1
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Shi J, Yin W, Chen W. Mathematical models of TCR initial triggering. Front Immunol 2024; 15:1411614. [PMID: 39091495 PMCID: PMC11291225 DOI: 10.3389/fimmu.2024.1411614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly and accurately recognizing foreign and non-self antigens. The process involves multiple molecules and regulatory mechanisms, forming a complex network to achieve effective antigen recognition. Mathematical modeling techniques can help unravel the intricate network of TCR signaling and identify key regulators that govern it. In this review, we introduce and briefly discuss relevant mathematical models of TCR initial triggering, with a focus on kinetic proofreading (KPR) models with different modified structures. We compare the topology structures, biological hypotheses, parameter choices, and simulation performance of each model, and summarize the advantages and limitations of them. Further studies on TCR modeling design, aiming for an optimized balance of specificity and sensitivity, are expected to contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhang Y, Liu S, Guo F, Qin S, Zhou N, Liu Z, Fan X, Chen PR. Bioorthogonal Quinone Methide Decaging Enables Live-Cell Quantification of Tumor-Specific Immune Interactions. J Am Chem Soc 2024; 146:15186-15197. [PMID: 38789930 DOI: 10.1021/jacs.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.
Collapse
Affiliation(s)
- Yan Zhang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuhu Guo
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Nan Zhou
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Su Z, Griffin B, Emmons S, Wu Y. Prediction of interactions between cell surface proteins by machine learning. Proteins 2024; 92:567-580. [PMID: 38050713 DOI: 10.1002/prot.26648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Cells detect changes in their external environments or communicate with each other through proteins on their surfaces. These cell surface proteins form a complicated network of interactions in order to fulfill their functions. The interactions between cell surface proteins are highly dynamic and, thus, challenging to detect using traditional experimental techniques. Here, we tackle this challenge using a computational framework. The primary focus of the framework is to develop new tools to identify interactions between domains in the immunoglobulin (Ig) fold, which is the most abundant domain family in cell surface proteins. These interactions could be formed between ligands and receptors from different cells or between proteins on the same cell surface. In practice, we collected all structural data on Ig domain interactions and transformed them into an interface fragment pair library. A high-dimensional profile can then be constructed from the library for a given pair of query protein sequences. Multiple machine learning models were used to read this profile so that the probability of interaction between the query proteins could be predicted. We tested our models on an experimentally derived dataset that contains 564 cell surface proteins in humans. The cross-validation results show that we can achieve higher than 70% accuracy in identifying the PPIs within this dataset. We then applied this method to a group of 46 cell surface proteins in Caenorhabditis elegans. We screened every possible interaction between these proteins. Many interactions recognized by our machine learning classifiers have been experimentally confirmed in the literature. In conclusion, our computational platform serves as a useful tool to help identify potential new interactions between cell surface proteins in addition to current state-of-the-art experimental techniques. The tool is freely accessible for use by the scientific community. Moreover, the general framework of the machine learning classification can also be extended to study the interactions of proteins in other domain superfamilies.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian Griffin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Scott Emmons
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Rajasekaran N, Wang X, Ravindranathan S, Chin DJ, Tseng SY, Klakamp SL, Widmann K, Kapoor VN, Vexler V, Keegan P, Yao S, LaVallee T, Khare SD. Toripalimab, a therapeutic monoclonal anti-PD-1 antibody with high binding affinity to PD-1 and enhanced potency to activate human T cells. Cancer Immunol Immunother 2024; 73:60. [PMID: 38400933 PMCID: PMC10894093 DOI: 10.1007/s00262-024-03635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
Over the past decade, US Food and Drug Administration (FDA)-approved immune checkpoint inhibitors that target programmed death-1 (PD-1) have demonstrated significant clinical benefit particularly in patients with PD-L1 expressing tumors. Toripalimab is a humanized anti-PD-1 antibody, approved by FDA for first-line treatment of nasopharyngeal carcinoma in combination with chemotherapy. In a post hoc analysis of phase 3 studies, toripalimab in combination with chemotherapy improved overall survival irrespective of PD-L1 status in nasopharyngeal carcinoma (JUPITER-02), advanced non-small cell lung cancer (CHOICE-01) and advanced esophageal squamous cell carcinoma (JUPITER-06). On further characterization, we determined that toripalimab is molecularly and functionally differentiated from pembrolizumab, an anti-PD-1 mAb approved previously for treating a wide spectrum of tumors. Toripalimab, which binds the FG loop of PD-1, has 12-fold higher binding affinity to PD-1 than pembrolizumab and promotes significantly more Th1- and myeloid-derived inflammatory cytokine responses in healthy human PBMCs in vitro. In an ex vivo system employing dissociated tumor cells from treatment naïve non-small cell lung cancer patients, toripalimab induced several unique genes in IFN-γ and immune cell pathways, showed different kinetics of activation and significantly enhanced IFN-γ signature. Additionally, binding of toripalimab to PD-1 induced lower levels of SHP1 and SHP2 recruitment, the negative regulators of T cell activation, in Jurkat T cells ectopically expressing PD-1. Taken together, these data demonstrate that toripalimab is a potent anti-PD-1 antibody with high affinity PD-1 binding, strong functional attributes and demonstrated clinical activity that encourage its continued clinical investigation in several types of cancer.
Collapse
Affiliation(s)
| | - Xiaoguang Wang
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Sruthi Ravindranathan
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Daniel J Chin
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Su-Yi Tseng
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Scott L Klakamp
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Kate Widmann
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Varun N Kapoor
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Vladimir Vexler
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Patricia Keegan
- TopAlliance Biosciences, 9430 Key West Ave, Suite 125, Rockville, MD, 20850, USA
| | - Sheng Yao
- TopAlliance Biosciences, 9430 Key West Ave, Suite 125, Rockville, MD, 20850, USA
- Shanghai Junshi Biosciences, Shanghai, China
| | - Theresa LaVallee
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| | - Sanjay D Khare
- Coherus Biosciences, 333 Twin Dolphin Drive, Suite 600, Redwood City, CA, 94065, USA
| |
Collapse
|
6
|
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Yoshida Y, Nishikawa T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Suzuki M, Yokosuka T. Molecular Imaging of PD-1 Unveils Unknown Characteristics of PD-1 Itself by Visualizing "PD-1 Microclusters". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:197-205. [PMID: 38467981 DOI: 10.1007/978-981-99-9781-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Programmed cell death-1 (PD-1) is one of the most famous coinhibitory receptors that are expressed on effector T cells to regulate their function. The PD-1 ligands, PD-L1 and PD-L2, are expressed by various cells throughout the body at steady state and their expression was further regulated within different pathological conditions such as tumor-bearing and chronic inflammatory diseases. In recent years, immune checkpoint inhibitor (ICI) therapies with anti-PD-1 or anti-PD-L1 has become a standard treatment for various malignancies and has shown remarkable antitumor effects. Since the discovery of PD-1 in 1992, a huge number of studies have been conducted to elucidate the function of PD-1. Herein, this paper provides an overview of PD-1 biological findings and sheds some light on the current technology for molecular imaging of PD-1.
Collapse
Affiliation(s)
- Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | | | - Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | | | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
7
|
Su Z, Griffin B, Emmons S, Wu Y. Prediction of Interactions between Cell Surface Proteins by Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557337. [PMID: 37745607 PMCID: PMC10515853 DOI: 10.1101/2023.09.12.557337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cells detect changes of external environments or communicate with each other through proteins on their surfaces. These cell surface proteins form a complicated network of interactions in order to fulfill their functions. The interactions between cell surface proteins are highly dynamic and thus challenging to detect using traditional experimental techniques. Here we tackle this challenge by a computational framework. The primary focus of the framework is to develop new tools to identify interactions between domains in immunoglobulin (Ig) fold, which is the most abundant domain family in cell surface proteins. These interactions could be formed between ligands and receptors from different cells, or between proteins on the same cell surface. In practice, we collected all structural data of Ig domain interactions and transformed them into an interface fragment pair library. A high dimensional profile can be then constructed from the library for a given pair of query protein sequences. Multiple machine learning models were used to read this profile, so that the probability of interaction between the query proteins can be predicted. We tested our models to an experimentally derived dataset which contains 564 cell surface proteins in human. The cross-validation results show that we can achieve higher than 70% accuracy in identifying the PPIs within this dataset. We then applied this method to a group of 46 cell surface proteins in C elegans. We screened every possible interaction between these proteins. Many interactions recognized by our machine learning classifiers have been experimentally confirmed in the literatures. In conclusion, our computational platform serves a useful tool to help identifying potential new interactions between cell surface proteins in addition to current state-of-the-art experimental techniques. The tool is freely accessible for use by the scientific community. Moreover, the general framework of the machine learning classification can also be extended to study interactions of proteins in other domain superfamilies.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| | - Brian Griffin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| | - Scott Emmons
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461
| |
Collapse
|
8
|
Abesekara MS, Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol 2022; 10:972790. [PMID: 36312538 PMCID: PMC9597319 DOI: 10.3389/fbioe.2022.972790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Surface modification of biomaterial can improve its biocompatibility and add new biofunctions, such as targeting specific tissues, communication with cells, and modulation of intracellular trafficking. Here, we summarize the use of various natural materials, namely, cell membrane, exosomes, proteins, peptides, lipids, fatty acids, and polysaccharides as coating materials on micron- and nano-sized particles and droplets with the functions imparted by coating with different materials. We discuss the applicability, operational parameters, and limitation of different coating techniques, from the more conventional approaches such as extrusion and sonication to the latest innovation seen on the microfluidics platform. Methods commonly used in the field to examine the coating, including its composition, physical dimension, stability, fluidity, permeability, and biological functions, are reviewed.
Collapse
|
9
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Oslund RC, Reyes-Robles T, White CH, Tomlinson JH, Crotty KA, Bowman EP, Chang D, Peterson VM, Li L, Frutos S, Vila-Perelló M, Vlerick D, Cromie K, Perlman DH, Ingale S, Hara SDO, Roberts LR, Piizzi G, Hett EC, Hazuda DJ, Fadeyi OO. Detection of cell-cell interactions via photocatalytic cell tagging. Nat Chem Biol 2022; 18:850-858. [PMID: 35654846 DOI: 10.1038/s41589-022-01044-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.
Collapse
Affiliation(s)
- Rob C Oslund
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. .,InduPro, Cambridge, MA, USA.
| | | | - Cory H White
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Jake H Tomlinson
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Kelly A Crotty
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Edward P Bowman
- Discovery Research, Merck & Co., Inc., San Francisco, CA, USA
| | - Dan Chang
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | | | - Lixia Li
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | | | | | | | | | - David H Perlman
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Sampat Ingale
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | | | - Lee R Roberts
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Erik C Hett
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Daria J Hazuda
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.,Infectious Diseases and Vaccine Research, Merck & Co., Inc., West Point, PA, USA
| | - Olugbeminiyi O Fadeyi
- Merck Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA. .,InduPro, Cambridge, MA, USA.
| |
Collapse
|
12
|
Dhusia K, Madrid C, Su Z, Wu Y. EXCESP: A Structure-Based Online Database for Extracellular Interactome of Cell Surface Proteins in Humans. J Proteome Res 2022; 21:349-359. [PMID: 34978816 DOI: 10.1021/acs.jproteome.1c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interactions between ectodomains of cell surface proteins are vital players in many important cellular processes, such as regulating immune responses, coordinating cell differentiation, and shaping neural plasticity. However, while the construction of a large-scale protein interactome has been greatly facilitated by the development of high-throughput experimental techniques, little progress has been made to support the discovery of extracellular interactome for cell surface proteins. Harnessed by the recent advances in computational modeling of protein-protein interactions, here we present a structure-based online database for the extracellular interactome of cell surface proteins in humans, called EXCESP. The database contains both experimentally determined and computationally predicted interactions among all type-I transmembrane proteins in humans. All structural models for these interactions and their binding affinities were further computationally modeled. Moreover, information such as expression levels of each protein in different cell types and its relation to various signaling pathways from other online resources has also been integrated into the database. In summary, the database serves as a valuable addition to the existing online resources for the study of cell surface proteins. It can contribute to the understanding of the functions of cell surface proteins in the era of systems biology.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Carlos Madrid
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States.,Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
13
|
New Insights into the Role of PD-1 and Its Ligands in Allergic Disease. Int J Mol Sci 2021; 22:ijms222111898. [PMID: 34769327 PMCID: PMC8584538 DOI: 10.3390/ijms222111898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.
Collapse
|
14
|
Garlick E, Thomas SG, Owen DM. Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells. Front Cell Dev Biol 2021; 9:676066. [PMID: 34490240 PMCID: PMC8416680 DOI: 10.3389/fcell.2021.676066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Immune cells comprise a diverse set of cells that undergo a complex array of biological processes that must be tightly regulated. A key component of cellular machinery that achieves this is the cytoskeleton. Therefore, imaging and quantitatively describing the architecture and dynamics of the cytoskeleton is an important research goal. Optical microscopy is well suited to this task. Here, we review the latest in the state-of-the-art methodology for labeling the cytoskeleton, fluorescence microscopy hardware suitable for such imaging and quantitative statistical analysis software applicable to describing cytoskeletal structures. We also highlight ongoing challenges and areas for future development.
Collapse
Affiliation(s)
- Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom.,Institute for Immunology and Immunotherapy, College of Medical and Dental Science and School of Mathematics, College of Engineering and Physical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Saed B, Munaweera R, Anderson J, O'Neill WD, Hu YS. Rapid statistical discrimination of fluorescence images of T cell receptors on immobilizing surfaces with different coating conditions. Sci Rep 2021; 11:15488. [PMID: 34326382 PMCID: PMC8322097 DOI: 10.1038/s41598-021-94730-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The spatial organization of T cell receptors (TCRs) correlates with membrane-associated signal amplification, dispersion, and regulation during T cell activation. Despite its potential clinical importance, quantitative analysis of the spatial arrangement of TCRs from standard fluorescence images remains difficult. Here, we report Statistical Classification Analyses of Membrane Protein Images or SCAMPI as a technique capable of analyzing the spatial arrangement of TCRs on the plasma membrane of T cells. We leveraged medical image analysis techniques that utilize pixel-based values. We transformed grayscale pixel values from fluorescence images of TCRs into estimated model parameters of partial differential equations. The estimated model parameters enabled an accurate classification using linear discrimination techniques, including Fisher Linear Discriminant (FLD) and Logistic Regression (LR). In a proof-of-principle study, we modeled and discriminated images of fluorescently tagged TCRs from Jurkat T cells on uncoated cover glass surfaces (Null) or coated cover glass surfaces with either positively charged poly-L-lysine (PLL) or TCR cross-linking anti-CD3 antibodies (OKT3). Using 80 training images and 20 test images per class, our statistical technique achieved 85% discrimination accuracy for both OKT3 versus PLL and OKT3 versus Null conditions. The run time of image data download, model construction, and image discrimination was 21.89 s on a laptop computer, comprised of 20.43 s for image data download, 1.30 s on the FLD-SCAMPI analysis, and 0.16 s on the LR-SCAMPI analysis. SCAMPI represents an alternative approach to morphology-based qualifications for discriminating complex patterns of membrane proteins conditioned on a small sample size and fast runtime. The technique paves pathways to characterize various physiological and pathological conditions using the spatial organization of TCRs from patient T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rangika Munaweera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - William D O'Neill
- Department of Bioengineering, Colleges of Engineering and Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
16
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
17
|
Gao Y, Wang Y, Luo F, Chu Y. Optimization of T Cell Redirecting Strategies: Obtaining Inspirations From Natural Process of T Cell Activation. Front Immunol 2021; 12:664329. [PMID: 33981310 PMCID: PMC8107274 DOI: 10.3389/fimmu.2021.664329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) or bispecific antibodies (bsAbs) redirected T cell against tumors is one of the most promising immunotherapy approaches. However, insufficient clinical outcomes are still observed in treatments of both solid and non-solid tumors. Limited efficacy and poor persistence are two major challenges in redirected T cell therapies. The immunological synapse (IS) is a vital component during the T cell response, which largely determines the clinical outcomes of T cell-based therapies. Here, we review the structural and signaling characteristics of IS formed by natural T cells and redirected T cells. Furthermore, inspired by the elaborate natural T cell receptor-mediated IS, we provide potential strategies for higher efficacy and longer persistence of redirected T cells.
Collapse
Affiliation(s)
- Yiyuan Gao
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yuedi Wang
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, China.,Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Su Z, Dhusia K, Wu Y. Understanding the impacts of cellular environments on ligand binding of membrane receptors by computational simulations. J Chem Phys 2021; 154:055101. [PMID: 33557556 DOI: 10.1063/5.0035970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of cell surface receptors with their extracellular ligands initiates various intracellular signaling pathways. However, our understanding of the cellular functions of these receptors is very limited due to the fact that in vivo binding between ligands and receptors has only been successfully measured in a very small number of cases. In living cells, receptors are anchored on surfaces of the plasma membrane, which undergoes thermal undulations. Moreover, it has been observed in various systems that receptors can be organized into oligomers prior to ligand binding. It is not well understood how these cellular factors play roles in regulating the dynamics of ligand-receptor interactions. Here, we tackled these problems by using a coarse-grained kinetic Monte Carlo simulation method. Using this method, we demonstrated that the membrane undulations cause a negative effect on ligand-receptor interactions. We further found that the preassembly of membrane receptors on the cell surface can not only accelerate the kinetics of ligand binding but also reduce the noises during the process. In general, our study highlights the importance of membrane environments in regulating the function of membrane receptors in cells. The simulation method can be potentially applied to specific receptor systems involved in cell signaling.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
20
|
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci 2020; 21:E3283. [PMID: 32384769 PMCID: PMC7247333 DOI: 10.3390/ijms21093283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023] Open
Abstract
In a signaling network, not only the functions of molecules are important but when (temporal) and where (spatial) those functions are exerted and orchestrated is what defines the signaling output. To temporally and spatially modulate signaling events, cells generate specialized functional domains with variable lifetime and size that concentrate signaling molecules, enhancing their transduction potential. The plasma membrane is a key in this regulation, as it constitutes a primary signaling hub that integrates signals within and across the membrane. Here, we examine some of the mechanisms that cells exhibit to spatiotemporally regulate signal transduction, focusing on the early events of T cell activation from triggering of T cell receptor to formation and maturation of the immunological synapse.
Collapse
Affiliation(s)
- Esther Garcia
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
21
|
Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol 2020; 3:128. [PMID: 32184441 PMCID: PMC7078208 DOI: 10.1038/s42003-020-0845-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death-1 (PD-1) inhibits T cell responses. This function relies on interaction with SHP-2. PD-1 has one immunoreceptor tyrosine-based inhibitory motif (ITIM) at Y223 and one immunoreceptor tyrosine-based switch motif (ITSM) at Y248. Only ITSM-Y248 is indispensable for PD-1-mediated inhibitory function but how SHP-2 enzymatic activation is mechanistically regulated by one PD-1 phosphotyrosine remains a puzzle. We found that after PD-1 phosphorylation, SHP-2 can bridge phosphorylated ITSM-Y248 residues on two PD-1 molecules via its amino terminal (N)-SH2 and carboxyterminal (C)-SH2 domains forming a PD-1: PD-1 dimer in live cells. The biophysical ability of SHP-2 to interact with two ITSM-pY248 residues was documented by isothermal titration calorimetry. SHP-2 interaction with two ITSM-pY248 phosphopeptides induced robust enzymatic activation. Our results unravel a mechanism of PD-1: SHP-2 interaction that depends only on ITSM-Y248 and explain how a single docking site within the PD-1 cytoplasmic tail can activate SHP-2 and PD-1-mediated inhibitory function. Patsoukis et al identify a mechanism by which SHP-2 phosphatase bridges two molecules of the inhibitory checkpoint receptor PD-1, and show this can also induce SHP-2 activation. These data provide insights into the mechanism of SHP-2 activation by PD-1 that may be relevant for its role in T-cell inhibition.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qi Wang
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Asia Council
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anders Berg
- Department of Pathology Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA.,Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA. .,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Network Pharmacology-Based Investigation into the Mechanisms of Quyushengxin Formula for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7870424. [PMID: 31976001 PMCID: PMC6949735 DOI: 10.1155/2019/7870424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Objective Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease whose treatment strategies remain unsatisfactory. This study aims to investigate the mechanisms of Quyushengxin formula acting on UC based on network pharmacology. Methods Ingredients of the main herbs in Quyushengxin formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Absorption, distribution, metabolism, and excretion properties of all ingredients were evaluated for screening out candidate bioactive compounds in Quyushengxin formula. Weighted ensemble similarity algorithm was applied for predicting direct targets of bioactive ingredients. Functional enrichment analyses were performed for the targets. In addition, compound-target network, target-disease network, and target-pathway network were established via Cytoscape 3.6.0 software. Results A total of 41 bioactive compounds in Quyushengxin formula were selected out from the TCMSP database. These bioactive compounds were predicted to target 94 potential proteins by weighted ensemble similarity algorithm. Functional analysis suggested these targets were closely related with inflammatory- and immune-related biological progresses. Furthermore, the results of compound-target network, target-disease network, and target-pathway network indicated that the therapeutic effects of Quyushengxin on UC may be achieved through the synergistic and additive effects. Conclusion Quyushengxin may act on immune and inflammation-related targets to suppress UC progression in a synergistic and additive manner.
Collapse
|
23
|
Kaitao L, William R, Zhou Y, Cheng Z. Single-molecule investigations of T-cell activation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:102-110. [PMID: 32296738 PMCID: PMC7158867 DOI: 10.1016/j.cobme.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T-cell activation is the central event governing its development, differentiation, and effector functions. T-cell activation is initiated by the direct physical interaction of the T cell antigen receptor (TCR) with cognate peptide presented by the major histocompatibility complex (pMHC) molecule expressed on the antigen presenting cell (APC) surface. Since the identification of TCR as the only receptor for antigen on T cells three decades ago, studies have elucidated the major molecular players and signaling events responding to TCR stimulation. However, the question of how the physical event of pMHC binding is converted across the membrane into chemical events to initiate signal transduction remains elusive. Here we review recent investigations of T-cell activation using single-molecule force and fluorescence techniques that shed new light on this key question.
Collapse
Affiliation(s)
- Li Kaitao
- Wallace H. Coulter Department of Biomedical Engineering
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Rittase William
- Wallace H. Coulter Department of Biomedical Engineering
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yuan Zhou
- George W. Woodruff School of Mechanical Engineering
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zhu Cheng
- Wallace H. Coulter Department of Biomedical Engineering
- George W. Woodruff School of Mechanical Engineering
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
24
|
Membrane Organization and Physical Regulation of Lymphocyte Antigen Receptors: A Biophysicist's Perspective. J Membr Biol 2019; 252:397-412. [PMID: 31352492 DOI: 10.1007/s00232-019-00085-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Receptors at the membrane of immune cells are the central players of innate and adaptative immunity, providing effective defence mechanisms against pathogens or cancer cells. Their function is intimately linked to their position at and within the membrane which provides accessibility, mobility as well as membrane proximal cytoskeleton anchoring, all of these elements playing important roles in the final function and links to cellular actions. Understanding how immune cells integrate the specific signals received at their membrane to take a decision remains an immense challenge and a very active field of fundamental and applied research. Recent progress in imaging and micromanipulation techniques have led to an unprecedented refinement in the description of molecular structures and supramolecular assemblies at the immune cell membrane, and provided a glimpse into their dynamics and regulation by force. Several key elements have been scrutinized such as the roles of relative sizes of molecules, lateral organisation, motion in the membrane of the receptors, but also physical cues such as forces, mediated by cellular substrates of different rigidities or applied by the cell itself, in conjunction with its partner cell. We review here these recent discoveries associated with a description of the biophysical methods used. While a conclusive picture integrating all of these components is still lacking, mainly due to the implication of diverse and different mechanisms and spatio-temporal scales involved, the amount of quantitative data available opens the way for physical modelling and numerical simulations and new avenues for experimental research.
Collapse
|
25
|
Onnis A, Baldari CT. Orchestration of Immunological Synapse Assembly by Vesicular Trafficking. Front Cell Dev Biol 2019; 7:110. [PMID: 31334230 PMCID: PMC6616304 DOI: 10.3389/fcell.2019.00110] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligation of the T-cell antigen receptor (TCR) by cognate peptide bound to the Major Histocompatibility Complex on the surface of an antigen-presenting cell (APC) leads to the spatial reorganization of the TCR and accessory receptors to form a specialized area of intimate contact between T cell and APC, known as the immunological synapse (IS), where signals are deciphered, coordinated, and integrated to promote T cell activation. With the discovery that an endosomal TCR pool contributes to IS assembly and function by undergoing polarized recycling to the IS, recent years have witnessed a shift from a plasma membrane-centric view of the IS to the vesicular trafficking events that occur at this location following the TCR-dependent translocation of the centrosome toward the synaptic membrane. Here we will summarize our current understanding of the trafficking pathways that are responsible for the steady delivery of endosomal TCRs, kinases, and adapters to the IS to sustain signaling, as well as of the endocytic pathways responsible for signal termination. We will also discuss recent evidence highlighting a role for endosomes in sustaining TCR signaling after its internalization at the IS and identifying the IS as a site of formation and release of extracellular vesicles that allow for transcellular communication with the APC.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
26
|
Wang QL, Liang JQ, Gong BN, Xie JJ, Yi YT, Lan X, Li Y. T Cell Receptor (TCR)-Induced PLC-γ1 Sumoylation via PIASxβ and PIAS3 SUMO E3 Ligases Regulates the Microcluster Assembly and Physiological Function of PLC-γ1. Front Immunol 2019; 10:314. [PMID: 30873169 PMCID: PMC6403162 DOI: 10.3389/fimmu.2019.00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
The SUMO modification system plays an important role in T cell activation, yet how sumoylation regulates TCR-proximal signaling remains largely unknown. We show here that Phospholipase C-γ1 (PLC-γ1) is conjugated by SUMO1 at K54 and K987 upon TCR stimulation and that K54 sumoylation is pivotal for PLC-γ1-mediated T cell activation. We further demonstrate that TCR-induced K54 sumoylation of PLC-γ1 significantly promotes the formation of PLC-γ1 microclusters and the association of PLC-γ1 with the adaptor proteins SLP76 and Gads, but only slightly affects the phosphorylation of PLC-γ1 on Y783, which determines the enzyme catalytic activity. Moreover, upon TCR stimulation, the SUMO E3 ligases PIASxβ and PIAS3 both interact with PLC-γ1 and cooperate to sumoylate PLC-γ1, facilitating the assembly of PLC-γ1 microclusters. Together, our findings reveal a critical role of PLC-γ1 K54 sumoylation in PLC-γ1 microcluster assembly that controls PLC-γ1-mediated T cell activation, suggesting that sumoylation may have an important role in the microcluster assembly of TCR-proximal signaling proteins.
Collapse
Affiliation(s)
- Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Qi Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bei-Ni Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Ji Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ting Yi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Lan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Ramello MC, Benzaïd I, Kuenzi BM, Lienlaf-Moreno M, Kandell WM, Santiago DN, Pabón-Saldaña M, Darville L, Fang B, Rix U, Yoder S, Berglund A, Koomen JM, Haura EB, Abate-Daga D. An immunoproteomic approach to characterize the CAR interactome and signalosome. Sci Signal 2019; 12:12/568/eaap9777. [PMID: 30755478 DOI: 10.1126/scisignal.aap9777] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species. This phenomenon was independent of the choice of costimulatory domains, or the hinge/transmembrane region. Rather, it was dependent on the size of the intracellular domains. Moreover, the second-generation design was also associated with stronger phosphorylation of downstream secondary messengers, as evidenced by global phosphoproteome analysis. These results suggest that second-generation CARs can activate additional sources of CD3ζ signaling, and this may contribute to more intense signaling and superior antitumor efficacy that they display compared to third-generation CARs. Moreover, our results provide a deeper understanding of how CARs interact physically and/or functionally with endogenous T cell molecules, which will inform the development of novel optimized immune receptors.
Collapse
Affiliation(s)
- Maria C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ismahène Benzaïd
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Maritza Lienlaf-Moreno
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mibel Pabón-Saldaña
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lancia Darville
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.,Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
28
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
29
|
Martin-Blanco N, Blanco R, Alda-Catalinas C, Bovolenta ER, Oeste CL, Palmer E, Schamel WW, Lythe G, Molina-París C, Castro M, Alarcon B. A window of opportunity for cooperativity in the T Cell Receptor. Nat Commun 2018; 9:2618. [PMID: 29976994 PMCID: PMC6033938 DOI: 10.1038/s41467-018-05050-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/10/2018] [Indexed: 01/15/2023] Open
Abstract
The T-cell antigen receptor (TCR) is pre-organised in oligomers, known as nanoclusters. Nanoclusters could provide a framework for inter-TCR cooperativity upon peptide antigen-major histocompatibility complex (pMHC) binding. Here we have used soluble pMHC oligomers in search for cooperativity effects along the plasma membrane plane. We find that initial binding events favour subsequent pMHC binding to additional TCRs, during a narrow temporal window. This behaviour can be explained by a 3-state model of TCR transition from Resting to Active, to a final Inhibited state. By disrupting nanoclusters and hampering the Active conformation, we show that TCR cooperativity is consistent with TCR nanoclusters adopting the Active state in a coordinated manner. Preferential binding of pMHC to the Active TCR at the immunological synapse suggests that there is a transient time frame for signal amplification in the TCR, allowing the T cells to keep track of antigen quantity and binding time. T cells can be activated by a small, two-digit, number of antigen peptide molecules even though the receptor for antigen (TCR) is of low affinity. Here the authors present evidence that all TCRs within a nanocluster can become activated when only a subset is bound to antigen.
Collapse
Affiliation(s)
- N Martin-Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - R Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - C Alda-Catalinas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E R Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - C L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E Palmer
- University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - W W Schamel
- Faculty of Biology, Institute Biology III, University of Freiburg, 79104, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - G Lythe
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - C Molina-París
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
| | - M Castro
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK. .,Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Pontificia Comillas, Alberto Aguilera25, 28015, Madrid, Spain.
| | - B Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Feng LR, Fernández-Martínez JL, Zaal KJ, deAndrés-Galiana EJ, Wolff BS, Saligan LN. mGluR5 mediates post-radiotherapy fatigue development in cancer patients. Transl Psychiatry 2018; 8:110. [PMID: 29849049 PMCID: PMC5976668 DOI: 10.1038/s41398-018-0161-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer-related fatigue (CRF) is a common burden in cancer patients and little is known about its underlying mechanism. The primary aim of this study was to identify gene signatures predictive of post-radiotherapy fatigue in prostate cancer patients. We employed Fisher Linear Discriminant Analysis (LDA) to identify predictive genes using whole genome microarray data from 36 men with prostate cancer. Ingenuity Pathway Analysis was used to determine functional networks of the predictive genes. Functional validation was performed using a T lymphocyte cell line, Jurkat E6.1. Cells were pretreated with metabotropic glutamate receptor 5 (mGluR5) agonist (DHPG), antagonist (MPEP), or control (PBS) for 20 min before irradiation at 8 Gy in a Mark-1 γ-irradiator. NF-κB activation was assessed using a NF-κB/Jurkat/GFP Transcriptional Reporter Cell Line. LDA achieved 83.3% accuracy in predicting post-radiotherapy fatigue. "Glutamate receptor signaling" was the most significant (p = 0.0002) pathway among the predictive genes. Functional validation using Jurkat cells revealed clustering of mGluR5 receptors as well as increased regulated on activation, normal T cell expressed and secreted (RANTES) production post irradiation in cells pretreated with DHPG, whereas inhibition of mGluR5 activity with MPEP decreased RANTES concentration after irradiation. DHPG pretreatment amplified irradiation-induced NF-κB activation suggesting a role of mGluR5 in modulating T cell activation after irradiation. These results suggest that mGluR5 signaling in T cells may play a key role in the development of chronic inflammation resulting in fatigue and contribute to individual differences in immune responses to radiation. Moreover, modulating mGluR5 provides a novel therapeutic option to treat CRF.
Collapse
Affiliation(s)
- Li Rebekah Feng
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | | | - Kristien J.M. Zaal
- 0000 0001 2297 5165grid.94365.3dLight Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | | | - Brian S. Wolff
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research/National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Leorey N. Saligan
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
31
|
Walling BL, Kim M. LFA-1 in T Cell Migration and Differentiation. Front Immunol 2018; 9:952. [PMID: 29774029 PMCID: PMC5943560 DOI: 10.3389/fimmu.2018.00952] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/17/2018] [Indexed: 01/21/2023] Open
Abstract
Maintenance of homeostatic immune surveillance and development of effective adaptive immune responses require precise regulation of spatial and temporal lymphocyte trafficking throughout the body to ensure pathogen clearance and memory generation. Dysregulation of lymphocyte activation and migration can lead to impaired adaptive immunity, recurrent infections, and an array of autoimmune diseases and chronic inflammation. Central to the recruitment of T cells, integrins are cell surface receptors that regulate adhesion, signal transduction, and migration. With 24 integrin pairs having been discovered to date, integrins are defined not only by the composition of the heterodimeric pair but by cell-type specific expression and their ligands. Furthermore, integrins not only facilitate adhesion but also induce intracellular signaling and have recently been uncovered as mechanosensors providing additional complexity to the signaling pathways. Among several leukocyte-specific integrins, lymphocyte function-associated antigen-1 (LFA-1 or αLβ2; CD11a/CD18) is a key T cell integrin, which plays a major role in regulating T cell activation and migration. Adhesion to LFA-1's ligand, intracellular adhesion receptor 1 (ICAM-1) facilitates firm endothelium adhesion, prolonged contact with antigen-presenting cells, and binding to target cells for killing. While the downstream signaling pathways utilized by LFA-1 are vastly conserved they allow for highly disparate responses. Here, we summarize the roles of LFA-1 and ongoing studies to better understand its functions and regulation.
Collapse
Affiliation(s)
- Brandon L Walling
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
32
|
Abstract
Type 1 diabetes (T1D) affects millions of people worldwide and is the prevalent form of all pediatric diabetes diagnoses. T1D is recognized to have an autoimmune etiology, since failure in specific self-tolerance mechanisms triggers immune reactions towards self-antigens and causes disease onset. Among all the different immunocytes involved in T1D etiopathogenesis, a relevant role of natural killer cells (NKs) is currently emerging. NKs represent the interface between innate and adaptive immunity; they intervene in the defense against infections and present, at the same time, typical features of the adaptive immune cells, such as expansion and generation of memory cells. Several recent studies, performed both in animal models and in human diabetic patients, revealed aberrations in NK cell frequency and functionality in the peripheral blood and in damaged tissues, suggesting their possible redirection towards affected tissues. NKs oscillate from a quiescent to an activated state through a delicate balance of activating and inhibitory signals transduced via surface receptors. Further accurate investigations are needed to elucidate the exact role of NKs in T1D, in order to develop novel immune-based therapies able to reduce the disease risk or delay its onset.
Collapse
|
33
|
Chen J, Wang B, Wu Y. Structural Characterization and Function Prediction of Immunoglobulin-like Fold in Cell Adhesion and Cell Signaling. J Chem Inf Model 2018; 58:532-542. [PMID: 29356528 DOI: 10.1021/acs.jcim.7b00580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Domains that belong to an immunoglobulin (Ig) fold are extremely abundant in cell surface receptors, which play significant roles in cell-cell adhesion and signaling. Although the structures of domains in an Ig fold share common topology of β-barrels, functions of receptors in adhesion and signaling are regulated by the very heterogeneous binding between these domains. Additionally, only a small number of domains are directly involved in the binding between two multidomain receptors. It is challenging and time consuming to experimentally detect the binding partners of a given receptor and further determine which specific domains in this receptor are responsible for binding. Therefore, current knowledge in the binding mechanism of Ig-fold domains and their impacts on cell adhesion and signaling is very limited. A bioinformatics study can shed light on this topic from a systematic point of view. However, there is so far no computational analysis on the structural and functional characteristics of the entire Ig fold. We constructed nonredundant structural data sets for all domains in Ig fold, depending on their functions in cell adhesion and signaling. We found that data sets of domains in adhesion receptors show different binding preference from domains in signaling receptors. Using structural alignment, we further built a common structural template for each group of a domain data set. By mapping the protein-protein binding interface of each domain in a group onto the surface of its structural template, we found binding interfaces are highly overlapped within each specific group. These overlapped interfaces, we called consensus binding interfaces, are distinguishable among different data sets of domains. Finally, the residue compositions on the consensus interfaces were used as indicators for multiple machine learning algorithms to predict if they can form homotypic interactions with each other. The overall performance of the cross-validation tests shows that our prediction accuracies ranged between 0.6 and 0.8.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
34
|
CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Mol Cell Biol 2017; 37:MCB.00202-17. [PMID: 28533221 DOI: 10.1128/mcb.00202-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Antigen presentation by dendritic cells (DCs) stimulates naive CD4+ T cells, triggering T cell activation and the adaptive arm of the immune response. Newly synthesized major histocompatibility complex class II (MHC-II) molecules accumulate at MHC-II-enriched endosomal compartments and are transported to the plasma membrane of DCs after binding to antigenic peptides to enable antigen presentation. In DCs, MHC-II molecules are included in tetraspanin-enriched microdomains (TEMs). However, the role of tetraspanin CD9 in these processes remains largely undefined. Here, we show that CD9 regulates the T cell-stimulatory capacity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent bone marrow-derived DCs (BMDCs), without affecting antigen presentation by fms-like tyrosine kinase 3 ligand (Flt3L)-dependent BMDCs. CD9 knockout (KO) GM-CSF-dependent BMDCs, which resemble monocyte-derived DCs (MoDCs), induce lower levels of T cell activation than wild-type DCs, and this effect is related to a reduction in MHC-II surface expression in CD9-deficient MoDCs. Importantly, MHC-II targeting to the plasma membrane is largely impaired in immature CD9 KO MoDCs, in which MHC-II remains arrested in acidic intracellular compartments enriched in LAMP-1 (lysosome-associated membrane protein 1), and MHC-II internalization is also blocked. Moreover, CD9 participates in MHC-II trafficking in mature MoDCs, regulating its endocytosis and recycling. Our results demonstrate that the tetraspanin CD9 specifically regulates antigenic presentation in MoDCs through the regulation of MHC-II intracellular trafficking.
Collapse
|
35
|
Barr VA, Yi J, Samelson LE. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy. Methods Mol Biol 2017; 1584:183-206. [PMID: 28255704 PMCID: PMC6676910 DOI: 10.1007/978-1-4939-6881-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA.
| |
Collapse
|
36
|
Barr VA, Sherman E, Yi J, Akpan I, Rouquette-Jazdanian AK, Samelson LE. Development of nanoscale structure in LAT-based signaling complexes. J Cell Sci 2016; 129:4548-4562. [PMID: 27875277 PMCID: PMC5201021 DOI: 10.1242/jcs.194886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters. In this study, we show that initially LAT and SLP-76 are randomly dispersed throughout the clusters that form upon TCR engagement. The segregation of LAT and SLP-76 develops near the end of the spreading process. The local concentration of LAT also increases at the same time. Both changes require TCR activation and an intact actin cytoskeleton. These results demonstrate that the nanoscale organization of LAT-based signaling complexes is dynamic and indicates that different kinds of LAT-based complexes appear at different times during T cell activation.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, Alon R, Haran G. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A 2016; 113:E5916-E5924. [PMID: 27647916 PMCID: PMC5056101 DOI: 10.1073/pnas.1605399113] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on the T-cell membrane. To this end, an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced, based on two complementary superresolution microscopies. Strikingly, TCRs are found to be highly localized on microvilli, in both peripheral blood human T cells and differentiated effector T cells, and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli, immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form, with microvilli serving as anchors for specific T-cell surface molecules.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inbal Riven
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan
| | - Masayuki Miyasaka
- Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; MediCity Research Laboratory, University of Turku, FI-20521, Turku, Finland
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilad Haran
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
38
|
Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 2016; 213:2437-2457. [PMID: 27647348 PMCID: PMC5068240 DOI: 10.1084/jem.20160579] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies elucidate the largely (but not completely) overlapping roles of RLTPR in CD28 signaling in T and B cells of humans and mice. The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4+ T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Margot Cucchetti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Nicolas Jarmuzynski
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Anais Joachim
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Stéphane Durand
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Lichen Zhang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Luc Camoin
- CRCM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille Université, INSERM, CNRS, 13009 Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| |
Collapse
|
39
|
Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. eLife 2016; 5. [PMID: 27440222 PMCID: PMC4956410 DOI: 10.7554/elife.14850] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/13/2016] [Indexed: 11/21/2022] Open
Abstract
T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI:http://dx.doi.org/10.7554/eLife.14850.001 An effective immune response requires the immune system to rapidly recognize and respond to foreign invaders. Immune cells known as T cells recognize infection through a protein on their surface known as the T cell receptor. The T cell receptor binds to foreign proteins displayed on the surface of other cells. This interaction initiates a chain of events, including the opening of calcium channels embedded in the T cell membrane known as CRAC channels, which allows calcium ions to flow into the cell. These events ultimately lead to the activation of the T cell, enabling it to mount an immune response against the foreign invader. As part of the activation process, the T cell spreads over the surface of the cell that is displaying foreign proteins to form an extensive interface known as an immune synapse. The movement of the T cell's internal skeleton (the cytoskeleton) is crucial for the formation and function of the synapse. Actin filaments, a key component of the cytoskeleton, flow from the edge of the synapse toward the center; these rearrangements of the actin cytoskeleton help to transport clusters of T cell receptors to the center of the synapse and enable the T cell receptors to transmit signals that lead to the T cell being activated. It is not entirely clear how the binding of T cell receptors to foreign proteins drives the actin rearrangements, but there is indirect evidence suggesting that calcium ions may be involved. Hartzell et al. have now investigated the interactions between calcium and the actin cytoskeleton at the immune synapse in human T cells. T cells were placed on glass so that they formed immune synapse-like connections with the surface, and actin movements at the synapse were visualized using a specialized type of fluorescence microscopy. When calcium ions were prevented from entering the T cell, the movement of actin stopped almost entirely. Thus, the flow of calcium ions into the T cell through CRAC channels is essential for driving the actin movements that underlie immune synapse development and T cell activation. In further experiments, Hartzell et al. tracked the movements of CRAC channels and actin at the synapse and found that actin filaments create a constricting “corral” that concentrates CRAC channels in the center of the synapse. Thus, by driving cytoskeleton movement, calcium ions also help to organize calcium channels at the immune synapse. Future work will focus on identifying the actin remodeling proteins that enable calcium ions to control this process. DOI:http://dx.doi.org/10.7554/eLife.14850.002
Collapse
Affiliation(s)
- Catherine A Hartzell
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Richard S Lewis
- Immunology Program, Stanford University, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
40
|
Hashimoto-Tane A, Saito T. Dynamic Regulation of TCR-Microclusters and the Microsynapse for T Cell Activation. Front Immunol 2016; 7:255. [PMID: 27446085 PMCID: PMC4923147 DOI: 10.3389/fimmu.2016.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
The interaction between a T cell and an antigen-presenting cell is the initiating event in T cell-mediated adaptive immunity. The Immunological Synapse (IS) is formed at the interface between these two cell types, and is the site where antigen (Ag)-specific recognition and activation are induced through the T cell receptor (TCR). This occurs at the center of the IS, and cell adhesion is supported through integrins in the area surrounding the TCR. Recently, this model has been revised based on data indicating that the initial Ag-specific activation signal is triggered prior to IS formation at TCR-microclusters (MCs), sites where TCR, kinases and adaptors of TCR proximal downstream signaling molecules accumulate as an activation signaling cluster. TCR-MCs then move into the center of the cell-cell interface to generate the cSMAC. This translocation of TCR-MCs is mediated initially by the actin cytoskeleton and then by dynein-induced movement along microtubules. The translocation of TCR-MCs and cSMAC formation is induced upon strong TCR stimulation through the assembly of a TCR-dynein super complex with microtubules. The Ag-specific activation signal is induced at TCR-MCs, but the adhesion signal is now shown to be induced by generating a "microsynapse," which is composed of a core of TCR-MCs and the surrounding adhesion ring of integrin and focal adhesion molecules. Since the microsynapse is critical for activation, particularly under weak TCR stimulation, this structure supports a weak TCR signal through a cell-cell adhesion signal. The microsynapse has a structure similar to the IS but on a micro-scale and regulates Ag-specific activation as well as cell-cell adhesion. We describe here the dynamic regulation of TCR-MCs, responsible for inducing Ag-specific activation signals, and the microsynapse, responsible for adhesion signals critical for cell-cell interactions, and their interrelationship.
Collapse
Affiliation(s)
- Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
| |
Collapse
|
41
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Chen J, Xie ZR, Wu Y. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method. J Comput Biol 2016; 23:566-84. [PMID: 27028148 DOI: 10.1089/cmb.2015.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University , Bronx, New York
| |
Collapse
|
43
|
Hivroz C, Saitakis M. Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse. Front Immunol 2016; 7:46. [PMID: 26913033 PMCID: PMC4753286 DOI: 10.3389/fimmu.2016.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
T lymphocyte activation is a pivotal step of the adaptive immune response. It requires the recognition by T-cell receptors (TCR) of peptides presented in the context of major histocompatibility complex molecules (pMHC) present at the surface of antigen-presenting cells (APCs). T lymphocyte activation also involves engagement of costimulatory receptors and adhesion molecules recognizing ligands on the APC. Integration of these different signals requires the formation of a specialized dynamic structure: the immune synapse. While the biochemical and molecular aspects of this cell–cell communication have been extensively studied, its mechanical features have only recently been addressed. Yet, the immune synapse is also the place of exchange of mechanical signals. Receptors engaged on the T lymphocyte surface are submitted to many tensile and traction forces. These forces are generated by various phenomena: membrane undulation/protrusion/retraction, cell mobility or spreading, and dynamic remodeling of the actomyosin cytoskeleton inside the T lymphocyte. Moreover, the TCR can both induce force development, following triggering, and sense and convert forces into biochemical signals, as a bona fide mechanotransducer. Other costimulatory molecules, such as LFA-1, engaged during immune synapse formation, also display these features. Moreover, T lymphocytes themselves are mechanosensitive, since substrate stiffness can modulate their response. In this review, we will summarize recent studies from a biophysical perspective to explain how mechanical cues can affect T lymphocyte activation. We will particularly discuss how forces are generated during immune synapse formation; how these forces affect various aspects of T lymphocyte biology; and what are the key features of T lymphocyte response to stiffness.
Collapse
Affiliation(s)
- Claire Hivroz
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| | - Michael Saitakis
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| |
Collapse
|
44
|
Niedergang F, Di Bartolo V, Alcover A. Comparative Anatomy of Phagocytic and Immunological Synapses. Front Immunol 2016; 7:18. [PMID: 26858721 PMCID: PMC4729869 DOI: 10.3389/fimmu.2016.00018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.
Collapse
Affiliation(s)
- Florence Niedergang
- U1016, Institut Cochin, INSERM, Paris, France; UMR 8104, CNRS, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| |
Collapse
|
45
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
46
|
Stones DH, Krachler AM. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling. Small GTPases 2015; 6:153-6. [PMID: 26156628 PMCID: PMC4601360 DOI: 10.1080/21541248.2015.1028609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial pathogens often target conserved cellular mechanisms within their hosts to rewire signaling pathways and facilitate infection. Rho GTPases are important nodes within eukaryotic signaling networks and thus constitute a common target of pathogen-mediated manipulation. A diverse array of microbial mechanisms exists to interfere with Rho GTPase signaling. While targeting of GTPases by secreted bacterial effectors is a well-known strategy bacterial pathogens employ to interfere with the host, we have recently described pathogen adhesion as a novel extracellular stimulus that hijacks host GTPase signaling. The Multivalent Adhesion Molecule MAM7 from Vibrio parahaemolyticus directly binds host cell membrane lipids. The ensuing coalescence of phosphatidic acid ligands in the host membrane leads to downstream activation of RhoA and actin rearrangements. Herein, we discuss mechanistic models of lipid-mediated Rho activation and the implications from the infected host's and the pathogen's perspective.
Collapse
Affiliation(s)
- Daniel Henry Stones
- a Institute of Microbiology and Infection ; School of Biosciences ; University of Birmingham ; Edgbaston, Birmingham , United Kingdom
| | | |
Collapse
|
47
|
Fürnrohr BG, Stein M, Rhodes B, Chana PS, Schett G, Vyse TJ, Herrmann M, Mielenz D. Reduced Fluorescence versus Forward Scatter Time-of-Flight and Increased Peak versus Integral Fluorescence Ratios Indicate Receptor Clustering in Flow Cytometry. THE JOURNAL OF IMMUNOLOGY 2015; 195:377-85. [PMID: 26026066 DOI: 10.4049/jimmunol.1401889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
Clustering of surface receptors is often required to initiate signal transduction, receptor internalization, and cellular activation. To study the kinetics of clustering, we developed an economic high-throughput method using flow cytometry. The quantification of receptor clustering by flow cytometry is based on the following two observations: first, the fluorescence signal length (FL time-of-flight [ToF]) decreases relative to the forward scatter signal length (FSc-ToF), and second, the peak FL (FL-peak) increases relative to the integral FL (FL-integral) upon clustering of FL-labeled surface receptors. Receptor macroclustering can therefore be quantified using the ratios FL-ToF/FSc-ToF (method ToF) or FL-peak/FL-integral (method Peak). We have used these methods to analyze clustering of two immune receptors known to undergo different conformational and oligomeric states: the BCR and the complement receptor 3 (CR3), on murine splenocytes, purified B cells, and human neutrophils. Engagement of both the BCR and CR3, on immortalized as well as primary murine B cells and human neutrophil, respectively, resulted in decreased FL-ToF/FSc-ToF and increased FL-peak/FL-integral ratios. Manipulation of the actin-myosin cytoskeleton altered BCR clustering which could be measured using the established parameters. To confirm clustering of CR3 on neutrophils, we applied imaging flow cytometry. Because receptor engagement is as a biological process dependent on cell viability, energy metabolism, and temperature, receptor clustering can only be quantified by gating on viable cells under physiological conditions. In summary, with this novel method, receptor clustering on nonadherent cells can easily be monitored by high-throughput conventional flow cytometry.
Collapse
Affiliation(s)
- Barbara G Fürnrohr
- Division of Molecular Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, Nikolaus Fiebiger Centre, 91054 Erlangen, Germany; Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Division of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Division of Genetic Epidemiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Merle Stein
- Division of Molecular Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, Nikolaus Fiebiger Centre, 91054 Erlangen, Germany
| | - Benjamin Rhodes
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Division of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Department of Rheumatology, University Hospitals Birmingham National Health Service Foundation Trust, Edgbaston, Birmingham B15 2TH, United Kingdom
| | - Prabhjoat S Chana
- Flow Cytometry Core Facility, National Institute for Health Research, Guy's and St. Thomas' National Health Service Foundation Trust/King's College London Comprehensive Biomedical Research Centre, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and Institute for Clinical Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Division of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and Institute for Clinical Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, University of Erlangen-Nuremberg, Nikolaus Fiebiger Centre, 91054 Erlangen, Germany;
| |
Collapse
|
48
|
Study of protein structural deformations under external mechanical perturbations by a coarse-grained simulation method. Biomech Model Mechanobiol 2015; 15:317-29. [DOI: 10.1007/s10237-015-0690-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/30/2015] [Indexed: 01/14/2023]
|
49
|
Wargo JA, Reuben A, Cooper ZA, Oh KS, Sullivan RJ. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy. Semin Oncol 2015; 42:601-16. [PMID: 26320064 DOI: 10.1053/j.seminoncol.2015.05.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy, and immunotherapy. Despite these advances, treatments such as monotherapy or monomodality have significant limitations. There is increasing interest in using these strategies in combination; however, it is not completely clear how best to incorporate molecularly targeted and immune-targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted therapy on the host anti-tumor immune response and the host anti-host response (ie, autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we also highlight challenges of these approaches and emphasize the need for continued translational research.
Collapse
Affiliation(s)
- Jennifer A Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandre Reuben
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zachary A Cooper
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kevin S Oh
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ryan J Sullivan
- Department of Medical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
50
|
Nassef Kadry Naguib Roufaiel M, Wells JW, Steptoe RJ. Impaired T-Cell Function in B-Cell Lymphoma: A Direct Consequence of Events at the Immunological Synapse? Front Immunol 2015; 6:258. [PMID: 26082776 PMCID: PMC4451642 DOI: 10.3389/fimmu.2015.00258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
Tumors can escape immune destruction through the development of antigen loss variants and loss of antigen processing/presentation pathways, thereby rendering them invisible to T cells. Alternatively, mechanisms of peripheral T-cell tolerance that would normally be important for protection from the development of autoimmunity may also be co-opted to (i) generate an immuno-inhibitory tumor environment, (ii) promote development of regulatory cell populations, or (iii) cell-intrinsically inactivate tumor-specific T cells. Emerging evidence suggests that T-cell function is impaired in hematological malignancies, which may manifest from cognate interactions between T cells and the tumor. The immunological synapse forms the cognate T-cell and antigen-presenting cell interaction and is the site where key signalling events, including those delivered by co-inhibitory receptors, that determine the fate of T cells occur. Here, we review evidence that events at the immune synapse between T cells and malignant B cells and alterations in immune synapse function may contribute to loss of T-cell function in B-cell malignancies.
Collapse
Affiliation(s)
- Marian Nassef Kadry Naguib Roufaiel
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| |
Collapse
|