1
|
Haxim Y, Cao T, Li X, Liu X, Liang Y, Hawar A, Yang R, Zhang D. Autophagy functions as a cytoprotective mechanism by regulating programmed cell death during desiccation in Syntrichia caninervis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108620. [PMID: 38714124 DOI: 10.1016/j.plaphy.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Desiccation is a state of extreme water loss that is lethal to many plant species. Some desert plants have evolved unique strategies to cope with desiccation stress in their natural environment. Here we present the remarkable stress management mechanism of Syntrichia caninervis, a desert moss species which exhibits an 'A' category of desiccation tolerance. Our research demonstrated that desiccation stress triggers autophagy in S. caninervis while inhibiting Programmed Cell Death (PCD). Silencing of two autophagy-related genes, ATG6 and ATG2, in S. caninervis promoted PCD. Desiccation treatment accelerated cell death in ATG6 and ATG2 gene-silenced S. caninervis. Notably, trehalose was not detected during desiccation, and exogenous application of trehalose cannot activate autophagy. These results suggested that S. caninervis is independent of trehalose accumulation to triggered autophagy. Our results showed that autophagy function as prosurvival mechanism to enhance desiccation tolerance of S. caninervis. Our findings enrich the knowledge of the role of autophagy in plant stress response and may provide new insight into understanding of plant desiccation tolerance.
Collapse
Affiliation(s)
- Yakupjan Haxim
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Ting Cao
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiujin Liu
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yuqing Liang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Amangul Hawar
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Ruirui Yang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
2
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
3
|
Castaldi V, Langella E, Buonanno M, Di Lelio I, Aprile AM, Molisso D, Criscuolo MC, D'Andrea LD, Romanelli A, Amoresano A, Pinto G, Illiano A, Chiaiese P, Becchimanzi A, Pennacchio F, Rao R, Monti SM. Intrinsically disordered Prosystemin discloses biologically active repeat motifs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111969. [PMID: 38159610 DOI: 10.1016/j.plantsci.2023.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways. Candidate peptides were identified in silico and synthesized to test their capacity to trigger defence responses in tomato plants against different biotic stressors. Our results demonstrated that ProSys harbours several repeat motifs which triggered plant immune reactions against pathogens and pest insects. Three of these peptides were detected by mass spectrometry in plants expressing ProSys, demonstrating their effective presence in vivo. These experimental data shed light on unrecognized functions of ProSys, mediated by multiple biologically active sequences which may partly account for the capacity of ProSys to induce defense responses to different stress agents.
Collapse
Affiliation(s)
- Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Martina Chiara Criscuolo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Alfonso Corti 12, 20131 Milano, Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
4
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
5
|
Ma Q, Niu C, Wang C, Chen C, Li Y, Wei M. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). BMC Genomics 2023; 24:250. [PMID: 37165319 PMCID: PMC10173649 DOI: 10.1186/s12864-023-09337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Rootstocks can improve the chilling tolerance of grafted cucumbers, but their effectiveness varies. Rootstocks with strong de-blooming capacity may result in lower chilling tolerance of grafted cucumbers compared to those with weak de-blooming capacity, while also reducing the silicon absorption. However, it remains unclear whether this reduction in chilling tolerance is due to differences in rootstock genotypes or the reduction in silicon absorption. RESULTS The chilling tolerance of cucumber seedlings was improved by using rootstocks and silicon nutrition. Rootstocks had a more significant effect than silicon nutrition, and the weak de-blooming rootstock 'Yunnan figleaf gourd' was superior to the strong de-blooming rootstock 'Huangchenggen No. 2'. Compared to self-rooted cucumber, twelve miRNAs were regulated by two rootstocks, including seven identical miRNAs (novel-mir23, novel-mir26, novel-mir30, novel-mir37, novel-mir46, miR395a and miR398a-3p) and five different miRNAs (novel-mir32, novel-mir38, novel-mir65, novel-mir78 and miR397a). Notably, four of these miRNAs (novel-mir38, novel-mir65, novel-mir78 and miR397a) were only identified in 'Yunnan figleaf gourd'-grafted cucumbers. Furthermore, six miRNAs (miR168a-5p, miR390a-5p, novel-mir26, novel-mir55, novel-mir67 and novel-mir70) were found to be responsive to exogenous silicon. Target gene prediction for 20 miRNAs resulted in 520 genes. Functional analysis of these target genes showed that 'Yunnan figleaf gourd' improves the chilling tolerance of cucumber by regulating laccase synthesis and sulfate metabolism, while 'Huangchenggen No. 2' and exogenous silicon reduced chilling stress damage to cucumber by regulating ROS scavenging and protein protection, respectively. CONCLUSION Among the identified miRNAs, novel-mir46 and miR398a-3p were found in cucumbers in response to chilling stress and two types of rootstocks. However, no identical miRNAs were identified in response to chilling stress and silicon. In addition, the differential expression of novel-mir38, novel-mir65, novel-mir78 and miR397a may be one of the important reasons for the differences in chilling tolerance of grafted cucumbers caused by two types of rootstocks.
Collapse
Affiliation(s)
- Qiang Ma
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chao Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Chunhua Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
| |
Collapse
|
6
|
Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed Pharmacother 2023; 158:114063. [PMID: 36495665 DOI: 10.1016/j.biopha.2022.114063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tardigrades are ubiquitous microinvertebrates exhibiting extreme tolerance to various environmental stressors like low and high temperatures, lack of water, or high radiation. Although exact pathways behind the tardigrade extremotolerance are yet to be elucidated, some molecules involved have been identified. Their evidenced properties may lead to novel opportunities in biomedical and pharmacological development. This review aims to present the general characteristics of tardigrade intrinsically disordered proteins (TDPs: Dsup, CAHS, SAHS, MAHS) and late embryogenesis-abundant proteins (LEA) and provide an updated overview of their features and relevance for potential use in biomedicine and pharmacology. The Dsup reveals a promising action in attenuating oxidative stress, DNA damage, and pyrimidine dimerization, as well as increasing radiotolerance in transfected human cells. Whether Dsup can perform these functions when delivered externally is yet to be understood by in vivo preclinical testing. In turn, CAHS and SAHS demonstrate properties that could benefit the preservation of pharmaceuticals (e.g., vaccines) and biomaterials (e.g., cells). Selected CAHS proteins can also serve as inspiration for designing novel anti-apoptotic agents. The LEA proteins also reveal promising properties to preserve desiccated biomaterials and can act as anti-osmotic agents. In summary, tardigrade molecules reveal several potential biomedical applications advocating further research and development. The challenge of extracting larger amounts of these molecules can be solved with genetic engineering and synthetic biology tools. With new species identified each year and ongoing studies on their extremotolerance, progress in the medical use of tardigrade proteins is expected shortly.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland; Faculty of Pharmacy, Bogomolets Nationals Medical University, Kyiv, Ukraine.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
7
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
8
|
Pan L, Cui R, Li Y, Zhang W, Bai J, Li J, Zhang X. Third-Stage Dispersal Juveniles of Bursaphelenchus xylophilus Can Resist Low-Temperature Stress by Entering Cryptobiosis. BIOLOGY 2021; 10:biology10080785. [PMID: 34440018 PMCID: PMC8389570 DOI: 10.3390/biology10080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pine wilt disease caused by the nematode Bursaphelenchus xylophilus causes significant harm to China’s forests, but there are currently no effective prevention and control measures. Additionally, this devastating disease is currently spreading northward. We determined that third-stage dispersal juveniles of B. xylophilus can resist low-temperature stress by cryptobiosis, allowing these nematodes to tolerate a greater range of temperatures. These results facilitate the prediction of potential areas at risk for B. xylophilus in the mid-temperature and cold temperature zones of China. Abstract Nematodes can enter cryptobiosis by dehydration as an adaptation to low-temperature environments and recover from cryptobiosis by rehydration after environmental improvement. In this work, the survival of Bursaphelenchusxylophilus third-stage dispersal juveniles was studied in response to low-temperature treatment. The average survival rates were 1.7% after −80 °C treatment for 30 d and 82.2% after −20 °C treatment for 30 d. The changes of water content and inorganic salt ions that occur in pine trees during winter gradually alter the osmotic pressure in the liquid environment to dehydrate B. xylophilus juveniles, resulting in improved survival after low-temperature treatment. The survival rate at −20 °C improved to 92.1% when the juveniles entered cryptobiosis by osmotic regulation. The results of this study demonstrate that B. xylophilus third-stage dispersal juveniles can resist low-temperature stress through cryptobiosis, providing the theoretical basis for the identification of areas potentially vulnerable to B. xylophilus in the mid-temperature and cold temperature zones of China.
Collapse
Affiliation(s)
- Long Pan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
| | - Rong Cui
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Research Centre of Sub-Frigid Zone Forestry, Chinese Academy of Forestry, Harbin 150080, China
| | - Yongxia Li
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| | - Wei Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
| | - Jianwei Bai
- Chongqing Forestry Investment Development Company Limited, Chongqing 401120, China;
| | - Juewen Li
- Graduate Department, Chinese Academy of Forestry, Beijing 100091, China;
| | - Xingyao Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Wang Z, Zhang Q, Qin J, Xiao G, Zhu S, Hu T. OsLEA1a overexpression enhances tolerance to diverse abiotic stresses by inhibiting cell membrane damage and enhancing ROS scavenging capacity in transgenic rice. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:860-870. [PMID: 33820598 DOI: 10.1071/fp20231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/11/2021] [Indexed: 05/14/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are involved in diverse abiotic stresses tolerance in many different organisms. Our previous studies have shown that the heterologous expression of OsLEA1a interfered with the resistance of Escherichia coli to abiotic stresses. However, in the present study, based on growth status and physiological indices of rice plant, the overexpression of OsLEA1a in rice conferred increased resistance to abiotic stresses compared with the wild-type (WT) plants. Before applying abiotic stresses, there were no significant differences in physiological indices of rice seedlings. After NaCl, sorbitol, CuSO4 and H2O2 stresses, the transgenic lines had lower relative electrical conductivity, malondialdehyde and lipid peroxidation, greater the contents of proline, soluble sugar and glutathione, and higher the activities of superoxide dismutase, catalase and peroxidase than the WT plants. The results indicate that the OsLEA1a gene is involved in the protective response of plants to various abiotic stresses by inhibiting cell membrane damage and enhancing reactive oxygen species scavenging capacity. It was speculated that post-translational modification causes OsLEA1a functional differences in E. coli and rice. The present study shows that OsLEA1a could be a useful candidate gene for engineering abiotic stress tolerance in cultivated plants.
Collapse
Affiliation(s)
- Zhaodan Wang
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Qin
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Guosheng Xiao
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Shanshan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Engineering Technology Research Centre of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China; and Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; and Corresponding author.
| |
Collapse
|
10
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Voronina TA, Nesmelov AA, Kondratyeva SA, Deviatiiarov RM, Miyata Y, Tokumoto S, Cornette R, Gusev OA, Kikawada T, Shagimardanova EI. New group of transmembrane proteins associated with desiccation tolerance in the anhydrobiotic midge Polypedilum vanderplanki. Sci Rep 2020; 10:11633. [PMID: 32669703 PMCID: PMC7363813 DOI: 10.1038/s41598-020-68330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.
Collapse
Affiliation(s)
- Taisiya A Voronina
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Nesmelov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sabina A Kondratyeva
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ruslan M Deviatiiarov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yugo Miyata
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shoko Tokumoto
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Richard Cornette
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg A Gusev
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takahiro Kikawada
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Elena I Shagimardanova
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
12
|
Furuki T, Takahashi Y, Hatanaka R, Kikawada T, Furuta T, Sakurai M. Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations. J Phys Chem B 2020; 124:2747-2759. [PMID: 32192343 DOI: 10.1021/acs.jpcb.9b11000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated experimentally whether a short peptide, PvLEA-22, which consists of two tandem repeats of an 11-mer motif of Group 3 late embryogenesis abundant proteins, has a chaperone-like function for denatured proteins. Lysozyme was selected as a target protein. Turbidity measurements indicated that the peptide suppresses the heat-induced aggregation of lysozyme when added at a molar ratio of PvLEA-22/lysozyme >40. Circular dichroism and differential scanning calorimetry measurements confirmed that the lysozyme was denatured on heating but spontaneously refolded on subsequent cooling in the presence of the peptide. As a result, up to 80% of the native catalytic activity of lysozyme was preserved. Similar chaperone-like activity was also observed for a peptide with the same amino acid composition as PvLEA-22 but whose sequence is scrambled. To elucidate the underlying mechanism of the chaperone function of these peptides, we performed coarse-grained molecular dynamics simulations. This revealed that a denatured lysozyme molecule is shielded by several peptide molecules in aqueous solution, which acts as a physical barrier, reducing the opportunities for collision between denatured proteins. An important finding was that a peptide bound to the denatured protein is very rapidly replaced by another; due to such rapid exchange, peptide-protein contact time is very short, that is, on the order of ∼200 ns. Therefore, the peptide does not constrain the behavior of the denatured protein, which can refold freely.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuta Takahashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rie Hatanaka
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Takahiro Kikawada
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
13
|
Boothby TC. Mechanisms and evolution of resistance to environmental extremes in animals. EvoDevo 2019; 10:30. [PMID: 31827759 PMCID: PMC6862762 DOI: 10.1186/s13227-019-0143-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/02/2019] [Indexed: 11/25/2022] Open
Abstract
When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY USA
| |
Collapse
|
14
|
Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2123-2142. [PMID: 30972883 PMCID: PMC6790364 DOI: 10.1111/pbi.13127] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that affects plant growth, and lipids are the main economic factor in the agricultural production of oil crops. However, the molecular mechanisms of drought response function in lipid metabolism remain little known. In this study, overexpression (OE) of different copies of the drought response genes LEA3 and VOC enhanced both drought tolerance and oil content in Brassica napus and Arabidopsis. Meanwhile, seed size, membrane stability and seed weight were also improved in OE lines. In contrast, oil content and drought tolerance were decreased in the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi lines. Hybrids between two lines with increased or reduced expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi) showed corresponding stronger trends in drought tolerance and lipid metabolism. Comparative transcriptomic analysis revealed the mechanisms of drought response gene function in lipid accumulation and drought tolerance. Gene networks involved in fatty acid (FA) synthesis and FA degradation were up- and down-regulated in OE lines, respectively. Key genes in the photosynthetic system and reactive oxygen species (ROS) metabolism were up-regulated in OE lines and down-regulated in atlea3 and AtVOC-RNAi lines, including LACS9, LIPASE1, PSAN, LOX2 and SOD1. Further analysis of photosynthetic and ROS enzymatic activities confirmed that the drought response genes LEA3 and VOC altered lipid accumulation mainly via enhancing photosynthetic efficiency and reducing ROS. The present study provides a novel way to improve lipid accumulation in plants, especially in oil production crops.
Collapse
Affiliation(s)
- Yu Liang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Kang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska LincolnLincolnNEUSA
| | - Shaobo Ning
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jinye Xiong
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shuyao Song
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lingzhi Xi
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Senying Lai
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongtai Yin
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jianwei Gu
- Hubei Research Institute of New Socialist Countryside DevelopmentHubei Engineering UniversityXiaoganChina
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Shisheng Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Baoshan Wang
- College of Life ScienceShandong Normal UniversityJinanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| |
Collapse
|
15
|
Liu J, Moyankova D, Djilianov D, Deng X. Common and Specific Mechanisms of Desiccation Tolerance in Two Gesneriaceae Resurrection Plants. Multiomics Evidences. FRONTIERS IN PLANT SCIENCE 2019; 10:1067. [PMID: 31552070 PMCID: PMC6737074 DOI: 10.3389/fpls.2019.01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 05/06/2023]
Abstract
Environmental stress, especially water deficiency, seriously limits plant distribution and crop production worldwide. A small group of vascular angiosperm plants termed "resurrection plants," possess desiccation tolerance (DT) to withstand dehydration and to recover fully upon rehydration. In recent years, with the rapid development of life science in plants different omics technologies have been widely applied in resurrection plants to study DT. Boea hygrometrica is native in East and Southeast Asia, and Haberlea rhodopensis is endemic to the Balkans in Europe. They are both resurrection pants from Gesneriaceae family. This paper reviews recent advances in transcriptome and metabolome, and discusses the differences and similarities of DT features between both species. Finally, we believe we provide novel insights into understanding the mechanisms underlying the acquisition and evolution of desiccation tolerance of the resurrection plants that could substantially contribute to develop new approaches for agriculture to overcome water deficiency in future.
Collapse
Affiliation(s)
- Jie Liu
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, China
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Shen J, Zhang D, Zhou L, Zhang X, Liao J, Duan Y, Wen B, Ma Y, Wang Y, Fang W, Zhu X. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. TREE PHYSIOLOGY 2019; 39:1583-1599. [PMID: 31135909 DOI: 10.1093/treephys/tpz059] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar 'Suchazao' under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.
Collapse
Affiliation(s)
- Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | | | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
17
|
LeBlanc BM, Le MT, Janis B, Menze MA, Hand SC. Structural properties and cellular expression of AfrLEA6, a group 6 late embryogenesis abundant protein from embryos of Artemia franciscana. Cell Stress Chaperones 2019; 24:979-990. [PMID: 31363993 PMCID: PMC6717223 DOI: 10.1007/s12192-019-01025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are intrinsically disordered proteins (IDPs) commonly found in anhydrobiotic organisms and are frequently correlated with desiccation tolerance. Herein we report new findings on AfrLEA6, a novel group 6 LEA protein from embryos of Artemia franciscana. Assessment of secondary structure in aqueous and dried states with circular dichroism (CD) reveals 89% random coil in the aqueous state, thus supporting classification of AfrLEA6 as an IDP. Removal of water from the protein by drying or exposure to trifluoroethanol (a chemical de-solvating agent) promotes a large gain in secondary structure of AfrLEA6, predominated by α-helix and exhibiting minimal β-sheet structure. We evaluated the impact of physiological concentrations (up to 400 mM) of the disaccharide trehalose on the folding of LEA proteins in solution. CD spectra for AfrLEA2, AfrLEA3m, and AfrLEA6 are unaffected by this organic solute noted for its ability to drive protein folding. AfrLEA6 exhibits its highest concentration in vivo during embryonic diapause, drops acutely at diapause termination, and then declines during development to undetectable values at the larval stage. Maximum cellular titer of AfrLEA6 was 10-fold lower than for AfrLEA2 or AfrLEA3, both group 3 LEA proteins. Acute termination of diapause with H2O2 (a far more effective terminator than desiccation in this Great Salt Lake, UT, population) fostered a rapid 38% decrease in AfrLEA6 content of embryos. While the ultimate mechanism of diapause termination is unknown, disruption of key macromolecules could initiate physiological signaling events necessary for resumption of development and metabolism.
Collapse
Affiliation(s)
- Blase M. LeBlanc
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Mike T. Le
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Michael A. Menze
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Steven C. Hand
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
18
|
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics 2019; 20:607. [PMID: 31340759 PMCID: PMC6652013 DOI: 10.1186/s12864-019-5912-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. Results E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The “tardigrade unique proteins” (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. Conclusions Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12864-019-5912-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Kamilari
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| |
Collapse
|
19
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
20
|
Ishibashi Y, Yuasa T, Iwaya-Inoue M. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:233-257. [DOI: 10.1007/978-981-13-1244-1_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Zamora-Briseño JA, Reyes-Hernández SJ, Zapata LCR. Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants? Cell Stress Chaperones 2018; 23:807-812. [PMID: 29860709 PMCID: PMC6111090 DOI: 10.1007/s12192-018-0918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Plant response to water stress involves the activation of mechanisms expected to help them cope with water scarcity. Among these mechanisms, proteome-wide adjustment is well known. This includes actions to save energy, protect cellular and molecular components, and maintain vital functions of the cell. Intrinsically disordered proteins, which are proteins without a rigid three-dimensional structure, are seen as emerging multifunctional cellular components of proteomes. They are highly abundant in eukaryotic proteomes, and numerous functions for these proteins have been proposed. Here, we discuss several reasons why the collection of intrinsically disordered proteins in a proteome (disordome) could be subjected to an active regulation during conditions of water scarcity in plants. We also discuss the potential misinterpretations of disordome content estimations made so far due to bias-prone data and the need for reliable analysis based on experimental data in order to acknowledge the plasticity nature of the disordome.
Collapse
|
22
|
Giarola V, Jung NU, Singh A, Satpathy P, Bartels D. Analysis of pcC13-62 promoters predicts a link between cis-element variations and desiccation tolerance in Linderniaceae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3773-3784. [PMID: 29757404 PMCID: PMC6022661 DOI: 10.1093/jxb/ery173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 05/24/2023]
Abstract
Reproductive structures of plants (e.g. seeds) and vegetative tissues of resurrection plants can tolerate desiccation. Many genes encoding desiccation-related proteins (DRPs) have been identified in the resurrection plant Craterostigma plantagineum, but the function of these genes remains mainly hypothetical. Here, the importance of the DRP gene pcC13-62 for desiccation tolerance is evaluated by analysing its expression in C. plantagineum and in the closely related desiccation-tolerant species Lindernia brevidens and the desiccation-sensitive species Lindernia subracemosa. Quantitative analysis revealed that pcC13-62 transcripts accumulate at a much lower level in desiccation-sensitive species than in desiccation-tolerant species. The study of pcC13-62 promoters from these species demonstrated a correlation between promoter activity and gene expression levels, suggesting transcriptional regulation of gene expression. Comparison of promoter sequences identified a dehydration-responsive element motif in the promoters of tolerant species that is required for dehydration-induced β-glucuronidase (GUS) accumulation. We hypothesize that variations in the regulatory sequences of the pcC13-62 gene occurred to establish pcC13-62 expression in vegetative tissues, which might be required for desiccation tolerance. The pcC13-62 promoters could also be activated by salt stress in Arabidopsis thaliana plants stably transformed with promoter::GUS constructs.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Niklas Udo Jung
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Aishwarya Singh
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Pooja Satpathy
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| |
Collapse
|
23
|
Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2018; 59:916-929. [PMID: 29432551 DOI: 10.1093/pcp/pcy035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
OsLEA5 acts as a co-regulator of a transcriptional fact ZFP36 to enhance the expression and the activity of ascorbate peroxidase OsAPX1 to regulate seed germination in rice, but it it unknown whether OsLEA5 is also crucial in plant seedlings under stress conditions. To determine this, we generated OsLEA5 overexpression and knockdown rice plants. We found that overexpression of OsLEA5 in rice plants enhanced the tolerance to drought and salt stress; in contrast, an RNA interference (RNAi) mutant of OsLEA5 rice plants was more sensitive to drought and salinity. Further investigation found that various stimuli and ABA could induce OsLEA5 expression, and OsLEA5 acted downstream of ZFP36 to be involved in ABA-induced generation of hydrogen peroxide (H2O2), and the regulation of the expression and the activities of antioxidant defense enzymes in plants leaves, and OsLEA5 contributed to stabilize ZFP36. Additionally, OsLEA5 participates in the accumulation of ABA by up-regulating ABA biosynthesis genes and down-regulating ABA metabolism genes. Moreover, we found that two homologs of OsLEA5 (5C700, short for Os05g0526700; and 5C300, short for Os05g0584300) which were induced by ABA also interacted with ZFP36 separately; interestingly, the nuclear-located 5C700 could also act as a co-activator of ZFP36 to modulate OsAPX1, while 5C300 which was down-regulated by ABA induction acted as an ABA-induced inhibitor of ZFP36 to regulate OsAPX1. Hence, our conclusion is that OsLEA5 participates in the ABA-mediated antioxidant defense to function in drought and salt stress response in rice, and the 5C subgroup of LEAs contribute by acting as co-regulators of the transcription factor ZFP36.
Collapse
Affiliation(s)
- Liping Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - MengYao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xixi Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxiu Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
24
|
Involvement of Heat Shock Proteins in Invertebrate Anhydrobiosis. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Furuki T, Sakurai M. Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:271-286. [PMID: 30288715 DOI: 10.1007/978-981-13-1244-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
26
|
Ranjbar Sistani N, Kaul HP, Desalegn G, Wienkoop S. Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum sativum upon Disease Stress Caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:1961. [PMID: 29204150 PMCID: PMC5699443 DOI: 10.3389/fpls.2017.01961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
In field peas, ascochyta blight is one of the most common fungal diseases caused by Didymella pinodes. Despite the high diversity of pea cultivars, only little resistance has been developed until to date, still leading to significant losses in grain yield. Rhizobia as plant growth promoting endosymbionts are the main partners for establishment of symbiosis with pea plants. The key role of Rhizobium as an effective nitrogen source for legumes seed quality and quantity improvement is in line with sustainable agriculture and food security programs. Besides these growth promoting effects, Rhizobium symbiosis has been shown to have a priming impact on the plants immune system that enhances resistance against environmental perturbations. This is the first integrative study that investigates the effect of Rhizobium leguminosarum bv. viceae (Rlv) on phenotypic seed quality, quantity and fungal disease in pot grown pea (Pisum sativum) cultivars with two different resistance levels against D. pinodes through metabolomics and proteomics analyses. In addition, the pathogen effects on seed quantity components and quality are assessed at morphological and molecular level. Rhizobium inoculation decreased disease severity by significant reduction of seed infection level. Rhizobium symbiont enhanced yield through increased seed fresh and dry weights based on better seed filling. Rhizobium inoculation also induced changes in seed proteome and metabolome involved in enhanced P. sativum resistance level against D. pinodes. Besides increased redox and cell wall adjustments light is shed on the role of late embryogenesis abundant proteins and metabolites such as the seed triterpenoid Soyasapogenol. The results of this study open new insights into the significance of symbiotic Rhizobium interactions for crop yield, health and seed quality enhancement and reveal new metabolite candidates involved in pathogen resistance.
Collapse
Affiliation(s)
- Nima Ranjbar Sistani
- Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Hans-Peter Kaul
- Department of Crop Sciences, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Getinet Desalegn
- Department of Crop Sciences, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Stefanie Wienkoop
- Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Pathak N, Hamada H, Ikeno S. Construction and characterization of mutated LEA peptides in Escherichia coli
to develop an efficient protein expression system. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Nishit Pathak
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| | - Hiro Hamada
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
- Research Center for Bio-Microsensing Technology (RCBT); Kyushu Institute of Technology; Kitakyushu Japan
| |
Collapse
|
28
|
Bremer A, Wolff M, Thalhammer A, Hincha DK. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. FEBS J 2017; 284:919-936. [PMID: 28109185 DOI: 10.1111/febs.14023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire α-helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid-crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C- and N-terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection.
Collapse
Affiliation(s)
- Anne Bremer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Martin Wolff
- Physikalische Biochemie, Universität Potsdam, Germany
| | | | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| |
Collapse
|
29
|
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:827-841. [PMID: 28391329 DOI: 10.1093/jxb/erw363] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Besides the deposition of storage reserves, seed maturation is characterized by the acquisition of functional traits including germination, desiccation tolerance, dormancy, and longevity. After seed filling, seed longevity increases up to 30-fold, concomitant with desiccation that brings the embryo to a quiescent state. The period that we define as late maturation phase can represent 10-78% of total seed development time, yet it remains overlooked. Its importance is underscored by the fact that in the seed production chain, the stage of maturity at harvest is the primary factor that influences seed longevity and seedling establishment. This review describes the major events and regulatory pathways underlying the acquisition of seed longevity, focusing on key indicators of maturity such as chlorophyll degradation, accumulation of raffinose family oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins. We discuss how these markers are correlated with or contribute to seed longevity, and highlight questions that merit further attention. We present evidence suggesting that molecular players involved in biotic defence also have a regulatory role in seed longevity. We also explore how the concept of plasticity can help understand the acquisition of longevity.
Collapse
Affiliation(s)
- Olivier Leprince
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Anthoni Pellizzaro
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Souha Berriri
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Julia Buitink
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| |
Collapse
|
30
|
Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, del Río-Portilla F, Fernández-Velasco DA, Barba de la Rosa AP. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:497. [PMID: 28439280 PMCID: PMC5384071 DOI: 10.3389/fpls.2017.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated pI of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.
Collapse
Affiliation(s)
- Alma L. Saucedo
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Eric E. Hernández-Domínguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | | | - Abraham Escobedo-Moratilla
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Esaú Bojorquéz-Velázquez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | - Daniel A. Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Ana P. Barba de la Rosa
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
- *Correspondence: Ana P. Barba de la Rosa,
| |
Collapse
|
31
|
Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJW, Peton N, Mundree SG, Rafudeen MS. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). PLANTA 2015; 242:407-26. [PMID: 25998524 PMCID: PMC4498234 DOI: 10.1007/s00425-015-2320-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION Provides a first comprehensive review of integrated physiological and molecular aspects of desiccation tolerance Xerophyta viscosa. A synopsis of biotechnological studies being undertaken to improve drought tolerance in maize is given. Xerophyta viscosa (Baker) is a monocotyledonous resurrection plant from the family Vellociacea that occurs in summer-rainfall areas of South Africa, Lesotho and Swaziland. It inhabits rocky terrain in exposed grasslands and frequently experiences periods of water deficit. Being a resurrection plant it tolerates the loss of 95% of total cellular water, regaining full metabolic competency within 3 days of rehydration. In this paper, we review some of the molecular and physiological adaptations that occur during various stages of dehydration of X. viscosa, these being functionally grouped into early and late responses, which might be relevant to the attainment of desiccation tolerance. During early drying (to 55% RWC) photosynthesis is shut down, there is increased presence and activity of housekeeping antioxidants and a redirection of metabolism to the increased formation of sucrose and raffinose family oligosaccharides. Other metabolic shifts suggest water replacement in vacuoles proposed to facilitate mechanical stabilization. Some regulatory processes observed include increased presence of a linker histone H1 variant, a Type 2C protein phosphatase, a calmodulin- and an ERD15-like protein. During the late stages of drying (to 10% RWC) there was increased expression of several proteins involved in signal transduction, and retroelements speculated to be instrumental in gene silencing. There was induction of antioxidants not typically found in desiccation-sensitive systems, classical stress-associated proteins (HSP and LEAs), proteins involved in structural stabilization and those associated with changes in various metabolite pools during drying. Metabolites accumulated in this stage are proposed, inter alia, to facilitate subcellular stabilization by vitrification process which can include glass- and ionic liquid formation.
Collapse
Affiliation(s)
- Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Avelange-Macherel MH, Payet N, Lalanne D, Neveu M, Tolleter D, Burstin J, Macherel D. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance. PLANT, CELL & ENVIRONMENT 2015; 38:1299-311. [PMID: 25367071 DOI: 10.1111/pce.12480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 05/10/2023]
Abstract
LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.
Collapse
Affiliation(s)
| | - Nicole Payet
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - David Lalanne
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Martine Neveu
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Dimitri Tolleter
- ANU College of Medicine, Biology and Environment, Acton, 2601, Australia
| | - Judith Burstin
- GEAPSI, INRA, UMR 1347 Agroécologie, centre de Dijon, F-21065, France
| | - David Macherel
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| |
Collapse
|
33
|
Crisp A, Boschetti C, Perry M, Tunnacliffe A, Micklem G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 2015; 16:50. [PMID: 25785303 PMCID: PMC4358723 DOI: 10.1186/s13059-015-0607-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/04/2015] [Indexed: 01/17/2023] Open
Abstract
Background A fundamental concept in biology is that heritable material, DNA, is passed from parent to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic material between different species. HGT is well-known in single-celled organisms such as bacteria, but its existence in higher organisms, including animals, is less well established, and is controversial in humans. Results We have taken advantage of the recent availability of a sufficient number of high-quality genomes and associated transcriptomes to carry out a detailed examination of HGT in 26 animal species (10 primates, 12 flies and four nematodes) and a simplified analysis in a further 14 vertebrates. Genome-wide comparative and phylogenetic analyses show that HGT in animals typically gives rise to tens or hundreds of active ‘foreign’ genes, largely concerned with metabolism. Our analyses suggest that while fruit flies and nematodes have continued to acquire foreign genes throughout their evolution, humans and other primates have gained relatively few since their common ancestor. We also resolve the controversy surrounding previous evidence of HGT in humans and provide at least 33 new examples of horizontally acquired genes. Conclusions We argue that HGT has occurred, and continues to occur, on a previously unsuspected scale in metazoans and is likely to have contributed to biochemical diversification during animal evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0607-3) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Abstract
Anhydrobiosis (Life Without Water) has been known for millennia, but the underlying mechanisms have not been understood until recent decades, and we have achieved only a partial understanding. One of the chief sites of damage from dehydration is membranes, and we and others have provided evidence that this damage may be obviated by the production of certain sugars, particularly trehalose. The sugar stabilizes membranes by preventing fusion and fluidizing the dry bilayers. The mechanism by which this is accomplished has been controversial, and I review that controversy here. In the past decade evidence is accumulating for a role of stress proteins in addition to or as a substitute for trehalose. Genomic studies on anhydrobiotes are yielding rapid progress. Also in the past decade, numerous uses for trehalose in treating human diseases have been proposed, some of which are in clinical testing. I conclude that the mechanisms underlying anhydrobiosis are more complex than we thought 20 years ago, but progress is being made towards elucidating those mechanisms.
Collapse
Affiliation(s)
- John H Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
35
|
Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC PLANT BIOLOGY 2014; 14:271. [PMID: 25330732 PMCID: PMC4209041 DOI: 10.1186/s12870-014-0271-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/03/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 19 ~ 21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs have critical functions in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interaction with specific target mRNAs. Camellia sinensis is one of the most important commercial beverage crops in the world. However, miRNAs associated with cold stress tolerance in C. sinensis remains unexplored. The use of high-throughput sequencing can provide a much deeper understanding of miRNAs. To obtain more insight into the function of miRNAs in cold stress tolerance, Illumina sequencing of C. sinensis sRNA was conducted. RESULT Solexa sequencing technology was used for high-throughput sequencing of the small RNA library from the cold treatment of tea leaves. To align the sequencing data with known plant miRNAs, we characterized 106 conserved C. sinensis miRNAs. In addition, 215 potential candidate miRNAs were found, among, which 98 candidates with star sequences were chosen as novel miRNAs. Both congruously and differentially regulated miRNAs were obtained, and cultivar-specific miRNAs were identified by microarray-based hybridization in response to cold stress. The results were also confirmed by quantitative real-time polymerase chain reaction. To confirm the targets of miRNAs, two degradome libraries from two treatments were constructed. According to degradome sequencing, 455 and 591 genes were identified as cleavage targets of miRNAs from cold treatments and control libraries, respectively, and 283 targets were present in both libraries. Functional analysis of these miRNA targets indicated their involvement in important activities, such as development, regulation of transcription, and stress response. CONCLUSIONS We discovered 31 up-regulated miRNAs and 43 down-regulated miRNAs in 'Yingshuang', and 46 up-regulated miRNA and 45 down-regulated miRNAs in 'Baiye 1' in response to cold stress, respectively. A total of 763 related target genes were detected by degradome sequencing. The RLM-5'RACE procedure was successfully used to map the cleavage sites in six target genes of C. sinensis. These findings reveal important information about the regulatory mechanism of miRNAs in C. sinensis, and promote the understanding of miRNA functions during the cold response. The miRNA genotype-specific expression model might explain the distinct cold sensitivities between tea lines.
Collapse
Affiliation(s)
- Yue Zhang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xujun Zhu
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xuan Chen
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Changnian Song
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P. R. China
| | - Zhongwei Zou
- />Molecular population genetics group, Temasek lifesciences laboratory, 1 Research link, National University of Singapore, Singapore, 117604 Singapore
| | - Yuhua Wang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Mingle Wang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Wanping Fang
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| | - Xinghui Li
- />Tea Research Institute, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095 Jiangsu Province P. R. China
| |
Collapse
|
36
|
Dang NX, Popova AV, Hundertmark M, Hincha DK. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro. PLANTA 2014; 240:325-36. [PMID: 24841476 DOI: 10.1007/s00425-014-2089-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/25/2014] [Indexed: 05/10/2023]
Abstract
Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are "atypical", since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.
Collapse
Affiliation(s)
- Nghiem X Dang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | | | | |
Collapse
|
37
|
Crowe JH. Anhydrobiosis: an unsolved problem. PLANT, CELL & ENVIRONMENT 2014; 37:1491-1493. [PMID: 24548118 DOI: 10.1111/pce.12304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Affiliation(s)
- John H Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616
| |
Collapse
|
38
|
Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F. Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.522360] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Lee YP, Giorgi FM, Lohse M, Kvederaviciute K, Klages S, Usadel B, Meskiene I, Reinhardt R, Hincha DK. Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum). BMC Genomics 2013; 14:793. [PMID: 24228715 PMCID: PMC3832907 DOI: 10.1186/1471-2164-14-793] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 11/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Most molecular studies of plant stress tolerance have been performed with Arabidopsis thaliana, although it is not particularly stress tolerant and may lack protective mechanisms required to survive extreme environmental conditions. Thellungiella salsuginea has attracted interest as an alternative plant model species with high tolerance of various abiotic stresses. While the T. salsuginea genome has recently been sequenced, its annotation is still incomplete and transcriptomic information is scarce. In addition, functional genomics investigations in this species are severely hampered by a lack of affordable tools for genome-wide gene expression studies. Results Here, we report the results of Thellungiella de novo transcriptome assembly and annotation based on 454 pyrosequencing and development and validation of a T. salsuginea microarray. ESTs were generated from a non-normalized and a normalized library synthesized from RNA pooled from samples covering different tissues and abiotic stress conditions. Both libraries yielded partially unique sequences, indicating their necessity to obtain comprehensive transcriptome coverage. More than 1 million sequence reads were assembled into 42,810 unigenes, approximately 50% of which could be functionally annotated. These unigenes were compared to all available Thellungiella genome sequence information. In addition, the groups of Late Embryogenesis Abundant (LEA) proteins, Mitogen Activated Protein (MAP) kinases and protein phosphatases were annotated in detail. We also predicted the target genes for 384 putative miRNAs. From the sequence information, we constructed a 44 k Agilent oligonucleotide microarray. Comparison of same-species and cross-species hybridization results showed superior performance of the newly designed array for T. salsuginea samples. The developed microarrays were used to investigate transcriptional responses of T. salsuginea and Arabidopsis during cold acclimation using the MapMan software. Conclusions This study provides the first comprehensive transcriptome information for the extremophile Arabidopsis relative T. salsuginea. The data constitute a more than three-fold increase in the number of publicly available unigene sequences and will greatly facilitate genome annotation. In addition, we have designed and validated the first genome-wide microarray for T. salsuginea, which will be commercially available. Together with the publicly available MapMan software this will become an important tool for functional genomics of plant stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
40
|
Popova AV, Hincha DK. Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state. BMC BIOPHYSICS 2013; 6:9. [PMID: 23879885 PMCID: PMC3726346 DOI: 10.1186/2046-1682-6-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state. RESULTS Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (Tm) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed Tm, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased Tm, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers. CONCLUSIONS The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| | | |
Collapse
|
41
|
Zha HG, Liu T, Zhou JJ, Sun H. MS-desi, a desiccation-related protein in the floral nectar of the evergreen velvet bean (Mucuna sempervirens Hemsl): molecular identification and characterization. PLANTA 2013; 238:77-89. [PMID: 23568404 DOI: 10.1007/s00425-013-1876-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/27/2013] [Indexed: 05/11/2023]
Abstract
Plant desiccation-related proteins (DRPs) were first identified as pcC13-62 from the resurrection plant Craterostigma plantagineum and it has been suggested they are involved in plant desiccation tolerance. We identified and characterized a plant DRP, which we called MS-desi, in the floral nectar of a subtropical bean species, Mucuna sempervirens (MS). MS-desi is a major nectar protein (nectarin) of the bean plant and expresses exclusively in the stylopodium, where the nectary is located. The full-length MS-desi gene encodes for a protein of 306 amino acids with a molecular mass of 33,248 Da, and possesses a ferritin-like domain and a signal peptide of 30 amino acids. Structural and phylogenetic analysis demonstrated MS-desi has high similarity to members of the plant DRPs, including pcC 13-62 protein. MS-desi has a similar hydropathy profile to that of pcC13-62 with a grand average of hydropathy index of 0.130 for MS-desi and 0.106 for pcC13-62 protein, which is very different from those of dehydrins and late embryogenesis abundant proteins. The protein's secondary structures, both predicted from the amino acid sequence and directly analysed by far UV circular dichroism, showed that MS-desi is mainly composed of alpha helices and is relatively temperature dependent. The structure change is reversible within a wide range of temperatures. Purified MS-desi and raw MS floral nectar showed dose-dependent citrate synthase inhibition activity, but insensitivity to lactate dehydrogenase, suggesting that, unlike dehydrins, it does not act as a chaperone. The overall results constitute, to our knowledge, the first study on a desiccation-related protein in plant floral nectar.
Collapse
Affiliation(s)
- Hong-Guang Zha
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | | | | | | |
Collapse
|
42
|
Gill SS, Tajrishi M, Madan M, Tuteja N. A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). PLANT MOLECULAR BIOLOGY 2013; 82:1-22. [PMID: 23456247 DOI: 10.1007/s11103-013-0031-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/15/2013] [Indexed: 05/09/2023]
Abstract
The exact mechanism of helicase-mediated salinity tolerance is not yet understood. We have isolated a DESD-box containing cDNA from Pisum sativum (Pea) and named it as PDH45. It is a unique member of DEAD-box helicase family; containing DESD instead of DEAD/H. PDH45 overexpression driven by constitutive cauliflower mosaic virus-35S promoter in rice transgenic [Oryza sativa L. cv. Pusa Basmati 1 (PB1)] plants confers salinity tolerance by improving the photosynthesis and antioxidant machinery. The Na(+) ion concentration and oxidative stress parameters in leaves of the NaCl (0, 100 or 200 mM) treated PDH45 overexpressing T1 transgenic lines were lower as compared to wild type (WT) rice plants under similar conditions. The 200 mM NaCl significantly reduced the leaf area, plant dry mass, net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci), chlorophyll (Chl) content in WT plants as compared to the transgenics. The T1 transgenics exhibited higher glutathione (GSH) and ascorbate (AsA) contents under salinity stress. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) were significantly higher in transgenics; suggesting the existence of an efficient antioxidant defence system to cope with salinity induced-oxidative damage. Yeast two-hybrid assay indicated that the PDH45 protein interacts with Cu/Zn SOD, adenosine-5'-phosphosulfate-kinase, cysteine proteinase and eIF(4G), thus confirming the involvement of ROS scavenging machinery in the transgenic plants to provide salt tolerance. Furthermore, the T2 transgenics were also able to grow, flower, and set viable seeds under continuous salinity stress of 200 mM NaCl. This study provides insights into the mechanism of PDH45 mediated salinity stress tolerance by controlling the generation of stress induced reactive oxygen species (ROS) and also by protecting the photosynthetic machinery through a strengthened antioxidant system.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
43
|
Abstract
LEA (late embryogenesis abundant) proteins were originally described almost 30 years ago as accumulating late in plant seed development. They were later found to be induced in vegetative plant tissues under environmental stress conditions and also in desiccation-tolerant micro-organisms and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Most LEA proteins are predicted to be intrinsically disordered and this has been experimentally verified in several cases. In addition, some LEA proteins partially fold, mainly into α-helices, during drying or in the presence of membranes. Recent studies have concentrated on the potential roles of LEA proteins in stabilizing membranes or sensitive enzymes during freezing or drying, and the present review concentrates on these two possible functions of LEA proteins in cellular dehydration tolerance.
Collapse
|
44
|
Macromolecular and small-molecule modulation of intracellular Aβ42 aggregation and associated toxicity. Biochem J 2012; 442:507-15. [DOI: 10.1042/bj20111661] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aβ (amyloid β-peptide) has a central role in AD (Alzheimer's disease) where neuronal toxicity is linked to its extracellular and intracellular accumulation as oligomeric species. Searching for molecules that attenuate Aβ aggregation could uncover novel therapies for AD, but most studies in mammalian cells have inferred aggregation indirectly by assessing levels of secreted Aβ peptide. In the present study we establish a mammalian cell system for the direct visualization of Aβ formation by expression of an Aβ42–EGFP (enhanced green fluorescent protein) fusion protein in the human embryonic kidney cell line T-REx293, and use this to identify both macromolecules and small molecules that reduce aggregation and associated cell toxicity. Thus a molecular shield protein AavLEA1 [Aphelenchus avenae LEA (late embryogenesis abundant) protein 1], which limits aggregation of proteins with expanded poly(Q) repeats, is also effective against Aβ42–EGFP when co-expressed in T-REx293 cells. A screen of polysaccharide and small organic molecules from medicinal plants and fungi reveals one candidate in each category, PS5 (polysaccharide 5) and ganoderic acid DM respectively, with activity against Aβ. Both PS5 and ganoderic acid DM probably promote Aβ aggregate clearance indirectly through the proteasome. The model is therefore of value to study the effects of intracellular Aβ on cell physiology and to identify reagents that counteract those effects.
Collapse
|
45
|
Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pagès M, Goday A. Insights into Maize LEA proteins: from proteomics to functional approaches. PLANT & CELL PHYSIOLOGY 2012; 53:312-29. [PMID: 22199372 DOI: 10.1093/pcp/pcr183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
LEA (late embryogenesis abundant) proteins participate in plant stress tolerance responses, but the mechanisms by which protection occurs are not fully understood. In the present work the unfolded proteins from maize dry embryos were analyzed by mass spectrometry. Twenty embryo proteins were identified, and among them 13 corresponded to LEA-type proteins. We selected three major LEA proteins, Emb564, Rab17 and Mlg3, belonging to groups 1, 2 and 3, respectively, and we undertook a comparative study in order to highlight differences among them. The post-translational modifications of native proteins were analyzed and the anti-aggregation properties of recombinant Emb564, Rab17 and Mgl3 proteins were evaluated in vitro. In addition, the protective effects of the LEA proteins were assessed in living cells under stress in Escherichia coli cells and in Nicotiana bentamiana leaves agroinfiltrated with fluorescent LEA-green fluorescent protein (GFP) fusions. Protein visualization by confocal microscopy indicated that cells expressing Mg3-GFP showed reduced cell shrinkage effects during dehydration and that Rab17-GFP co-localized to leaf oil bodies after heat shock. Overall, the results highlight differences and suggest functional diversity among maize LEA groups.
Collapse
Affiliation(s)
- Imen Amara
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola Del Vallès), 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen K, Fessehaie A, Arora R. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:27-36. [PMID: 22195574 DOI: 10.1016/j.plantsci.2011.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/07/2011] [Accepted: 11/01/2011] [Indexed: 05/22/2023]
Abstract
Osmopriming improves seed germination performance as well as stress tolerance. To understand the biochemistry of osmopriming-induced seed stress tolerance, we investigated dehydrin (DHN) accumulation patterns at protein and transcript level (determined by immunoblotting and qPCR) during priming, and subsequent germination under optimal and stress conditions (i.e. chilling and desiccation) in spinach (Spinacia oleracea L. cv. Bloomsdale) seeds. Our data indicate enhanced germination performance of primed seeds is accompanied by increased accumulation of three dehydrin-like proteins (DLPs): 30, 26, and 19-kD. Moreover, 30, 26 and 19-kD DLPs that first only transiently accumulated during priming re-accumulated in response to stresses, suggesting an evidence for 'cross-tolerance', which is initially induced by priming and later recruited during post-priming germination under stresses. Study with CAP85, a spinach DHN, corroborates above observations at the gene-expression and protein accumulation level. Additionally, our results suggest that during seed germination and seedling establishment, CAP85 expression may be regulated by the interplay of two factors: seedling development and stress responses. In conclusion, our data suggest that 30, 26, and 19-kD dehydrin-like proteins and CAP85 may be used as potential biochemical/molecular markers for priming-induced stress tolerance in 'Bloomsdale' spinach.
Collapse
Affiliation(s)
- Keting Chen
- Department of Horticulture, Iowa State University, Ames, IA 50011-1100, USA
| | | | | |
Collapse
|
47
|
Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. PLANTA 2011; 233:621-34. [PMID: 21136074 DOI: 10.1007/s00425-010-1326-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/17/2010] [Indexed: 05/08/2023]
Abstract
Late embryogenesis abundant 14 (LEA14) cDNA was isolated from an EST library prepared from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Quantitative RT-PCR revealed a variety of different IbLEA14 expression patterns under various abiotic stress conditions. IbLEA14 expression was strongly induced by dehydration, NaCl and abscisic acid treatments in sweetpotato plants. Transgenic sweetpotato non-embryogenic calli harboring IbLEA14 overexpression or RNAi vectors under the control of CaMV 35S promoter were generated. Transgenic calli overexpressing IbLEA14 showed enhanced tolerance to drought and salt stress, whereas RNAi calli exhibited increased stress sensitivity. Under normal culture conditions, lignin contents increased in IbLEA14-overexpressing calli because of the increased expression of a variety of monolignol biosynthesis-related genes. Stress treatments elicited higher expression levels of the gene encoding cinnamyl alcohol dehydrogenase in IbLEA14-overexpressing lines than in control or RNAi lines. These results suggest that IbLEA14 might positively regulate the response to various stresses by enhancing lignification.
Collapse
Affiliation(s)
- Sung-Chul Park
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Oun-dong 52, Yusong-gu, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Chakrabortee S, Li R, Zheng Y, Tunnacliffe A. Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation. FEBS Lett 2011; 585:630-4. [DOI: 10.1016/j.febslet.2011.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
49
|
Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A. Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 2011; 214:59-68. [DOI: 10.1242/jeb.050328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
Bdelloid rotifers are aquatic micro-invertebrates with the ability to survive extreme desiccation, or anhydrobiosis, at any life stage. To gain insight into the molecular mechanisms used by bdelloids during anhydrobiosis, we constructed a cDNA library enriched for genes that are upregulated in Adineta ricciae 24 h after onset of dehydration. Resulting expressed sequence tags (ESTs) were analysed and sequences grouped into categories according to their probable identity. Of 75 unique sequences, approximately half (36) were similar to known genes from other species. These included genes encoding an unusual group 3 late embryogenesis abundant protein, and a number of other stress-related and DNA repair proteins. Open reading frames from a further 39 novel sequences, without counterparts in the database, were screened for the characteristics of intrinsically disordered proteins, i.e. hydrophilicity and lack of stable secondary structure. Such proteins have been implicated in desiccation tolerance and at least five were found. The majority of the genes identified was confirmed by real-time quantitative PCR to be capable of upregulation in response to evaporative water loss. Remarkably, further database and phylogenetic analysis highlighted four ESTs that are present in the A. ricciae genome but which represent genes probably arising from fungi or bacteria by horizontal gene transfer. Therefore, not only can bdelloid rotifers accumulate foreign genes and render them transcriptionally competent, but their expression pattern can be modified for participation in the desiccation stress response, and is presumably adaptive in this context.
Collapse
Affiliation(s)
- Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Natalia Pouchkina-Stantcheva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Pia Hoffmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| |
Collapse
|