1
|
Rodríguez SG, Crosby P, Hansen LL, Grünewald E, Beale AD, Spangler RK, Rabbitts BM, Partch CL, Stangherlin A, O’Neill JS, van Ooijen G. Potassium rhythms couple the circadian clock to the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587153. [PMID: 38617352 PMCID: PMC11014554 DOI: 10.1101/2024.04.02.587153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Circadian (~24 h) rhythms are a fundamental feature of life, and their disruption increases the risk of infectious diseases, metabolic disorders, and cancer1-6. Circadian rhythms couple to the cell cycle across eukaryotes7,8 but the underlying mechanism is unknown. We previously identified an evolutionarily conserved circadian oscillation in intracellular potassium concentration, [K+]i9,10. As critical events in the cell cycle are regulated by intracellular potassium11,12, an enticing hypothesis is that circadian rhythms in [K+]i form the basis of this coupling. We used a minimal model cell, the alga Ostreococcus tauri, to uncover the role of potassium in linking these two cycles. We found direct reciprocal feedback between [K+]i and circadian gene expression. Inhibition of proliferation by manipulating potassium rhythms was dependent on the phase of the circadian cycle. Furthermore, we observed a total inhibition of cell proliferation when circadian gene expression is inhibited. Strikingly, under these conditions a sudden enforced gradient of extracellular potassium was sufficient to induce a round of cell division. Finally, we provide evidence that interactions between potassium and circadian rhythms also influence proliferation in mammalian cells. These results establish circadian regulation of intracellular potassium levels as a primary factor coupling the cell- and circadian cycles across diverse organisms.
Collapse
Affiliation(s)
- Sergio Gil Rodríguez
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Louise L. Hansen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| | - Andrew D. Beale
- UKRI MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, United Kingdom
| | - Rebecca K. Spangler
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Beverley M. Rabbitts
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Joseph-Stelzmann-Str, 50931, Cologne, Germany
| | - John S. O’Neill
- UKRI MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, United Kingdom
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent EH9 3BF Edinburgh, United Kingdom
| |
Collapse
|
2
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
3
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
4
|
The Mediation Effect of Peripheral Biomarkers of Calcium Metabolism and Chronotypes in Bipolar Disorder Psychopathology. Metabolites 2022; 12:metabo12090827. [PMID: 36144231 PMCID: PMC9505716 DOI: 10.3390/metabo12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium (Ca++) metabolism may be impaired in several psychiatric diseases. We hypothesize that calcium imbalance might also correlate with a specific chronotype and could be recognized as a marker of illness severity in bipolar disorder (BD). We aimed to (1) identify the association between calcium imbalance and a specific chronotype in a cohort of BD patients, and (2) test the mediation role of high parathyroid hormone (PTH) levels towards a specific chronotype and illness severity in BD patients. Patients’ socio-demographic and clinical characteristics were collected with an ad-hoc schedule. We administered the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Young Mania Rating Scale (YMRS), and the Morningness Eveningness Questionnaire (MEQ). 100 patients affected by BD were recruited. The Kruskal-Wallis test showed a significant difference between the three MEQ groups in PTH levels (p < 0.001) and vitamin D levels (p = 0.048) but not in Ca++ levels (p = 0.426). Dwass-Steel-Critchlow-Fligner Pairwise analyses performed concerning three MEQ groups revealed significantly higher scores on PTH levels in MEQ-E subjects compared to MEQ-M and MEQ-I (in both cases, p < 0.001). No differences emerged between calcium levels among the three chronotypes. The mediation analysis has shown that elevated PTH levels are directly influenced by more severe HAM-A, HAM-D, and YMRS scores. MEQ-E could be a marker related to BD and predispose to various factors influencing mood symptoms. The combination of vitamin D therapy in MEQ-E may help to improve prognosis in this subtype of patients affected by BD.
Collapse
|
5
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
6
|
Ralph MR, Shi SQ, Johnson CH, Houdek P, Shrestha TC, Crosby P, O’Neill JS, Sládek M, Stinchcombe AR, Sumová A. Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice. PLoS Comput Biol 2021; 17:e1008987. [PMID: 34048425 PMCID: PMC8191895 DOI: 10.1371/journal.pcbi.1008987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/10/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Modification of the Per2 clock gene in mPer2Luc reporter mice significantly alters circadian function. Behavioral period in constant dark is lengthened, and dissociates into two distinct components in constant light. Rhythms exhibit increased bimodality, enhanced phase resetting to light pulses, and altered entrainment to scheduled feeding. Mechanistic mathematical modelling predicts that enhanced protein interactions with the modified mPER2 C-terminus, combined with differential clock regulation among SCN subregions, can account for effects on circadian behavior via increased Per2 transcript and protein stability. PER2::LUC produces greater suppression of CLOCK:BMAL1 E-box activity than PER2. mPer2Luc carries a 72 bp deletion in exon 23 of Per2, and retains a neomycin resistance cassette that affects rhythm amplitude but not period. The results show that mPer2Luc acts as a circadian clock mutation illustrating a need for detailed assessment of potential impacts of c-terminal tags in genetically modified animal models.
Collapse
Affiliation(s)
- Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carl H. Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Tenjin C. Shrestha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Priya Crosby
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - John S. O’Neill
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Putker M, Wong DCS, Seinkmane E, Rzechorzek NM, Zeng A, Hoyle NP, Chesham JE, Edwards MD, Feeney KA, Fischer R, Peschel N, Chen K, Vanden Oever M, Edgar RS, Selby CP, Sancar A, O’Neill JS. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO J 2021; 40:e106745. [PMID: 33491228 PMCID: PMC8013833 DOI: 10.15252/embj.2020106745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.
Collapse
Affiliation(s)
| | | | | | | | - Aiwei Zeng
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | - Mathew D Edwards
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
UCL Sainsbury Wellcome Centre for Neural Circuits and BehaviourLondonUK
| | | | | | | | - Ko‐Fan Chen
- Institute of NeurologyUniversity College LondonLondonUK
- Present address:
Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | - Christopher P Selby
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Aziz Sancar
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNCUSA
| | | |
Collapse
|
9
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
10
|
Dannerfjord AA, Brown LA, Foster RG, Peirson SN. Light Input to the Mammalian Circadian Clock. Methods Mol Biol 2021; 2130:233-247. [PMID: 33284449 DOI: 10.1007/978-1-0716-0381-9_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circadian rhythms are 24-h cycles in physiology and behavior that occur in virtually all organisms. These processes are not simply driven by changes in the external environment as they persist under constant conditions, providing evidence for an internal biological clock. In mammals, this clock is located in the hypothalamic suprachiasmatic nuclei (SCN) and is based upon an intracellular mechanism composed of a transcriptional-translational feedback loop composed of a number of core clock genes. However, a clock is of no use unless it can be set to the correct time. The primary time cue for the molecular clock in the SCN is light detected by the eye. The photoreceptors involved in this process include the rods and cones that mediate vision, as well as the recently identified melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). Light information is conveyed to the SCN via the retinohypothalamic tract, resulting in an intracellular signaling cascade which converges on cAMP-response elements in the promoters of several key clock genes. Over the last two decades a number of studies have investigated the transcriptional response of the SCN to light stimuli with the aim of further understanding these molecular signaling pathways. Here we provide an overview of these studies and provide protocols for studying the molecular responses to light in the SCN clock.
Collapse
Affiliation(s)
- Adam A Dannerfjord
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. .,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK.
| |
Collapse
|
11
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
12
|
Sládek M, Houdek P, Sumová A. Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158533. [DOI: 10.1016/j.bbalip.2019.158533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
13
|
Beale AD, Kruchek E, Kitcatt SJ, Henslee EA, Parry JS, Braun G, Jabr R, von Schantz M, O’Neill JS, Labeed FH. Casein Kinase 1 Underlies Temperature Compensation of Circadian Rhythms in Human Red Blood Cells. J Biol Rhythms 2019; 34:144-153. [PMID: 30898060 PMCID: PMC6458989 DOI: 10.1177/0748730419836370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature compensation and period determination by casein kinase 1 (CK1) are conserved features of eukaryotic circadian rhythms, whereas the clock gene transcription factors that facilitate daily gene expression rhythms differ between phylogenetic kingdoms. Human red blood cells (RBCs) exhibit temperature-compensated circadian rhythms, which, because RBCs lack nuclei, must occur in the absence of a circadian transcription-translation feedback loop. We tested whether period determination and temperature compensation are dependent on CKs in RBCs. As with nucleated cell types, broad-spectrum kinase inhibition with staurosporine lengthened the period of the RBC clock at 37°C, with more specific inhibition of CK1 and CK2 also eliciting robust changes in circadian period. Strikingly, inhibition of CK1 abolished temperature compensation and increased the Q10 for the period of oscillation in RBCs, similar to observations in nucleated cells. This indicates that CK1 activity is essential for circadian rhythms irrespective of the presence or absence of clock gene expression cycles.
Collapse
Affiliation(s)
- Andrew D. Beale
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Emily Kruchek
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Stephen J. Kitcatt
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Erin A. Henslee
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jack S.W. Parry
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Gabriella Braun
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rita Jabr
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - John S. O’Neill
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Fatima H. Labeed
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
14
|
Causton HC. Metabolic rhythms: A framework for coordinating cellular function. Eur J Neurosci 2018; 51:1-12. [PMID: 30548718 DOI: 10.1111/ejn.14296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
Circadian clocks are widespread among eukaryotes and generally involve feedback loops coupled with metabolic processes and redox balance. The organising power of these oscillations has not only allowed organisms to anticipate day-night cycles, but also acts to temporally compartmentalise otherwise incompatible processes, enhance metabolic efficiency, make the system more robust to noise and propagate signals among cells. While daily rhythms and the function of the circadian transcription-translation loop have been the subject of extensive research over the past four decades, cycles of shorter period and respiratory oscillations, with which they are intertwined, have received less attention. Here, we describe features of yeast respiratory oscillations, which share many features with daily and 12 hr cellular oscillations in animal cells. This relatively simple system enables the analysis of dynamic rhythmic changes in metabolism, independent of cellular oscillations that are a product of the circadian transcription-translation feedback loop. Knowledge gained from studying ultradian oscillations in yeast will lead to a better understanding of the basic mechanistic principles and evolutionary origins of oscillatory behaviour among eukaryotes.
Collapse
Affiliation(s)
- Helen C Causton
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York
| |
Collapse
|
15
|
Hatcher KM, Royston SE, Mahoney MM. Modulation of circadian rhythms through estrogen receptor signaling. Eur J Neurosci 2018; 51:217-228. [PMID: 30270552 DOI: 10.1111/ejn.14184] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are physiological and behavioral processes that exhibit a 24-hr cycle. These daily rhythms are essential for living organisms to align their behavior and physiology with the environment to increase the likelihood of survival. In mammals, circadian rhythms synchronize with the environment primarily by the suprachiasmatic nucleus, a hypothalamic brain region that integrates exogenous and endogenous timing cues. Sex steroid hormones, including estrogens, are thought to modulate sexually dimorphic behaviors through developmental programming of the brain (i.e., organization), as well as acute receptor signaling during adulthood (i.e., activation). Importantly, there are known sex differences in the expression of circadian locomotor activity and molecular organization of the suprachiasmatic nucleus, likely due, in part, to the actions of circulating estrogens. Circadian locomotor rhythms, which are coordinated by the suprachiasmatic nucleus, have been shown to be regulated by developmental and adult levels of circulating estrogens. Further, increasing evidence suggests that estrogens can modulate expression of circadian clock genes that are essential for orchestration of circadian rhythms by the suprachiasmatic nucleus. In this review, we will discuss the organizational and activational modulation of the circadian timekeeping system by estrogens through estrogen receptor signaling.
Collapse
Affiliation(s)
- Katherine M Hatcher
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sara E Royston
- Department of Anesthesiology, Perioperative Medicine and Pain, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Spine and Pain Management, Christie Clinic, Champaign, Illinois
| | - Megan M Mahoney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
16
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
17
|
Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, Frezza C, O'Neill JS. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal 2018; 28:507-520. [PMID: 28506121 PMCID: PMC5806070 DOI: 10.1089/ars.2016.6911] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ∼24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested the functional contribution that redox state and primary metabolism make to mammalian cellular timekeeping. RESULTS We found a circadian rhythm in flux through primary glucose metabolic pathways, indicating rhythmic NAD(P)H production. Using pharmacological and genetic perturbations, however, we found that timekeeping was insensitive to changes in glycolytic flux, whereas oxidative pentose phosphate pathway (PPP) inhibition and other chronic redox stressors primarily affected circadian gene expression amplitude, not periodicity. Finally, acute changes in redox state decreased PER2 protein stability, phase dependently, to alter the subsequent phase of oscillation. INNOVATION Circadian rhythms in primary cellular metabolism and redox state have been proposed to play a role in the cellular timekeeping mechanism. We present experimental data testing that hypothesis. CONCLUSION Circadian flux through primary metabolism is cell autonomous, driving rhythmic NAD(P)+ redox cofactor turnover and maintaining a redox balance that is permissive for circadian gene expression cycles. Redox homeostasis and PPP flux, but not glycolysis, are necessary to maintain clock amplitude, but neither redox nor glucose metabolism determines circadian period. Furthermore, cellular rhythms are sensitive to acute changes in redox balance, at least partly through regulation of PER protein. Redox and metabolic state are, thus, both inputs and outputs, but not state variables, of cellular circadian timekeeping. Antioxid. Redox Signal. 28, 507-520.
Collapse
Affiliation(s)
- Marrit Putker
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Priya Crosby
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Kevin A Feeney
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | - Ana S H Costa
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Edoardo Gaude
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - Christian Frezza
- 2 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge , Cambridge, United Kingdom
| | - John S O'Neill
- 1 MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
18
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
19
|
Henslee EA, Crosby P, Kitcatt SJ, Parry JSW, Bernardini A, Abdallat RG, Braun G, Fatoyinbo HO, Harrison EJ, Edgar RS, Hoettges KF, Reddy AB, Jabr RI, von Schantz M, O'Neill JS, Labeed FH. Rhythmic potassium transport regulates the circadian clock in human red blood cells. Nat Commun 2017; 8:1978. [PMID: 29215003 PMCID: PMC5719349 DOI: 10.1038/s41467-017-02161-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms organize many aspects of cell biology and physiology to a daily temporal program that depends on clock gene expression cycles in most mammalian cell types. However, circadian rhythms are also observed in isolated mammalian red blood cells (RBCs), which lack nuclei, suggesting the existence of post-translational cellular clock mechanisms in these cells. Here we show using electrophysiological and pharmacological approaches that human RBCs display circadian regulation of membrane conductance and cytoplasmic conductivity that depends on the cycling of cytoplasmic K+ levels. Using pharmacological intervention and ion replacement, we show that inhibition of K+ transport abolishes RBC electrophysiological rhythms. Our results suggest that in the absence of conventional transcription cycles, RBCs maintain a circadian rhythm in membrane electrophysiology through dynamic regulation of K+ transport. Circadian rhythms usually rely on cyclic variations in gene expression. Red blood cells, however, display circadian rhythms while being devoid of nuclear DNA. Here, Henslee and colleagues show that circadian rhythms in isolated human red blood cells are dependent on rhythmic transport of K+ ions.
Collapse
Affiliation(s)
- Erin A Henslee
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Priya Crosby
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Stephen J Kitcatt
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jack S W Parry
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Andrea Bernardini
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Rula G Abdallat
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.,Department of Biomedical Engineering, The Hashemite University, 330127, Zarqa, 13115, Jordan
| | - Gabriella Braun
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Henry O Fatoyinbo
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Esther J Harrison
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Rachel S Edgar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kai F Hoettges
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Akhilesh B Reddy
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Rita I Jabr
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Fatima H Labeed
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
20
|
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017; 93:747-765. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/29/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA.
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston, MA 02215, USA
| |
Collapse
|
21
|
Bailes HJ, Milosavljevic N, Zhuang LY, Gerrard EJ, Nishiguchi T, Ozawa T, Lucas RJ. Optogenetic interrogation reveals separable G-protein-dependent and -independent signalling linking G-protein-coupled receptors to the circadian oscillator. BMC Biol 2017; 15:40. [PMID: 28506231 PMCID: PMC5430609 DOI: 10.1186/s12915-017-0380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous circadian oscillators distributed across the mammalian body are synchronised among themselves and with external time via a variety of signalling molecules, some of which interact with G-protein-coupled receptors (GPCRs). GPCRs can regulate cell physiology via pathways originating with heterotrimeric G-proteins or β-arrestins. We applied an optogenetic approach to determine the contribution of these two signalling modes on circadian phase. RESULTS We employed a photopigment (JellyOp) that activates Gαs signalling with better selectivity and higher sensitivity than available alternatives, and a point mutant of this pigment (F112A) biased towards β-arrestin signalling. When expressed in fibroblasts, both native JellyOp and the F112A arrestin-biased mutant drove light-dependent phase resetting in the circadian clock. Shifts induced by the two opsins differed in their circadian phase dependence and the degree to which they were associated with clock gene induction. CONCLUSIONS Our data imply separable G-protein and arrestin inputs to the mammalian circadian clock and establish a pair of optogenetic tools suitable for manipulating Gαs- and β-arrestin-biased signalling in live cells.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nina Milosavljevic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Ling-Yu Zhuang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Elliot J Gerrard
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Takeaki Ozawa
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Seasonal loss and resumption of circadian rhythms in hibernating arctic ground squirrels. J Comp Physiol B 2017; 187:693-703. [PMID: 28332018 DOI: 10.1007/s00360-017-1069-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/04/2017] [Accepted: 02/26/2017] [Indexed: 12/28/2022]
Abstract
Circadian clocks are near universal among organisms and play a key role in coordinating physiological and metabolic functions to anticipate or coincide with predictable daily changes in the physical and social environment. However, whether circadian rhythms persist and are functionally important during hibernation in all mammals is currently unclear. We examined whether circadian rhythms of body temperature (T b) persist during multi-day, steady-state torpor and investigated the association between timing of animal emergence, exposure to light, and resumption of activity and T b rhythms in free-living and captive male arctic ground squirrels. High-resolution (0.02 °C) temperature loggers revealed that circadian rhythms of T b were not present during deep torpor in free-living arctic ground squirrels. Significant circadian rhythms of T b resumed, however, following the resumption of euthermia, but prior to emergence, though rhythms became much more robust coincident with aboveground emergence. Additionally, squirrels maintained in captivity under conditions of constant darkness spontaneously developed significant circadian rhythms of T b and activity soon after ending torpor. Exposing animals to a 5-s pulse of light within a week when they ended torpor increased the strength of rhythms. Our results are consistent with the hypothesis that circadian clock function is inhibited during hibernation in arctic ground squirrels, and we postulate that exposure to external stimuli, such as light in free-living animals, and meals or acute disturbance for captive squirrels, may enhance T b rhythmicity by synchronizing loosely coupled circadian oscillators within the suprachiasmatic nucleus.
Collapse
|
23
|
Shinozaki A, Misawa K, Ikeda Y, Haraguchi A, Kamagata M, Tahara Y, Shibata S. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts. PLoS One 2017; 12:e0170904. [PMID: 28152057 PMCID: PMC5289493 DOI: 10.1371/journal.pone.0170904] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer’s have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenichiro Misawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Mehrabian M, Hildebrandt H, Schmitt-Ulms G. NCAM1 Polysialylation: The Prion Protein's Elusive Reason for Being? ASN Neuro 2016; 8:8/6/1759091416679074. [PMID: 27879349 PMCID: PMC5122176 DOI: 10.1177/1759091416679074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/06/2023] Open
Abstract
Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that uncovered the evolutionary descent of the prion founder gene from an ancestral ZIP zinc transporter, we recently investigated a possible role of PrPC in a morphogenetic program referred to as epithelial-to-mesenchymal transition (EMT). By capitalizing on PrPC knockout cell clones in a mammalian cell model of EMT and using a comparative proteomics discovery strategy, neural cell adhesion molecule-1 emerged as a protein whose upregulation during EMT was perturbed in PrPC knockout cells. Follow-up work led us to observe that PrPC regulates the polysialylation of the neural cell adhesion molecule NCAM1 in cells undergoing morphogenetic reprogramming. In addition to governing cellular migration, polysialylation modulates several other cellular plasticity programs PrPC has been phenotypically linked to. These include neurogenesis in the subventricular zone, controlled mossy fiber sprouting and trimming in the hippocampal formation, hematopoietic stem cell renewal, myelin repair and maintenance, integrity of the circadian rhythm, and glutamatergic signaling. This review revisits this body of literature and attempts to present it in light of this novel contextual framework. When approached in this manner, a coherent model of PrPC acting as a regulator of polysialylation during specific cell and tissue morphogenesis events comes into focus.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O'Neill JS, Reddy AB. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A 2016; 113:10085-90. [PMID: 27528682 PMCID: PMC5018795 DOI: 10.1073/pnas.1601895113] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.
Collapse
Affiliation(s)
- Rachel S Edgar
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Alessandra Stangherlin
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Andras D Nagy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Anatomy, University of Pecs Medical School, H-7624 Pecs, Hungary
| | - Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John S O'Neill
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom;
| |
Collapse
|
26
|
Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Iwami S, Yasuda S, Tahara Y, Shibata S. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. Sci Rep 2016; 6:27607. [PMID: 27271267 PMCID: PMC4897787 DOI: 10.1038/srep27607] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiho Iwami
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinnosuke Yasuda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
27
|
Johnston JD, Ordovás JM, Scheer FA, Turek FW. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans. Adv Nutr 2016; 7:399-406. [PMID: 26980824 PMCID: PMC4785478 DOI: 10.3945/an.115.010777] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population.
Collapse
Affiliation(s)
| | - José M Ordovás
- Tufts University, Boston, MA;,Madrid Institutes of Advanced Studies-Food, Madrid, Spain
| | - Frank A Scheer
- Brigham and Women's Hospital, Boston, MA;,Harvard Medical School, Boston, MA; and
| | | |
Collapse
|
28
|
Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Mol Cells 2016; 39:6-19. [PMID: 26810072 PMCID: PMC4749875 DOI: 10.14348/molcells.2016.2323] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Collapse
Affiliation(s)
- Marrit Putker
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| | - John Stuart O’Neill
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| |
Collapse
|
29
|
Ubiquitin ligase Siah2 regulates RevErbα degradation and the mammalian circadian clock. Proc Natl Acad Sci U S A 2015; 112:12420-5. [PMID: 26392558 DOI: 10.1073/pnas.1501204112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regulated degradation of proteins by the proteasome is often critical to their function in dynamic cellular pathways. The molecular clock underlying mammalian circadian rhythms relies on the rhythmic expression and degradation of its core components. However, because the tools available for identifying the mechanisms underlying the degradation of a specific protein are limited, the mechanisms regulating clock protein degradation are only beginning to be elucidated. Here we describe a cell-based functional screening approach designed to quickly identify the ubiquitin E3 ligases that induce the degradation of potentially any protein of interest. We screened the nuclear hormone receptor RevErbα (Nr1d1), a key constituent of the mammalian circadian clock, for E3 ligases that regulate its stability and found Seven in absentia2 (Siah2) to be a key regulator of RevErbα stability. Previously implicated in hypoxia signaling, Siah2 overexpression destabilizes RevErbα/β, and siRNA depletion of Siah2 stabilizes endogenous RevErbα. Moreover, Siah2 depletion delays circadian degradation of RevErbα and lengthens period length. These results demonstrate the utility of functional screening approaches for identifying regulators of protein stability and reveal Siah2 as a previously unidentified circadian clockwork regulator that mediates circadian RevErbα turnover.
Collapse
|
30
|
Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, Carpenter E, Michel S, Meijer JH, Colwell CS. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015; 42:1839-48. [PMID: 25885685 DOI: 10.1111/ejn.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in a subset of neurons in the ventral region of the suprachiasmatic nucleus (SCN). While VIP is known to be important for the synchronization of the SCN network, the role of VIP in photic regulation of the circadian system has received less attention. In the present study, we found that the light-evoked increase in electrical activity in vivo was unaltered by the loss of VIP. In the absence of VIP, the ventral SCN still exhibited N-methyl-d-aspartate-evoked responses in a brain slice preparation, although the absolute levels of neural activity before and after treatment were significantly reduced. Next, we used calcium imaging techniques to determine if the loss of VIP altered the calcium influx due to retinohypothalamic tract stimulation. The magnitude of the evoked calcium influx was not reduced in the ventral SCN, but did decline in the dorsal SCN regions. We examined the time course of the photic induction of Period1 in the SCN using in situ hybridization in VIP-mutant mice. We found that the initial induction of Period1 was not reduced by the loss of this signaling peptide. However, the sustained increase in Period1 expression (after 30 min) was significantly reduced. Similar results were found by measuring the light induction of cFOS in the SCN. These findings suggest that VIP is critical for longer-term changes within the SCN circuit, but does not play a role in the acute light response.
Collapse
Affiliation(s)
- Andrew Vosko
- Department of Structural Medicine, Rocky Vista University, Parker, CO, USA
| | - Hester C van Diepen
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dika Kuljis
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Andrew M Chiu
- Medical Scientist Training Program, Northwestern University, Evanston, IL, USA
| | - Djai Heyer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huub Terra
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen Carpenter
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Stephan Michel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
31
|
Shearer J. Methodological and metabolic considerations in the study of caffeine-containing energy drinks. Nutr Rev 2015; 72 Suppl 1:137-45. [PMID: 25293552 DOI: 10.1111/nure.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Caffeine-containing energy drinks are popular and widely available beverages. Despite large increases in consumption, studies documenting the nutritional, metabolic, and health implications of these beverages are limited. This review provides some important methodological considerations in the examination of these drinks and highlights their potential impact on the gastrointestinal system, liver, and metabolic health. The gastrointestinal system is important as it comes into contact with the highest concentration of energy drink ingredients and initiates a chain of events to communicate with peripheral tissues. Although energy drinks have diverse compositions, including taurine, ginseng, and carnitine, the most metabolically deleterious ingredients appear to be simple sugars (such as glucose and fructose) and caffeine. In combination, these last two ingredients have the greatest metabolic impact and potential influence on overall health.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms. Curr Biol 2015; 25:1056-62. [PMID: 25866393 PMCID: PMC4406945 DOI: 10.1016/j.cub.2015.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. Yeast respiratory oscillations (YROs) share features with circadian rhythms Changes that alter the period of circadian rhythms have the same effect on YROs Oxidation cycles of peroxiredoxins are a characteristic of both oscillations Mechanistic similarities between these cycles may reflect a common origin
Collapse
|
33
|
Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 2015; 34:15192-9. [PMID: 25392488 DOI: 10.1523/jneurosci.3233-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∼24 h clock not only in the living animal, but also when isolated in culture. This "clock in a dish" can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)]i, and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms.
Collapse
|
34
|
Muter J, Lucas ES, Chan YW, Brighton PJ, Moore JD, Lacey L, Quenby S, Lam EWF, Brosens JJ. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells. FASEB J 2015; 29:1603-14. [PMID: 25573754 PMCID: PMC4396614 DOI: 10.1096/fj.14-267195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 01/24/2023]
Abstract
Implantation requires coordinated interactions between the conceptus and surrounding decidual cells, but the involvement of clock genes in this process is incompletely understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK (circadian locomotor output cycles kaput) and brain muscle arnt-like 1 and repressors encoded by PER (Period) and Cryptochrome genes. We show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Down-regulation occurred between 12 and 24 hours following differentiation and coincided with reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter. RNA sequencing revealed that premature inhibition of PER2 by small interfering RNA knockdown leads to a grossly disorganized decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators among the 1121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of 70 midluteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure (Spearman rank test, ρ = −0.3260; P = 0.0046). Thus, PER2 synchronizes endometrial proliferation with initiation of aperiodic decidual gene expression; uncoupling of these events may cause recurrent pregnancy loss.—Muter, J., Lucas, E. S., Chan, Y.-W., Brighton, P. J., Moore, J. D., Lacey, L., Quenby, S., Lam, E. W.-F., Brosens, J. J. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.
Collapse
Affiliation(s)
- Joanne Muter
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Emma S Lucas
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Yi-Wah Chan
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Paul J Brighton
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Jonathan D Moore
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Lauren Lacey
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Siobhan Quenby
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Eric W-F Lam
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Jan J Brosens
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| |
Collapse
|
35
|
Abstract
As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | |
Collapse
|
36
|
Narishige S, Kuwahara M, Shinozaki A, Okada S, Ikeda Y, Kamagata M, Tahara Y, Shibata S. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice. Br J Pharmacol 2014; 171:5858-69. [PMID: 25160990 DOI: 10.1111/bph.12890] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/27/2014] [Accepted: 08/16/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca(2+) signalling in effects of caffeine on rhythm has not been fully elucidated. EXPERIMENTAL APPROACH We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. KEY RESULTS Chronic application of caffeine (0.1-10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light-dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg(-1) ) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca(2+) signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. CONCLUSIONS AND IMPLICATIONS Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks.
Collapse
Affiliation(s)
- Seira Narishige
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cain SW, Yoon J, Shrestha TC, Ralph MR. Retention of a 24-hour time memory in Syrian hamsters carrying the 20-hour short circadian period mutation in casein kinase-1ε (ck1εtau/tau). Neurobiol Learn Mem 2014; 114:171-7. [DOI: 10.1016/j.nlm.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/10/2023]
|
38
|
Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 2014; 10:739. [PMID: 25028488 PMCID: PMC4299496 DOI: 10.15252/msb.20145218] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the
range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we
estimated the mutual interactions between the two oscillators by time-lapse imaging of single
mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in
dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell
divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP
reporter expression. In principle, such synchrony may be caused by either unidirectional or
bidirectional coupling. While gating of cell division by the circadian cycle has been most studied,
our data combined with stochastic modeling unambiguously show that the reverse coupling is
predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations
showed that the two interacting cellular oscillators adopt a synchronized state that is highly
robust over a wide range of parameters. These findings have implications for circadian function in
proliferative tissues, including epidermis, immune cells, and cancer.
Collapse
Affiliation(s)
- Jonathan Bieler
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosamaria Cannavo
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kyle Gustafson
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cedric Gobet
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
O'Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal 2014; 20:2966-81. [PMID: 24063592 PMCID: PMC4038991 DOI: 10.1089/ars.2013.5582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A substantial proportion of mammalian physiology is organized around the day/night cycle, being regulated by the co-ordinated action of numerous cell-autonomous circadian oscillators throughout the body. Disruption of internal timekeeping, by genetic or environmental perturbation, leads to metabolic dysregulation, whereas changes in metabolism affect timekeeping. RECENT ADVANCES While gene expression cycles are essential for the temporal coordination of normal physiology, it has become clear that rhythms in metabolism and redox balance are cell-intrinsic phenomena, which may regulate gene expression cycles reciprocally, but persist in their absence. For example, a circadian rhythm in peroxiredoxin oxidation was recently observed in isolated human erythrocytes, fibroblast cell lines in vitro, and mouse liver in vivo. CRITICAL ISSUES Mammalian timekeeping is a cellular phenomenon. While we understand many of the cellular systems that contribute to this biological oscillation's fidelity and robustness, a comprehensive mechanistic understanding remains elusive. Moreover, the formerly clear distinction between "core clock components" and rhythmic cellular outputs is blurred since several outputs, for example, redox balance, can feed back to regulate timekeeping. As with any cyclical system, establishing causality becomes problematic. FUTURE DIRECTIONS A detailed molecular understanding of the temporal crosstalk between cellular systems, and the coincidence detection mechanisms that allow a cell to discriminate clock-relevant from irrelevant stimuli, will be essential as we move toward an integrated model of how this daily biological oscillation works. Such knowledge will highlight new avenues by which the functional consequences of circadian timekeeping can be explored in the context of human health and disease.
Collapse
Affiliation(s)
- John S O'Neill
- MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | |
Collapse
|
40
|
Innominato PF, Roche VP, Palesh OG, Ulusakarya A, Spiegel D, Lévi FA. The circadian timing system in clinical oncology. Ann Med 2014; 46:191-207. [PMID: 24915535 DOI: 10.3109/07853890.2014.916990] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The circadian timing system (CTS) controls several critical molecular pathways for cancer processes and treatment effects over the 24 hours, including drug metabolism, cell cycle, apoptosis, and DNA damage repair mechanisms. This results in the circadian time dependency of whole-body and cellular pharmacokinetics and pharmacodynamics of anticancer agents. However, CTS robustness and phase varies among cancer patients, based on circadian monitoring of rest- activity, body temperature, sleep, and/or hormonal secretion rhythms. Circadian disruption has been further found in up to 50% of patients with metastatic cancer. Such disruption was associated with poor outcomes, including fatigue, anorexia, sleep disorders, and short progression-free and overall survival. Novel, minimally invasive devices have enabled continuous CTS assessment in non-hospitalized cancer patients. They revealed up to 12-hour differences in individual circadian phase. Taken together, the data support the personalization of chronotherapy. This treatment method aims at the adjustment of cancer treatment delivery according to circadian rhythms, using programmable-in-time pumps or novel release formulations, in order to increase both efficacy and tolerability. A fixed oxaliplatin, 5-fluorouracil and leucovorin chronotherapy protocol prolonged median overall survival in men with metastatic colorectal cancer by 3.3 months as compared to conventional delivery, according to a meta-analysis (P=0.009). Further analyses revealed the need for the prevention of circadian disruption or the restoration of robust circadian function in patients on chronotherapy, in order to further optimize treatment effects. The strengthening of external synchronizers could meet such a goal, through programmed exercise, meal timing, light exposure, improved social support, sleep scheduling, and the properly timed administration of drugs that target circadian clocks. Chrono-rehabilitation warrants clinical testing for improving quality of life and survival in cancer patients.
Collapse
Affiliation(s)
- Pasquale F Innominato
- INSERM, UMRS 776 'Biological Rhythms and Cancers', Campus CNRS , 7 rue Guy Môquet, 94801 Villejuif Cedex , France
| | | | | | | | | | | |
Collapse
|
41
|
Circadian rhythms of Per2::Luc in individual primary mouse hepatocytes and cultures. PLoS One 2014; 9:e87573. [PMID: 24498336 PMCID: PMC3911982 DOI: 10.1371/journal.pone.0087573] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/20/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS In this study we isolated primary hepatocytes from transgenic Per2(Luc) mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/-) Per2(Luc) cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.
Collapse
|
42
|
Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. Handb Exp Pharmacol 2013:289-309. [PMID: 23604484 DOI: 10.1007/978-3-642-25950-0_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circadian clock is an evolutionary conserved intrinsic timekeeping mechanism that controls daily variations in multiple biological processes. One important process that is modulated by the circadian clock is an organism's response to genotoxic stress, such as that induced by anticancer drug and radiation treatments. Numerous observations made in animal models have convincingly demonstrated that drug-induced toxicity displays prominent daily variations; therefore, undesirable side effects could be significantly reduced by administration of drugs at specific times when they are better tolerated. In some cases, these critical times of the day coincide with increased sensitivity of tumor cells allowing for a greater therapeutic index. Despite encouraging results of chronomodulated therapies, our knowledge of molecular mechanisms underlying these observations remains sketchy. Here we review recent progress in deciphering mechanistic links between circadian and stress response pathways with a focus on how these findings could be applied to anticancer clinical practice. We discuss the potential for using high-throughput screens to identify small molecules that can modulate basic parameters of the entire circadian machinery as well as functional activity of its individual components. We also describe the discovery of several small molecules that can pharmacologically modulate clock and that have a potential to be developed into therapeutic drugs. We believe that translational applications of clock-targeting pharmaceuticals are twofold: they may be developed into drugs to treat circadian-related disorders or used in combination with existing therapeutic strategies to improve therapeutic index of a given genotoxic treatment via the intrinsic clock mechanism.
Collapse
|
43
|
Abstract
Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. This is achieved by ocular photoreception relaying signals to the suprachiasmatic nucleus (SCN) in the hypothalamus. Signals from the SCN cause the synchronization of independent circadian clocks throughout the body to appropriate phases. Signals that can entrain these peripheral clocks include humoral signals, metabolic factors, and body temperature. At the level of individual tissues, thousands of genes are brought to unique phases through the actions of a local transcription/translation-based feedback oscillator and systemic cues. In this molecular clock, the proteins CLOCK and BMAL1 cause the transcription of genes which ultimately feedback and inhibit CLOCK and BMAL1 transcriptional activity. Finally, there are also other molecular circadian oscillators which can act independently of the transcription-based clock in all species which have been tested.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Ophthalmology, University of Washington, 1959 NE Pacific St, 356485 BB-857 HSB, Seattle, WA 98195, USA
| | | |
Collapse
|
44
|
Abstract
The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.
Collapse
|
45
|
Abstract
Although circadian rhythms in mammalian physiology and behavior are dependent upon a biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, the molecular mechanism of this clock is in fact cell autonomous and conserved in nearly all cells of the body. Thus, the SCN serves in part as a "master clock," synchronizing "slave" clocks in peripheral tissues, and in part directly orchestrates circadian physiology. In this chapter, we first consider the detailed mechanism of peripheral clocks as compared to clocks in the SCN and how mechanistic differences facilitate their functions. Next, we discuss the different mechanisms by which peripheral tissues can be entrained to the SCN and to the environment. Finally, we look directly at how peripheral oscillators control circadian physiology in cells and tissues.
Collapse
Affiliation(s)
- Steven A Brown
- Institute of Pharmacology and Toxicology, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| | | |
Collapse
|
46
|
Abstract
Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-107, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|