in CC cells. The restoration of HOXA13 expression reversed DLEU1 knockdown or miR-381 overexpression-mediated suppression of cell proliferation and invasion. These results suggested that DLEU1 can promote CC cell proliferation and invasion via the miR-381/HOXA13 axis.
Collapse
Affiliation(s)
- Chang Liu
- Intensive Care Unit, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xing Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department Gynecologic Tumor, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lifeng Jiang
- Department of Chinese and Western Medicine, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int J Biol Macromol 2018; 120:975-984. [DOI: 10.1016/j.ijbiomac.2018.08.173] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
25
|
Jaeger A, Zollinger L, Saely CH, Muendlein A, Evangelakos I, Nasias D, Charizopoulou N, Schofield JD, Othman A, Soran H, Kardassis D, Drexel H, Eckardstein AV. Circulating microRNAs -192 and -194 are associated with the presence and incidence of diabetes mellitus. Sci Rep 2018; 8:14274. [PMID: 30250222 PMCID: PMC6155281 DOI: 10.1038/s41598-018-32274-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2018] [Indexed: 01/19/2023] Open
Abstract
We sought to identify circulating microRNAs as biomarkers of prevalent or incident diabetes. In a pilot study of 18 sex- and age-matched patients with metabolic syndrome, nine of whom developed diabetes during 6 years of follow-up, an array of 372 microRNAs discovered significantly elevated serum levels of microRNAs -122, -192, -194, and -215 in patients who developed diabetes mellitus type 2 (T2DM). In two cross-sectional validation studies, one encompassing sex- and age-matched groups of patients with T2DM, impaired fasting glucose (IFG) and euglycemic controls (n = 43 each) and the other 53 patients with type 1 diabetes and 54 age- and BMI-matched euglycemic controls, serum levels of miR-192, miR-194, and mi215 were significantly higher in diabetic subjects than in probands with euglycemia or IFG. In a longitudinal study of 213 initially diabetes-free patients of whom 35 developed diabetes during 6 years of follow-up, elevated serum levels of microRNAs 192 and 194 were associated with incident T2DM, independently of fasting glucose, HbA1c and other risk factors. Serum levels of miR-192 and miR-194 were also elevated in diabetic Akt2 knockout mice compared to wild type mice. In conclusion, circulating microRNAs -192 and -194 are potential biomarkers for risk of diabetes.
Collapse
Affiliation(s)
- Andrea Jaeger
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lukas Zollinger
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Ioannis Evangelakos
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Dimitris Nasias
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Nikoleta Charizopoulou
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Jonathan D Schofield
- Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, United Kingdom
- Division of Cardiovascular Sciences, Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Handrean Soran
- Cardiovascular Trials Unit, The Old St Mary's Hospital, Central Manchester University Hospitals, Manchester, United Kingdom
- Division of Cardiovascular Sciences, Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Marquez J, Fernandez-Piñeiro I, Araúzo-Bravo MJ, Poschmann G, Stühler K, Khatib AM, Sanchez A, Unda F, Ibarretxe G, Bernales I, Badiola I. Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver. Int J Cancer 2018; 143:709-719. [PMID: 29492958 DOI: 10.1002/ijc.31343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Phenotypic transformation of liver sinusoidal endothelial cells is one of the most important stages of liver metastasis progression. The miRNA effects on liver sinusoidal endothelial cells during liver metastasis have not yet been studied. Herein, whole genome analysis of miRNA expression in these cells during colorectal liver metastasis revealed repressed expression of microRNA-20a. Importantly, downregulation of miR-20a occurs in parallel with upregulation of its known protein targets. To restore normal miR-20a levels in liver sinusoidal endothelial cells, we developed chondroitin sulfate-sorbitan ester nanoparticles conjugated with miR-20a in a delivery system that specifically targets liver sinusoidal endothelial cells. The restoration of normal mir-20a levels in these cells induced downregulation of the expression of its protein targets, and this also resulted in a reduction of in vitro LSEC migration and a reduction of in vivo activation and tumor-infiltrating capacity and ability of the tumor decreased by ∼80% in a murine liver metastasis model.
Collapse
Affiliation(s)
- Joana Marquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Ines Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group.Computational Biology Data Analysis Platform. Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Abdel-Majid Khatib
- Université Bordeaux, Pessac, France.,INSERM, LAMC, UMR 1029, Pessac, France
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Irantzu Bernales
- Gene Expression Unit, Genomics Facility of General Research Services (SGIker), University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
27
|
Bukhari SIA, Truesdell SS, Vasudevan S. Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent Cells. Methods Mol Biol 2018; 1686:251-264. [PMID: 29030826 DOI: 10.1007/978-1-4939-7371-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quiescence (G0) is defined as an assortment of cell cycle arrested states that exhibit distinct properties. Leukemias harbor a subpopulation of G0 cells that can be enriched by growth factor deprivation or serum starvation. Target site reporters with shortened poly(A) tails show translation activation by microRNAs, via a noncanonical mechanism, when introduced into the nucleus of G0 cells. This is because recruitment by the activation causing FXR1a-microRNA-protein complex (FXR1a-microRNP) is nuclear and requires shortened poly(A) tails to avoid repressive factors and canonical translation. When introduced into the cytoplasm, target mRNAs and microRNAs are directed toward repression rather than translation activation. Leukemic cell lines are difficult to transfect but can be routinely nucleofected-where in vitro transcribed mRNA reporters and microRNAs are introduced into the nucleus of G0 leukemic cells. Nucleofection of a microRNA target reporter and either cognate, targeting microRNA, or control microRNA, into the nucleus of G0 cells, enables analysis of translation activation by microRNAs in G0. We discuss a modified protocol that we developed for transfection of mRNAs along with microRNAs to test translation regulation by microRNAs in G0 leukemic cells.
Collapse
Affiliation(s)
- Syed I A Bukhari
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Samuel S Truesdell
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Shobha Vasudevan
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
28
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
29
|
Sundermeier TR, Sakami S, Sahu B, Howell SJ, Gao S, Dong Z, Golczak M, Maeda A, Palczewski K. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. J Biol Chem 2017; 292:3366-3378. [PMID: 28104803 DOI: 10.1074/jbc.m116.770024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible vision loss. The neovascular or "wet" form of AMD can be treated to varying degrees with anti-angiogenic drugs, but geographic atrophy (GA) is an advanced stage of the more prevalent "dry" form of AMD for which there is no effective treatment. Development of GA has been linked to loss of the microRNA (miRNA)-processing enzyme DICER1 in the mature retinal pigmented epithelium (RPE). This loss results in the accumulation of toxic transcripts of Alu transposable elements, which activate the NLRP3 inflammasome and additional downstream pathways that compromise the integrity and function of the RPE. However, it remains unclear whether the loss of miRNA processing and subsequent gene regulation in the RPE due to DICER1 deficiency also contributes to RPE cell death. To clarify the role of miRNAs in RPE cells, we used two different mature RPE cell-specific Cre recombinase drivers to inactivate either Dicer1 or DiGeorge syndrome critical region 8 (Dgcr8), thus removing RPE miRNA regulatory activity in mice by disrupting two independent and essential steps of miRNA biogenesis. In contrast with prior studies, we found that the loss of each factor independently led to strikingly similar defects in the survival and function of the RPE and retina. These results suggest that the loss of miRNAs also contributes to RPE cell death and loss of visual function and could affect the pathology of dry AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcin Golczak
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Akiko Maeda
- Ophthalmology and Visual Sciences, School of Medicine
| | - Krzysztof Palczewski
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
30
|
Bukhari SIA, Vasudevan S. FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biol 2016; 14:137-145. [PMID: 27911187 DOI: 10.1080/15476286.2016.1265197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic protein synthesis is a multifaceted process that requires coordination of a set of translation factors in a particular cellular state. During normal growth and proliferation, cells generally make their proteome via conventional translation that utilizes canonical translation factors. When faced with environmental stress such as growth factor deprivation, or in response to biological cues such as developmental signals, cells can reduce canonical translation. In this situation, cells adapt alternative modes of translation to make specific proteins necessary for required biological functions under these distinct conditions. To date, a number of alternative translation mechanisms have been reported, which include non-canonical, cap dependent translation and cap independent translation such as IRES mediated translation. Here, we discuss one of the alternative modes of translation mediated by a specialized microRNA complex, FXR1a-microRNP that promotes non-canonical, cap dependent translation in quiescent conditions, where canonical translation is reduced due to low mTOR activity.
Collapse
Affiliation(s)
- Syed I A Bukhari
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Shobha Vasudevan
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
31
|
Villota-Salazar NA, Mendoza-Mendoza A, González-Prieto JM. Epigenetics: from the past to the present. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1249033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD, Martinelli V, Furlan R, Abbracchio MP. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 2016; 6:34503. [PMID: 27698367 PMCID: PMC5048305 DOI: 10.1038/srep34503] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Aida Menéndez Méndez
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, 28040, Spain
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
33
|
Abstract
The brain is considered a major site for microRNA (miRNA) expression; as evidenced by several studies reporting microarray data of different brain substructures. The hypothalamus is among the brain regions that plays a crucial role in integrating signals from other brain nuclei as well as environmental, hormonal, metabolic and neuronal signals from the periphery in order to deliver an adequate response. The hypothalamus controls vital functions such as reproduction, energy homeostasis, water balance, circadian rhythm and stress. These functions need a high neuronal plasticity to adequately respond to physiological, environmental and psychological stimuli that could be limited to a specific temporal period during life or are cyclic events. In this context, miRNAs constitute major regulators and coordinators of gene expression. Indeed, in response to specific stimuli, changes in miRNA expression profiles finely tune specific mRNA targets to adequately fit to the immediate needs through mainly the modulation of neuronal plasticity.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University Paris-Sud, Orsay, France; NMPA, Neurosciences Paris Saclay Institute (NeuroPSI), Department Molecules & Circuits, CNRS UMR 9197, Orsay, France.
| |
Collapse
|
34
|
Wu X, Wu G, Wu Z, Yao X, Li G. MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene. Transl Oncol 2016; 9:25-31. [PMID: 26947878 PMCID: PMC4800058 DOI: 10.1016/j.tranon.2015.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC). However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the first time identified that DEK gene is a direct downstream target of miR-200a. It was found that overexpression of miR-200a decreased DEK expression, suppressing the proliferation, migration, and invasion of PDAC cells. Meanwhile, knockdown of miR-200a can increase DEK level, promoting the proliferation, migration, and invasion of PDAC cells. Our study demonstrated that miR-200a suppresses the metastasis in pancreatic PDAC through downregulation of DEK, suggesting that miR-200a may be used as a novel potential marker in prediction of metastasis of PDAC.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, PR China
| | - Guannan Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, PR China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, PR China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, PR China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting Road, Nanjing 210009, PR China
| |
Collapse
|
35
|
Abstract
MicroRNA (miRNA, miR) measurements in patients with coronary heart disease are hampered by the confounding effects of medication commonly used in cardiovascular patients such as statins, antiplatelet drugs, and heparin administration. Statins reduce the circulating levels of liver-derived miR-122. Antiplatelet medication attenuates the release of platelet-derived miRNAs. Heparin inhibits the polymerase chain reactions, in particular the amplification of the exogenous Caenorhabditis elegans spike-in control, thereby resulting in an artefactual rise of endogenous miRNAs. As these limitations have not been previously recognised, a reevaluation of the current miRNA literature, in particular of case-control studies in patients with cardiovascular disease or coronary interventions, is required.
Collapse
Affiliation(s)
- Dorothee Kaudewitz
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK.
| |
Collapse
|
36
|
Zhang M, Piao L, Datta J, Lang JC, Xie X, Teknos TN, Mapp AK, Pan Q. miR-124 Regulates the Epithelial-Restricted with Serine Box/Epidermal Growth Factor Receptor Signaling Axis in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2015; 14:2313-20. [PMID: 26227488 DOI: 10.1158/1535-7163.mct-14-1071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/19/2015] [Indexed: 12/21/2022]
Abstract
Epithelial-restricted with serine box (ESX), a member of the ETS transcription factor family, is elevated and regulates EGFR in head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms that contribute to ESX dysregulation remain to be elucidated. In this study, in silico analysis of the 3'-untranslated region (UTR) of ESX predicted two miR-124-binding sites. Delivery of miR-124 inhibited the 3'UTR ESX-driven reporter activity by 50% (P < 0.05) confirming ESX as a direct target of miR-124. Loss of miR-124 was found to be a frequent event in HNSCC. miR-124 expression was significantly depleted in the primary tumor compared with matched normal tissue in 100% (12/12) of HNSCC patients; relative mean miR-124 expression of 0.01197 and 0.00118 (P < 0.001, n = 12) in matched normal adjacent tissue and primary HNSCC tumor, respectively. Overexpression of miR-124 decreased ESX and EGFR levels in miR-124(low)/ESX(high)/EGFR(high) SCC15 HNSCC cells and reduced cell invasion, migration, proliferation, and colony formation. SCC15 cells with miR-124 restoration were less tumorigenic in vivo than miR-control SCC15 cells (70% inhibition, P < 0.01). Restoration of miR-124 in SCC15 cells enhanced the antiproliferative efficacy of the EGFR/Her2 tyrosine kinase inhibitors. Furthermore, recapitulation of EGFR in miR-124-overexpressing SCC15 cells was sufficient to completely block the antiproliferative effects of lapatinib and afatinib. Taken together, our work provides intriguing evidence that miR-124 is a novel therapeutic approach to reduce ESX/EGFR, and may be a tractable strategy to enhance the response rate of HNSCC patients to current anti-EGFR/Her2 therapies.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jharna Datta
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - James C Lang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Xiujie Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio. Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
37
|
The Emerging Role of miR-223 in Platelet Reactivity: Implications in Antiplatelet Therapy. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221610 PMCID: PMC4499381 DOI: 10.1155/2015/981841] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelets are anuclear cells and are devoid of genomic DNA, but they are capable of de novo protein synthesis from mRNA derived from their progenitor cells, megakaryocytes. There is mounting evidence that microRNA (miRNA) plays an important role in regulating gene expression in platelets. miR-223 is the most abundant miRNAs in megakaryocytes and platelets. One of the miR-223-regulated genes is ADP P2Y12, a key target for current antiplatelet drug therapy. Recent studies showed that a blunted response to P2Y12 antagonist, that is, high on-treatment platelet reactivity (HTPR), is a strong predictor of major cardiovascular events (MACEs) in coronary heart disease (CHD) patients receiving antiplatelet treatment. Recent clinical cohort study showed that the level of circulating miR-223 is inversely associated with MACE in CHD patients. In addition, our recent data demonstrated that the level of both intraplatelet and circulating miR-223 is an independent predictor for HTPR, thus providing a link between miR-223 and MACE. These lines of evidence indicate that miR-223 may serve as a potential regulatory target for HTPR, as well as a diagnostic tool for identification of HTPR in clinical settings.
Collapse
|
38
|
Chung SH, Gillies M, Sugiyama Y, Zhu L, Lee SR, Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Müller cell ablation. PLoS One 2015; 10:e0118949. [PMID: 25741709 PMCID: PMC4351074 DOI: 10.1371/journal.pone.0118949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of Müller cells has been implicated in the pathogenesis of several retinal diseases. In order to understand the potential contribution of Müller cells to retinal disease better, we have developed a transgenic model in which foci of Müller cell ablation can be selectively induced. MicroRNAs (miRNAs), small non-coding RNAs that are involved in post-transcriptional modulation, have critical functions in various biological processes. The aim of this study was to profile differential expression of miRNAs and to examine changes in their target genes 2 weeks after Müller cell ablation. We identified 20 miRNAs using the miScript HC PCR array. Data analysis using two target gene prediction databases (TargetScan and mirTarBase) revealed 78 overlapping target genes. DAVID and KEGG pathway analysis suggested that the target genes were generally involved in cell apoptosis, p53, neurotrophin, calcium, chemokine and Jak-STAT signalling pathways. Changes in seven target genes including Cyclin D2, Caspase 9, insulin-like growth factor 1, IL-1 receptor-associated kinase (IRAK), calmodulin (CALM) and Janus kinase 2 (Jak2), were validated with qRT-PCR and western blots. The cellular localisation of cleaved-caspase 9, Cyclin D2, Jak2 and CALM was examined by immunofluorescence studies. We found that the transcription of some miRNAs was positively, rather than negatively, correlated with their target genes. After confirming that overexpressed miR-133a-3p was localised to the outer nuclear layer in the damaged retina, we validated the correlation between miR-133a-3p and one of its predicted target genes, cyclin D2, with a luciferase assay in 661 photoreceptor cells. Results revealed by miRNA profiling, target gene analysis and validation were generally consistent with our previous findings that selective Müller cell ablation causes photoreceptor degeneration and neuroinflammation. Our data on alterations of miRNAs and their target gene expression after Müller cell ablation provide further insights into the potential role of Müller cell dysfunction in retinal disease.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Macular Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
- * E-mail:
| | - Mark Gillies
- Macular Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
| | - Yuki Sugiyama
- Lens Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
| | - Ling Zhu
- Macular Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
| | - So-Ra Lee
- Macular Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
| | - Weiyong Shen
- Macular Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Corduan A, Plé H, Laffont B, Wallon T, Plante I, Landry P, Provost P. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost 2015; 113:1046-59. [PMID: 25673011 DOI: 10.1160/th14-07-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/26/2014] [Indexed: 11/05/2022]
Abstract
Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick Provost
- Dr. Patrick Provost, CHUQ Research Center/CHUL, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada, Tel.: +1 418 525 4444 (ext. 48842), E-mail:
| |
Collapse
|
40
|
Orang AV, Safaralizadeh R, Hosseinpour Feizi MA. Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev 2014; 15:577-83. [PMID: 24568460 DOI: 10.7314/apjcp.2014.15.2.577] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The recent discovery of tiny microRNAs (miRNAs) has brought about awareness of a new class of regulators of diverse pathways in many physiological and pathological processes, such as tumorigenesis. They modulate gene expression by targeting plethora of mRNAs, mostly reducing the protein yield of a targeted mRNA. With accumulation of information on characteristics of miR-205, complex and in some cases converse roles of miR-205 in tumor initiation, progression and metastasis are emerging. miR-205 acts either as an oncogene via facilitating tumor initiation and proliferation, or in some cases as a tumor suppressor through inhibiting proliferation and invasion. The aim of this review is to discuss miR-205 roles in different types of cancers. Given the critical effects of deregulated miR-205 on processes involved in tumorigenesis, they hold potential as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ayla Valinezhad Orang
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Islamic Republic of Iran E-mail :
| | | | | |
Collapse
|
41
|
Rostas JW, Pruitt HC, Metge BJ, Mitra A, Bailey SK, Bae S, Singh KP, Devine DJ, Dyess DL, Richards WO, Tucker JA, Shevde LA, Samant RS. microRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer. Mol Cancer 2014; 13:200. [PMID: 25174825 PMCID: PMC4169820 DOI: 10.1186/1476-4598-13-200] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3β phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/β-catenin signaling resulting from inactivation of GSK3β. CONCLUSION Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.
Collapse
Affiliation(s)
- Jack W Rostas
- />Department of Surgery, University of South Alabama, Mobile, AL USA
| | - Hawley C Pruitt
- />Department of Pathology, University of Alabama at Birmingham, WTI-320E, 1824 6th avenue South, Birmingham, AL 35294 USA
| | - Brandon J Metge
- />Department of Pathology, University of Alabama at Birmingham, WTI-320E, 1824 6th avenue South, Birmingham, AL 35294 USA
| | - Aparna Mitra
- />Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Sarah K Bailey
- />Department of Pathology, University of Alabama at Birmingham, WTI-320E, 1824 6th avenue South, Birmingham, AL 35294 USA
| | - Sejong Bae
- />BBSF-Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
- />Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Karan P Singh
- />BBSF-Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
- />Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Daniel J Devine
- />Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Donna L Dyess
- />Department of Surgery, University of South Alabama, Mobile, AL USA
| | | | - J Allan Tucker
- />Department of Pathology, University of South Alabama, Mobile, AL USA
| | - Lalita A Shevde
- />Department of Pathology, University of Alabama at Birmingham, WTI-320E, 1824 6th avenue South, Birmingham, AL 35294 USA
- />Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Rajeev S Samant
- />Department of Pathology, University of Alabama at Birmingham, WTI-320E, 1824 6th avenue South, Birmingham, AL 35294 USA
- />Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
42
|
Genome-wide mRNA and miRNA analysis of peripheral blood mononuclear cells (PBMC) reveals different miRNAs regulating HIV/HCV co-infection. Virology 2014; 450-451:336-49. [PMID: 24503097 DOI: 10.1016/j.virol.2013.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/24/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
Co-infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) is common due to shared transmission routes. The genomic basis of HIV/HCV co-infection and its regulation by microRNA (miRNA) is unknown. Therefore, our objective was to investigate genome-wide mRNA expression and its regulation by miRNA in primary PBMCs derived from 27 patients (5 HCV - mono-infected, 5 HIV-mono-infected, 12 HCV/HIV co-infected, and 5 healthy controls). This revealed 27 miRNAs and 476 mRNAs as differentially expressed (DE) in HCV/HIV co-infection when compared to controls (adj p<0.05). Our study shows the first evidence of miRNAs specific for co-infection, several of which are correlated with key gene targets demonstrating functional relationships to pathways in cancer, immune-function, and metabolism. Notable was the up regulation of HCV-specific miR-122 in co-infection (FC>50, p=4.02E-06), which may have clinical/biological implications.
Collapse
|
43
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
44
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet 2013; 29:691-9. [PMID: 24091060 DOI: 10.1016/j.tig.2013.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
The decay rate of an mRNA and the efficiency with which it is translated are key determinants of eukaryotic gene expression. Although it was once thought that mRNA stability and translational efficiency were directly linked, the interrelationships between the two processes are considerably more complex. The decay of individual mRNAs can be triggered or antagonized by translational impairment, and alterations in the half-life of certain mRNAs can even alter translational fidelity. In this review we consider whether mRNA translation and turnover are distinct or overlapping phases of an mRNA life cycle, and then address some of the many ways in which the two processes influence each other in eukaryotic cells.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
46
|
Ramasamy P, Murphy CC, Clynes M, Horgan N, Moriarty P, Tiernan D, Beatty S, Kennedy S, Meleady P. Proteomics in uveal melanoma. Exp Eye Res 2013; 118:1-12. [PMID: 24056206 DOI: 10.1016/j.exer.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.
Collapse
Affiliation(s)
- Pathma Ramasamy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Conor C Murphy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paul Moriarty
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Damien Tiernan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Stephen Beatty
- Macular Pigment Research Group, Waterford Institute of Technology, Waterford, Ireland.
| | - Susan Kennedy
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
47
|
Maurel M, Chevet E. Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 2013; 304:C1117-26. [DOI: 10.1152/ajpcell.00061.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER)-induced unfolded protein response (ERUPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. The ERUPR is transduced by three major ER-resident stress sensors, namely PKR-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring enzyme 1 (IRE1). Activation of these ER stress sensors leads to transcriptional reprogramming of the cells. Recently, microRNAs (miRNAs), small noncoding RNAs that generally repress gene expression, have emerged as key regulators of ER homeostasis and important players in ERUPR-dependent signaling. Moreover, the miRNAs biogenesis machinery appears to also be regulated upon ER stress. Herein we extensively review the relationships existing between “canonical” ERUPR signaling, control of ER homeostasis, and miRNAs. We reveal an intricate signaling network that might confer specificity and selectivity to the ERUPR in tissue- or stress-dependent fashion. We discuss these issues in the context of the physiological and pathophysiological roles of ERUPR signaling.
Collapse
Affiliation(s)
- Marion Maurel
- INSERM U1053, Bordeaux, France; and
- Université Bordeaux-Segalen, Bordeaux, France
| | - Eric Chevet
- INSERM U1053, Bordeaux, France; and
- Université Bordeaux-Segalen, Bordeaux, France
| |
Collapse
|
48
|
Russo I, Bonini D, Via LL, Barlati S, Barbon A. AMPA receptor properties are modulated in the early stages following pilocarpine-induced status epilepticus. Neuromolecular Med 2013; 15:324-38. [PMID: 23494293 DOI: 10.1007/s12017-013-8221-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/08/2013] [Indexed: 01/28/2023]
Abstract
Glutamate over-activation and the consequent neuronal excitotoxicity have been identified as crucial players in brain dysfunctions such as status epilepticus (SE). Owing to the central function of 2-amino-3-(hydroxyl-5-methylisoxazole-4-yl) propionic acid receptors (AMPARs) in fast excitatory neurotransmission, these receptors have been recognized to play a prominent role in the development and generation of epileptic seizure. This study was undertaken to investigate both the early changes that affect glutamatergic neurons in the rat cerebral cortex and hippocampus and the level and channel properties of AMPARs in response to SE. The results obtained after 3 h of pilocarpine (PILO)-induced SE showed a disorganization of glutamatergic neurons in the CA3 and a thinner neuronal cell layer in the dentate gyrus (DG) region as compared with controls. A significant increase in AMPAR GluA2 protein expression, a decrease in GluA1, GluA3, and GluA4 expression, and a reduction in the phosphorylation of Ser831-GluA1 and Ser880-GluA2 were also observed. In addition, we report a downregulation of R/G editing levels and of Flip splicing isoforms, with a prominent effect on the hippocampus of PILO-treated rats. Our results suggest the presence of an attenuation of AMPARs' post-synaptic excitatory response to glutamate after PILO treatment, thus conferring neuronal protection from the excitotoxic conditions observed in the SE. This study suggests a role for AMPARs in alterations of the glutamatergic pathway during the onset and early progression of epilepsy, thus indicating additional targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Russo
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology and National Institute of Neuroscience, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
49
|
Meister B, Herzer S, Silahtaroglu A. MicroRNAs in the hypothalamus. Neuroendocrinology 2013; 98:243-53. [PMID: 24080764 DOI: 10.1159/000355619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are short (∼22 nucleotides) non-coding ribonucleic acid (RNA) molecules that negatively regulate the expression of protein-coding genes. Posttranscriptional silencing of target genes by miRNA is initiated by binding to the 3'-untranslated regions of target mRNAs, resulting in specific cleavage and subsequent degradation of the mRNA or by translational repression resulting in specific inhibition of protein synthesis. An increasing amount of evidence shows that miRNAs control a large number of biological processes and there exists a direct link between miRNAs and disease. miRNA molecules are abundantly expressed in tissue-specific and regional patterns and have been suggested as potential biomarkers, disease modulators and drug targets. The central nervous system is a prominent site of miRNA expression. Within the brain, several miRNAs are expressed and/or enriched in the region of the hypothalamus and miRNAs have recently been shown to be important regulators of hypothalamic control functions. The aim of this review is to summarize some of the current knowledge regarding the expression and role of miRNAs in the hypothalamus.
Collapse
Affiliation(s)
- Björn Meister
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|